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Relative Equilibria in Curved Restricted
4-body Problems
_is paper is dedicated to the late Florin Diacu, our friend, colleague and teacher, who
brought us much joy and interest in celestial mechanics.

Sawsan Alhowaity, Florin Diacu, and Ernesto Pérez-Chavela

Abstract. We consider the curved 4-body problems on spheres and hyperbolic spheres. A�er ob-
taining a criterion for the existence of quadrilateral conûgurations on the equator of the sphere, we
study two restricted 4-body problems, one in which two masses are negligible and another in which
only one mass is negligible. In the former, we prove the evidence square-like relative equilibria,
whereas in the latter we discuss the existence of kite-shaped relative equilibria.

1 Introduction

_ecurvedN-body problem is a natural extension of the classical Newtonian N-body
problem to spaces of constant curvature. _e idea of extending the gravitational force
between point masses to spaces of constant curvature occurred soon a�er the dis-
covery of hyperbolic geometry. In the 1830s, independently of each other, Bolyai and
Lobachevsky realized that there must be an intimate connection between the laws of
physics and the geometry of the universe [1, 23, 24]. Lobachevsky studied the Ke-
pler problem in the three dimensional hyperbolic space by deûning a special poten-
tial that was an extension of classical Newton potential. Since then, many researchers
have studied this problem in two and three dimensional curved spaces. Nowwe jump
ahead in the history of this problem to the developements in recent years.

In the 1990s, the Russian school of celestial mechanics considered both the curved
Kepler and the curved 2-body problem, [22, 31]. A�er understanding that, unlike in
the Euclidean case, these problems are not equivalent, the latter failing to be inte-
grable ([31]), the 2-body case was intensively studied by several researchers of this
school. In 2005, Cariñena, Rañada, and Santander studied, in a uniûed way, the two
body problem deûned on spaces of nonzero constant curvature [2]. _is paper was
the inspiration for the work of Diacu, Santoprete, and Pérez-Chavela. _ese authors
extended the curved N-body problem for N > 2 in a new uniûed framework, leading
to many interesting results [2–19, 28].
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Other researchers developed these ideas further [21,25,26,29–32], and the problem
is growing in popularity. In [5], the interested reader can ûnd a nice introduction to
this problem with a long historical background.

In this article, we ûrst prove a criterion for the existence of quadrilateral relative
equilibria on the equator of the sphere. _e main results show that if two masses
are negligible and the other two are equal, then square-like relative equilibria exists
on spheres, but—surprisingly—not on hyperbolic spheres. _e element of surprise
arises from the fact that, in the general problem, square-like equilibria exist both on
the hyperbolic sphere and on the sphere (except for the case when they are on the
equator) [5]. Finally, we prove that if only one mass is negligible and the other three
are equal, some kite-shaped relative equilibria exist on spheres, but not on hyperbolic
spheres.
A�er the introduction the paper is organized as follows. In Section 2, we write

the equations of motion for our model. In Section 3, we give the formal deûnition of
relative equilibria, showing that for the Principal Axis _eorem, for the case of posi-
tive curvature, we can restrict our analysis to the action of just one symmetric group;
whereas, for negative curvature we need to analyze three diòerent symmetric groups
acting on the corresponding surface. In Sections 4 and 5, we state and prove our main
results. Previously we justify why in this paper, in the case of negative curvature we
are restricted only to the study of the elliptic relative equilibria. Although the compu-
tations are very similar in both cases, we have included both here for the convenience
of the reader.

2 Equations of Motion

We consider the motion of four bodies on 2-dimensional surfaces of constant cur-
vature κ. For κ > 0, we use as a model the spheres of radius 1/

√
κ. _is sphere is

embedded in R3 with the Euclidean metric, and we denote it by S2
κ . For κ = 0, we

take the Euclidean plane R2, and for κ < 0 we take the upper part of the hyperboloid
x2 + y2 − z2 = −1/

√
−κ, embedded in the Minkowski space R2,1, that is R3 endowed

with the Lorenz inner product (for a, b ∈ R3 , a⊙ b = axbx + ayby − azbz). _is space
is known as the hyperbolic sphere or the pseudo sphere, and it is denoted byH2

κ .
Now, we will arrange these objects in R3, maintaining the diòerent metric for the

sphere and the pseudo sphere, such that they all have a common point at which lie
all the north poles of the spheres and the vertices of the hyperbolic spheres, to all of
which the plane R2 is tangent. We ûx the origin of the new coordinate system at this
point. In other words, we translate the origin to the north pole of the sphere and the
pseudo sphere, and abusing notation, we keep the same notation for these objects.
_en we can write

S2
κ ∶= {(x , y, z) ∣ κ(x2 + y2 + z2) + 2κ

1
2 z = 0} for κ > 0,

H2
κ ∶= {(x , y, z) ∣ κ(x2 + y2 − z2) + 2∣κ∣ 1

2 z = 0, z ≥ 0} for κ < 0.

