
GENERALIZED LIPSCHITZ ALGEBRAS 

E . R . Bishop* 

( rece ived Apr i l 11 , 1968) 

In t roduct ion . The purpose of this pape r is to gene ra l i ze the 
r e s u l t s of S h e r b e r t on Lipschi tz a l g e b r a s and to study the r e l a t i onsh ip 
be tween h o m o m o r p h i s m s of these a l g e b r a s and continuous m a p s of the 
under ly ing m e t r i c s p a c e s . In Sections 1, 2, and 3 we a s s o c i a t e with 
each m e t r i c space a c l a s s of L ipsch i t z - type a l g e b r a s and extend 
S h e r b e r t ' s r e s u l t s in [7] to this c l a s s ; in p a r t i c u l a r S h e r b e r t ' s t h e o r e m 
5 .1 is extended to non -compac t m e t r i c spaces ( 3 . 3 , 3 .4 , 3 .5 ) . In 
Section 4 the r e l a t i o n between h o m o m o r p h i s m s of these genera l i zed 
Lipsch i tz a l g e b r a s and continuous m e t r i c space maps is shown to have 
a n a t u r a l e x p r e s s i o n in c a t e g o r i c a l t e r m s , and in Section 5 this 
e x p r e s s i o n is applied to the theory of quas iconformal m a p p i n g s , 

I. Moduli of Continuity 

We r e f e r the r e a d e r to Bourbak i [ l ] for bas ic p r o p e r t i e s of convex 
and concave funct ions . 

Defini t ion. A r e a l modulus of continuity a is a convex or concave 
h o m e o m o r p h i s m of the r e a l half line [0, oo] onto i tself with a(0) = 0 

and l im —— = 1 . 
x-*oo x 

Let CC be the se t of a l l concave modul i of continuity; CV the se t 
of a l l convex ones ; C = C C U C V . Note that C C O C V cons i s t s of the 
identi ty m a p , c^x) = x , 

1 . 1 . (G laese r , [2, p . 8]) . F o r any family F of bounded uniformly 
equicont inuous functions on a m e t r i c space (X, d) with complex va lues 
t h e r e ex i s t s a n o n - d e c r e a s i n g concave r e a l function a, continuous at 
0 with a(0) = 0 , such that | f(x) - f(y) | < a(d(x, y)) for all f c F , x, y c X . 

1 .2 . We define a p a r t i a l o r d e r on C by : a^ <_ Q£ ^ a n c i o n i y ^ 

a, (x) <. ot (x) for a l l x in [0, oo]. With this o r d e r , C is a l a t t i ce . 

* These r e s u l t s appeared in the a u t h o r ' s doc to r a l t h e s i s , done at 
M c M a s t e r Un ive r s i ty under the d i r ec t ion of Dr. B . B a n a s c h e w s k i . 
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Proof . We note that if h is the ident i ty m a p on [0, oo], then 
a< h for a in CV and a> h for a in CC. If aÂ,a„ a r e not 
' - - 1 2 
c o m p a r a b l e in C, they m u s t be both in CC or both in CV, 

Let & ,a be n o n - c o m p a r a b l e in CC. By concavi ty , the lower 

envelope g(x) = a (x) / \ a (x) is c o n c a v e . Suppose g(x) = g(y) for 

x < y. Since a , a a r e s t r i c t l y i n c r e a s i n g , this can happen only if: 

^ ( x ) \ a 2 ( x ) = a^x) - a {y) = Q^fyjAo^Cy) , 

But by the f i r s t equal i ty and the monoton ie i ty of a , a (x) £ a (x) < a Ay) 

So g is s t r i c t l y i n c r e a s i n g on [0, oo]. Also : 

or (x)/va (x) ^ ( x ) «2(x) 
} j m . = i^^ / _ — , \ ^ ^ ^ t ^ 

X-^CXD X X - * 0 O X X - * 0 O X 

T h u s at (x) A a ^ ( x ) = a, A a (x) £ C C • 
1 2 1 2 

^ ( x ) V a (x) 
B y a s i m i l a r a r g u m e n t , l i m — = 1 , H o w e v e r , 

x-*-oo x 
a (x) V a (x) m a y n o t b e c o n c a v e . B y 1 . 1 , a and a h a v e a c o n c a v e 

u p p e r b o u n d h w h i c h i s c o n t i n u o u s a t 0 . If h (x ) = h (y ) f o r x < y , t h e n 
t h e r e e x i s t s a p o i n t z > y w i t h h ( z ) > h ( y ) , s o t h e l i n e s e g m e n t 
[x, h ( x ) ) , (z , h ( z ) j l i e s a b o v e t h e g r a p h of h a t t h e p o i n t ( y , h ( y ) ) , w h i c h 
c o n t r a d i c t s t h e c o n c a v i t y of h , C o n s e q u e n t l y h i s s t r i c t l y i n c r e a s i n g . 

T h e g r a p h of h c o n s i s t s b y d e f i n i t i o n of p o i n t s l y i n g o n l i n e s e g m e n t s 
b o t h e n d s of w h i c h a r e i n { ( x , y) : 0 £ x £ oo, 0 £ y £ a (x) v a ( x ) } 

i n c l u d i n g d e g e n e r a t e s e g m e n t s of o n e p o i n t o n l y . C o n s i d e r i n g t h e s e p o i n t 

s e t s , i t i s a p p a r e n t t h a t l i m —*— = 1 . H e n c e h (x) = a. V a _ ( x ) e C C » 
x-*oo x 1 2 

F o r a , a n o n - c o m p a r a b l e i n CV, a ( x ) V a (x) z CV b y c o n v e x i t y 
\ 

and by the s a m e a r g u m e n t as above, l im — a, (x) V a^(x) = 1. To f o r m 
x-*-oo x 1 2 

a. A ^ , let the s e t U be the c o m p l e m e n t in the f i r s t quadran t of the 
1 2 

o rd ina t e se t of a (x) A a _ ( x ) . Take g(x) to be that function whose o r d i n a t e 
1 2 

se t is the c o m p l e m e n t in the f i r s t quad ran t of the convex hul l of U. As in 
1 .1 , g e CV and by a s i m i l a r a r g u m e n t to that employed in fo rming the 
join in the concave c a s e , g(x) = a A # (x) in CV. 
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An e l e m e n t a r y ca lcu la t ion shows that the sub la t t i ces C C and CV 
a r e c losed under compos i t ion . However, for a t CC, a t CV, the 

compos i t ion a. oa, while s t i l l monotone i n c r e a s i n g , m a y b e ne i the r 

concave nor convex. It a lso follows t r iv ia l ly f rom the definit ions that 
- 1 

for a £ CC, a t CV and v ice v e r s a . 

1 . 3 . E v e r y a £ C m a y be r e p r e s e n t e d a s : 

x 
o<x) = J p(t)dt , 

w h e r e p is a r i gh t continuous function, bounded a. e . on any finite 
in te rva l , monotone i n c r e a s i n g (decreas