Now consider four point masses, m i > 0, i = 1, 2, 3, 4, whose position vectors, veloc-
ities, and accelerations are given by

ri = (x i , y i , z i), ṙi = (ẋ i , ẏ i , ż i), r̈i = (ẍ i , ÿ i , z̈ i), i = 1, 2, 3, 4.
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_en, as shown in [9], the equations of motion take the form

(2.1)

ẍ i =
N

∑
j=1, j/=i

m j[x j − ( 1 − κr2i j
2 )x i]

( 1 − κr2i j
4 ) 3/2

r3i j
− κ(ṙi ⋅ ṙi)x i ,

ÿ i =
N

∑
j=1, j/=i

m j[ y j − ( 1 − κr2i j
2 ) y i]

( 1 − κr2i j
4 ) 3/2

r3i j
− κ(ṙi ⋅ ṙi)y i ,

z̈ i =
N

∑
j=1, j/=i

m j[ z j − ( 1 − κr2i j
2 ) z i]

( 1 − κr2i j
4 ) 3/2

r3i j
− (ṙi ⋅ ṙi)(κz i + σ ∣κ∣1/2), i = 1, 2, 3, 4,

where σ = 1 for κ ≥ 0, σ = −1 for κ < 0, and

r i j ∶=
⎧⎪⎪⎨⎪⎪⎩

[(x i − x j)2 + (y i − y j)2 + (z i − z j)2]1/2 for κ ≥ 0,
[(x i − x j)2 + (y i − y j)2 − (z i − z j)2]1/2 for κ < 0,

for i , j ∈ {1, 2, 3, 4}. _e above system has eight constraints, namely,

κ(x2
1 + y2

i + σz2
i ) + 2∣κ∣1/2z i = 0,

κri ⋅ ṙi + ∣κ∣1/2 ż i = 0, i = 1, 2, 3, 4.

If satisûed at an initial instant, these constraints are satisûed for all time, because the
sets S2

κ ,R2, and H2
κ are invariant for the equations of motion, [5]. Notice that for

κ = 0, we recover the classical Newtonian equations of the 4-body problem on the
Euclidean plane, namely,

r̈i =
N

∑
j=1, j/=i

m j(r j − ri)
r3i j

,

where ri = (x i , y i , 0), i = 1, 2, 3, 4.

3 Relative Equilibria

It is well known that in the curved N-body problem, the total energy and the angular
momentum are ûrst integrals, but the linear momentum is no longer a constant of
motion, which is a big diòerence from the Euclidean case [15]. _e goal of this paper
is to describe particular solutions for this problem, the simplest ones, called relative
equilibria. _e formal deûnition follows.

Deûnition 3.1 Relative equilibria are solutions of the curved N-body problem in
which the mutual distances among the particles remain constant for all time t ∈ R.
_at is, the particles move like a rigid body.

So in order to study relative equilibria, we must to analyze all isometries for both
the sphere S2

κ and the pseudo-sphereH2
κ . According to the above deûnition, the rela-

tive equilibria will be the solutions of the equations of motion that are invariant under
the action of the isometry groups for the respective surfaces of positive and negative
curvature.
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3.1 Relative Equilibria for Positive κ

_is is the simplest case, because we know that all isometries in R3 are rotations,
and _e Principal Axis _eorem states that any rotation in R3, is around any ûxed
axis [20]. So in this case, without loss of generality, we can assume that the rotation is
around the z-axis, andwe have that a relative equilibrium is a solution of the equations
of motion that is invariant under the action of the isometry given by the rotation
matrix

(3.1) A(t) =
⎛
⎜
⎝

cos t sin t 0
− sin t cos t 0
0 0 1

⎞
⎟
⎠
.

3.2 Relative Equilibria for Negative κ

Let Lor(H2
κ ,⊙) be the group of all orthogonal transformations of determinant 1 that

maintains the upper part of the hyperboloid invariant (the Lorentz group formed by
all isometries of H2

κ) (see [13, 15, 28] for more details). Applying the corresponding
Principal Axis _eorem [27] to Lor(H2

κ ,⊙), which states that any 1−parameter sub-
group of Lor(L2 ,⊙) can be written, in a proper basis, as

A(t) = P
⎛
⎜
⎝

cos t − sin t 0
sin t cos t 0
0 0 1

⎞
⎟
⎠
P−1 ,

or

A(t) = P
⎛
⎜
⎝

1 0 0
0 cosh t sinh t
0 sinh t cosh t

⎞
⎟
⎠
P−1 ,

or

A(t) = P
⎛
⎜
⎝

1 −t t
t 1 − t2/2 t2/2
t −t2/2 1 + t2/2

⎞
⎟
⎠
P−1 ,

where P ∈ Lor(H2
κ ,⊙). _en any isometry of Lor(H2

κ ,⊙) can be written as a com-
position of some of the above three transformations, called elliptic, hyperbolic, and
parabolic, respectively. So in this case, the relative equilibria on the pseudo sphere are
the solutions of the equations of motion that are invariant under some isometry of
Lor(H2

κ ,⊙).

4 The Case of Positive Curvature

By the previous discussion, in this case we have to ûnd the initial conditions which
lead to the solutions that are invariant under the action of the isometry given by the
rotation matrix deûned by equation (3.1).
First, we introduce new coordinates (φ,ω), which were originally used in [9] for

the case N = 3, to detect relative equilibria on and near the equator of S2
κ , where

φ measures the angle from the x-axis in the xy-plane, while ω is the height on the
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vertical z-axis. In these new coordinates, the 8 constraints for the original equations
of motion (2.1) become

(4.1) x2
i + y2

i + ω2
i + 2κ−1/2ω i = 0, i = 1, 2, 3, 4.

With the notation,

Ω i = x2
i + y2

i = −κ−1/2ω i(κ1/2ω i + 2) ≥ 0, ω i ∈ [−2κ−1/2 , 0], i = 1, 2, 3, 4,

where equality occurs when the body is at the North or the South Pole of the sphere,
the (φ,ω)-coordinates are given by the transformations

x i = Ω1/2
i cosφ i , y i = Ω1/2

i sinφ i .

_us, the equations of motion (2.1) take the form

(4.2)

φ̈ i = Ω−1/2i

N

∑
j=1, j/=i

m jΩ
1/2
j sin(φ j − φ i)

ρ3
i j(1 −

κρ2
i j

4 )3/2
− φ̇ i Ω̇ i

Ω i
,

ω̈ i = Ω−1/2i

N

∑
j=1, j/=i

m j[ω j + ω i +
κρ2

i j
2 (ω i + κ−1/2)]

ρ3
i j( 1 −

κρ2
i j

4 ) 3/2

− (κω i + κ1/2)(
Ω̇2

i

4Ω i
+ φ̇ i

2Ω i + ω̇2
i ) ,

where

Ω̇ i = −2κ−1/2ω̇ i(κ1/2ω i + 1),

ρ2
i j = Ω i +Ω j − 2Ω1/2

i Ω1/2
j cos(φ i − φ j) + (ω i − ω j)2 , i , j = 1, 2, 3, 4, i /= j.

4.1 Relative Equilibria on the Equator

If we restrict the motion of the four bodies to the equator of S2
κ , then

ω i = −κ−1/2 , ω̇ i = 0, Ω i = κ−1 , i = 1, 2, 3, 4,

and the equations of motion (4.2) take the simple form

φ̈ i = κ3/2
4

∑
j=1, j/=i

m j sin(φ j − φ i)
∣ sin(φ j − φ i)∣3

, i = 1, 2, 3, 4.

For the relative equilibria, the angular velocity is the same constant for all masses, so
we denote this velocity by α /= 0 and take

φ1 = αt + a1 , φ2 = αt + a2 , φ3 = αt + a3 , φ4 = αt + a4 ,

where a1 , a2 , a3 , a4 are real constants, so

φ̈ i = 0, i = 1, 2, 3, 4.

https://doi.org/10.4153/CMB-2018-019-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2018-019-9


678 S. Alhowaity, F. Diacu, and E. Pérez-Chavela

Using the notation

s1 ∶=
κ3/2 sin(φ1 − φ2)
∣ sin(φ1 − φ2)∣3

, s2 ∶=
κ3/2 sin(φ2 − φ3)
∣ sin(φ2 − φ3)∣3

, s3 ∶=
κ3/2 sin(φ3 − φ1)
∣ sin(φ3 − φ1)∣3

,

s4 ∶=
κ3/2 sin(φ4 − φ1)
∣ sin(φ4 − φ1)∣3

, s5 ∶=
κ3/2 sin(φ2 − φ4)
∣ sin(φ2 − φ4)∣3

, s6 ∶=
κ3/2 sin(φ3 − φ4)
∣ sin(φ3 − φ4)∣3

.

_e ûrst theorem can be expressed as follows.

_eorem 4.1 A necessary condition that the quadrilateral inscribed in the equator of
S2

κ , with the four masses m1 ,m2 ,m3 ,m4 > 0 at its vertices, forms a relative equilibrium
is that s1s6 + s3s5 = s2s4 .

Proof We obtain from the equations of motion corresponding to φ̈ i that

−m2s1 +m3s3 +m4s4 = 0, −m1s3 +m2s2 −m4s6 = 0,
m1s1 −m3s2 −m4s5 = 0, −m1s4 +m2s5 +m3s6 = 0.

To have other solutions of the masses than m1 = m2 = m3 = m4 = 0, the determinant
of the above systemmust vanish, which is equivalent to s1s6+ s3s5 = s2s4 . _is remark
completes the proof.

4.2 Equivalent Equations of Motion

In this subsection, we obtain another form of equations of motion in which the ac-
tion of the isometry groups that deûne the relative equilibria is conserved. Let us now
introduce some equivalent equations of motion that are suitable for the kind of solu-
tions we are seeking. First, by eliminating ω i from the constraints given by equation
(4.1), we get

κ(x2
i + y2

i ) + (∣κ∣1/2z i + 1)2 = 1,

and solving explicitly for z i , we obtain

z i = ∣κ∣−1/2[
√

1 − κ(x2
i + y2

i ) − 1] .

_e idea here is to eliminate the four equations involving z1 , z2 , z3 , z4, but they still
appear in the terms r2i j in the form σ(z i − z j)2 as

σ(z i − z j)2 =
κ(x2

i + y2
i − x2

j − y2
j )2

[
√

1 − κ(x2
i + y2

i ) +
√

1 − κ(x2
j + y2

j )]
2 .
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_e case of physical interest is when κ is not far from zero, so the above expression
exist even for small κ > 0 under this assumption. _en the equations of motion be-
come

(4.3)

ẍ i =
N

∑
j=1, j/=i

m j[x j − ( 1 − κρ2
i j

2 )x i]

( 1 − κρ2
i j

4 ) 3/2
ρ3
i j

− κ(ẋ i
2 + ẏ i

2 + κB i)x i

ÿ i =
N

∑
j=1, j/=i

m j[ y j − ( 1 − κρ2
i j

2 ) y i]

( 1 − κρ2
i j

4 ) 3/2
ρ3
i j

− κ(ẋ i
2 + ẏ i

2 + κB i)y i ,

where

ρ2
i j = (x i − x j)2 + (y i − y j)2 +

κ(A i − A j)2

(
√

1 − κA i +
√

1 − κA j)2
,

A i = x2
i + y2

i ,

B i =
(x i ẋ i + y i ẏ i)2

1 − κ(x2
i + y2

i )
, i = 1, 2, 3, 4.

It is obvious that for κ = 0 we recover the classical Newtonian equations of motion of
the planar 4-body problem. Also, since the relative equilibria forNewtonian equations
are invariant under the action of the rotationmatrix given by (3.1), and the other terms
in equation (4.3) depend essentially on mutual distances and its derivatives, then the
corresponding relative equilibria for the new system is conserved by (3.1).

4.3 The Case of Two Negligible Masses

We now consider the case when two out of the four given masses are negligible,m3 =
m4 = 0. _en the equations of motion become

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẍ1 =
m2[ x2−( 1−

κρ212
2 ) x1]

( 1−
κρ212
2 ) 3/2

ρ3
12

− κ(ẋ1
2 + ẏ1

2 + κB1)x1 ,

ÿ1 =
m2[ y2−( 1−

κρ212
2 ) y1]

( 1−
κρ212

4 ) 3/2
ρ3
12

− κ(ẋ1
2 + ẏ1

2 + κB1)y1 ,
(4.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẍ2 =
m1[ x1−( 1−

κρ212
2 ) x2]

( 1−
κρ212

4 ) 3/2
ρ3
12

− κ(ẋ2
2 + ẏ2

2 + κB2)x2 ,

ÿ2 =
m1[ y1−( 1−

κρ212
2 ) y2]

( 1−
κρ212

4 ) 3/2
ρ3
12

− κ(ẋ2
2 + ẏ2

2 + κB2)y2 ,
(4.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẍ3 =
m1[ x1−( 1−

κρ213
2 ) x3]

( 1−
κρ213

4 ) 3/2
ρ3
13

+ m2[ x2−( 1−
κρ232
2 ) x3]

( 1−
κρ223

4 ) 3/2
ρ3
23

− κ(ẋ3
2 + ẏ3

2 + κB3)x3 ,

ÿ3 =
m1[ y1−( 1−

κρ213
2 ) y3]

( 1−
κρ213

4 ) 3/2
ρ3
13

+ m2[ y2−( 1−
κρ232
2 ) y3]

( 1−
κρ232
2 ) 3/2

ρ3
32

− κ(ẋ3
2 + ẏ3

2 + κB3)y3 ,
(4.6)
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m2 m1

m4

m3

m2 m1

m3

m4

Figure 1: _e case of 2 equal masses and 2 negligible masses in the northern or in the southern
hemisphere

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẍ4 =
m1[ x1−( 1−

κρ214
2 ) x4]

( 1−
κρ214

4 ) 3/2
ρ3
14

+ m4[ x4−( 1−
κρ242
2 ) x2]

( 1−
κρ242

4 ) 3/2
ρ3
42

− κ(ẋ4
2 + ẏ4

2 + κB4)x4 ,

ÿ4 =
m1[ y1−( 1−

κρ214
2 ) y4]

( 1−
κρ214

4 ) 3/2
ρ3
14

+ m4[ y4−( 1−
κρ242
2 ) y2]

( 1−
κρ242

4 ) 3/2
ρ3
42

− κ(ẋ4
2 + ẏ4

2 + κB4)y4 ,
(4.7)

where ρ2
i j = ρ2

ji , i /= j,

ρ2
i j = (x i − x j)2 + (y i − y j)2 +

κ(x2
i + y2

i − x2
j − y2

j )2

[
√

1 − κ(x2
i + y2

i ) +
√

1 − κ(x2
j + y2

j )]2
.

We can now show that when m1 = m2 =∶ m > 0 andm3 = m4 = 0, square-like relative
equilibria, i.e., equilateral equiangular quadrilaterals, always exist on S2

κ .

_eorem 4.2 In the curved 4-body problem, assume that m1 = m2 =∶ m > 0 and
m3 = m4 = 0. _en, in S2

κ , there are two circles of radius 0 < r < κ−1/2, parallel with
the equator, such that a square conûguration inscribed in this circle, with m1 ,m2 at the
opposite ends of one diagonal and m3 ,m4 at the opposite ends of the other diagonal,
forms a relative equilibrium.

Proof Observe that the variable r deûned below is related with the high from the
equator to the plane containing the conûguration inscribed on the circle of radius r
in positive (northern hemisphere) or negative sense (southern hemisphere). So we
can assume without loss of generality that the bodies are in the northern hemisphere.
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_en we must check the existence of a solution of the form

q = (q1 , q2 , q3 , q4) ∈ S2
κ , qi = (x i , y i), i = 1, 2, 3, 4,

x1 = r cos αt, y1 = r sin αt,
x2 = −r cos αt, y2 = −r sin αt,
x3 = r cos(αt + π/2) = −r sin αt, y3 = r sin(αt + π/2) = r cos αt,
x4 = −r cos(αt + π/2) = r sin αt, y4 = −r sin(αt + π/2) = −r cos αt,

where

x2
i + y2

i = r2 , ρ2 = ρ2
13 = ρ2

14 = ρ2
23 = ρ2

24 = 2r2 , ρ2
12 = ρ2

34 = 4r2 .

Substituting these expressions into system (4.1), the ûrst four equations lead us to

α2 = m
4r3(1 − κr2)3/2 ,

whereas the last four equations yield

α2 =
2m(1 − κρ2

2 )
ρ3(1 − κρ2

4 )3/2(1 − κr2)
.

So, to have a solution, the equation

m
4r3(1 − κr2)3/2 =

2m(1 − κρ2

2 )
ρ3(1 − κρ2

4 )3/2(1 − κr2)
must be satisûed. _is equation is equivalent to

1
8r3(1 − κr2)3/2 = 1

2
√

2r3(1 − κr2
2 )3/2

,

which leads to 3κr2 = 2. For S2
κ , it leads to r =

√
2/3κ−1/2 . Since r < κ−1/2, such a

solution always exists in S2
κ .

4.4 The Case of One Negligible Mass

Let m1 ,m2 ,m3 = m > 0 and assume that m4 = 0. _en the equations of motion take
the form

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẍ1 =
m2[ x2−( 1−

κρ212
2 ) x1]

( 1−
κρ212

4 ) 3/2
ρ3
12

+ m3[ x3−( 1−
κρ231
2 ) x1]

( 1−
κρ231

4 ) 3/2
ρ3
31

− κ(ẋ1
2 + ẏ1

2 + κB1)x1 ,

ÿ1 =
m2[ y2−( 1−

κρ212
2 ) y1]

( 1−
κρ212

4 ) 3/2
ρ3
12

+ m3[ y3−( 1−
κρ231
2 ) y1]

( 1−
κρ231

4 ) 3/2
ρ3
31

− κ(ẋ1
2 + ẏ1

2 + κB1)y1 ,
(4.8)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẍ2 =
m1[ x1−( 1−

κρ212
2 ) x2]

( 1−
κρ212

4 ) 3/2
ρ3
12

+ m3[ x3−( 1−
κρ232
2 ) x2]

( 1−
κρ232

4 ) 3/2
ρ3
32

− κ(ẋ2
2 + ẏ2

2 + κB2)x2 ,

ÿ2 =
m1[ y1−( 1−

κρ212
2 ) y2]

( 1−
κρ212

4 ) 3/2
ρ3
12

+ m3[ y3−( 1−
κρ232
2 ) y2]

( 1−
κρ232

4 ) 3/2
ρ3
32

− κ(ẋ2
2 + ẏ2

2 + κB2)y2 ,
(4.9)

https://doi.org/10.4153/CMB-2018-019-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2018-019-9


682 S. Alhowaity, F. Diacu, and E. Pérez-Chavela

m1

m3

m2

m4

Figure 2: _e case of two equal masses and two negligible masses.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẍ3 =
m1[ x1−( 1−

κρ213
2 ) x3]

( 1−
κρ213

4 ) 3/2
ρ3
13

+ m2[ x2−( 1−
κρ232
2 ) x3]

( 1−
κρ232

4 ) 3/2
ρ3
32

− κ(ẋ3
2 + ẏ3

2 + κB3)x3 ,

ÿ3 =
m1[ y1−( 1−

κρ213
2 ) y3]

( 1−
κρ213

4 ) 3/2
ρ3
13

+ m2[ y2−( 1−
κρ232
2 ) y3]

( 1−
κρ232

4 ) 3/2
ρ3
32

− κ(ẋ3
2 + ẏ3

2 + κB3)y3 ,
(4.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẍ4 =
m1[ x1−( 1−

κρ214
2 ) x4]

( 1−
κρ214

4 ) 3/2
ρ3
14

+ m2[ x2−( 1−
κρ242
2 ) x4]

( 1−
κρ242

4 ) 3/2
ρ3
42

+ m3[ x3−( 1−
κρ243
2 ) x4]

( 1−
κρ243

4 ) 3/2
ρ3
43

−κ(ẋ4
2 + ẏ4

2 + κB4)x4 ,

ÿ4 =
m1[ y1−( 1−

κρ214
2 ) y4]

( 1−
κρ214

4 ) 3/2
ρ3
14

+ m2[ y2−( 1−
κρ242
2 ) y4]

( 1−
κρ242

4 ) 3/2
ρ3
42

+ m3[ y3−( 1−
κρ243
2 ) y4]

( 1−
κρ243

4 ) 3/2
ρ3
43

−κ(ẋ4
2 + ẏ4

2 + κB4)y4 .

(4.11)

We will next show that if the non-negligible masses are equal, then there exist some
kite-shaped relative equilibria.

_eorem 4.3 Consider the curved 4-body problemwithmasses m1 = m2 = m3 ∶= m >
0 and m4 = 0. _en, in S2

κ , there exists at least one kite-shaped relative equilibrium for
which the equalmasses lie at the vertices of an equilateral triangle, whereas the negligible
mass is at the intersection of the extension of one height of the triangle with the circle on
which all the bodies move.

Proof We will check a solution of the form

x1 = r cos αt, y1 = r sin αt,

x2 = r cos (αt + 2π
3

) , y2 = r sin (αt + 2π
3

) ,

x3 = r cos (αt + 4π
3

) , y3 = r sin (αt + 4π
3

) ,
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m1

m2

m3

m4

Figure 3: A kite conûguration of 3 equal masses and one negligible mass.

x4 = r cos (αt − π
3
) , y4 = r sin (αt − π

3
) ,

where
ρ2
12 = ρ2

13 = ρ2
23 = 3r2 , ρ2

43 = ρ2
41 = r2 , ρ2

24 = 4r2 .
Substituting these expressions into the above system, we are led to the conclusion that
the following two equations must be satisûed,

α2 = m√
3r3(1 − 3κr2

4 )3/2
and α2 = m

4r3(1 − κr2)3/2 +
m

r3(1 − κr2
4 )3/2

.

Comparing these equations we obtain the condition for the existence of the kite-
shaped relative equilibria,

1√
3(1 − 3κr2

4 )3/2
= 1

4(1 − κr2)3/2 +
1

(1 − κr2
4 )3/2

.

Straightforward computations show that r is a solution of this equation if it is a root
of the polynomial

P(r) = a24r24 + a22r22 + a20r20 + a18r18 + a16r16 + a14r14 + a12r12

+ a10r10 + a8r8 + a6r6 + a4r4 + a2r2 + a0 ,

a24 = 6697290145
16777216 κ12 , a22 = − 2884257825

524288 κ11 , a20 = 18063189465
524288 κ10 ,

a18 = − 4241985935
32768 κ9 , a16 = 21267471735

65536 κ8 ,

a14 = − 584429805
1024 κ7 , a12 = 737853351

1024 κ6 , a10 = − 41995431
64 κ5 ,

a8 = 109080063
256 κ4 , a6 = − 1530101

8 κ3 ,

a4 = 446217
8 κ2 , a2 = −9318κ, a0 = 649

belonging to the interval r ∈ (0, κ−1/2) for S2
κ . To ûnd out if we have such a root, we

make the substitution x = r2, and obtain the polynomial
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Q(x) = a24x 12 + a22x 11 + a20x 10 + a18x9 + a16x8 + a14x7 + a12x6

+ a10x5 + a8x4 + a6x3 + a4x2 + a2x + a0 .

By Descartes’ rule of signs, the number of positive roots depends on the number of
changes of sign of the coeõcients, which in turn depends on the sign of κ. So let us
discuss the two cases separately.

In S2
κ , i.e., for κ > 0, there are twelve changes of sign, so Q can have twelve, ten,

eight, six, four, two, or zero positive roots, so this does not guarantee the existence of
a positive root. However, we can notice that Q(κ−1/2) = −2.4959 < 0 and Q(0) =
649 > 0, so a root must exist for x ∈ (0, κ−1/2), i.e., for r ∈ (0, κ−1), a remark that
proves the existence of at least one kite-shaped relative equilibrium.

5 The Case of Negative Curvature

As we mentioned in Section 3, the relative equilibria on H2
κ can be of three diòerent

kinds, depending of the special group of isometry that is acting on that surface. In
this way, we can have elliptic, parabolic, or hyperbolic relative equilibria. In [15], the
authors prove the no existence of parabolic relative equilibria. More recently, Perez-
Chavela et al. proved the non existence of polygonal hyperbolic relative equilibria.
_erefore, in this paper, we have restricted our analysis to the case of elliptic relative
equilibria on H2

κ , also known as hyperbolic elliptic relative equilibria.

5.1 The Case of Two Negligible Masses on H2
κ

It is known (see, for instance, [5]), that for any N ∈ N, m > 0 and z > 1, there are
two values of ω, one positive and one negative such that, the isometry matrix A(ωt)
deûned by equation (3.1) generates relative equilibria where the masses are located
at the vertices of a regular N-gon. For these reason and the results proved in the
previous section, we believe that it should be possible to extend those results to the
case of negative curvature. Unexpectedly, this is the case.

In order to facilitate the notation, from here on we will assume without loss of
generality that the negative curvature is equal to −1. In this subsection we consider
the case when m1 = m2 = m > 0 and m3 = m4 = 0. We must check the existence or
non-existence of a solution of the form

q = (q1 , q2 , q3 , q4) ∈ H2
κ , qi = (x i , y i), i = 1, 2, 3, 4.

x1 = r cos αt, y1 = r sin αt,
x2 = −r cos αt, y2 = −r sin αt,
x3 = r cos(αt + π/2) = −r sin αt, y3 = r sin(αt + π/2) = r cos αt,
x4 = −r cos(αt + π/2) = r sin αt, y4 = −r sin(αt + π/2) = −r cos αt,

where

x2
i + y2

i = r2 , ρ2 = ρ2
13 = ρ2

14 = ρ2
23 = ρ2

24 = 2r2 , ρ2
12 = ρ2

34 = 4r2 .
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Substituting these expressions into system (4.4)–(4.7) for κ = −1 < 0, the ûrst four
equations lead us to

α2 = m
4r3(1 + r2)3/2 ,

whereas the last four equations yield

α2 = m√
2r3(1 + r2

2 )3/2
.

So, to have a solution, the equation
m

4r3(1 + r2)3/2 = m√
2r3(1 + r2

2 )3/2
,

must be satisûed. _is equation is equivalent to

4(1 + r2)3/2 =
√

2( 1 + r2

2
)

3/2
,

which leads to 3r2 = −2, which is a contradiction. Hence, these orbits do not exist on
H2
−1.

5.2 The Case of One Negligible Mass on H2
−1

Let m1 ,m2 ,m3 = m > 0 and assume that m4 = 0. Without loss of generality, we can
restrict our study to the unit hyperbolic sphere for negative curvature. _en we will
check a solution of the form

x1 = r cos αt, y1 = r sin αt,

x2 = r cos (αt + 2π
3

) , y2 = r sin (αt + 2π
3

)

x3 = r cos (αt + 4π
3

) , y3 = r sin (αt + 4π
3

) ,

x4 = r cos (αt − π
3
) , y4 = r sin (αt − π

3
) ,

where
ρ2
12 = ρ2

13 = ρ2
23 = 3r2 , ρ2

43 = ρ2
41 = r2 , ρ2

24 = 4r2 .
Substituting these expressions into system (4.8)–(4.11) for κ = −1 < 0, we are led to

the conclusion that the following two equations must be satisûed,

α2 = m√
3r3(1 + 3r2

4 )3/2
and α2 = m

4r3(1 + r2)3/2 +
m

r3(1 + r2
4 )3/2

.

Comparing these equations we obtain the condition for the existence of the kite-
shaped relative equilibria,

1√
3(1 + 3r2

4 )3/2
= 1

4(1 + r2)3/2 +
1

(1 + r2
4 )3/2

.

Straightforward computations show that r is a solution of this equation if it is a root
of the polynomial

P(r) = a24r24 + a22r22 + a20r20 + a18r18 + a16r16 + a14r14 + a12r12

https://doi.org/10.4153/CMB-2018-019-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2018-019-9


686 S. Alhowaity, F. Diacu, and E. Pérez-Chavela

+ a10r10 + a8r8 + a6r6 + a4r4 + a2r2 + a0 ,

a24 =
6697290145
16777216

, a22 =
2884257825
524288

, a20 =
18063189465
524288

,

a18 =
4241985935

32768
, a16 =

21267471735
65536

,

a14 =
584429805

1024
, a12 =

737853351
1024

, a10 =
41995431

64
,

a8 =
109080063

256
, a6 =

1530101
8

,

a4 =
446217
8

, a2 = 9318, a0 = 649.

Since all coeõcients of the polynomial P(r) are positives, by Descartes’ rule of
signs, this polynomial does not have positive roots. _erefore, there are no kite solu-
tions in H2

−1.
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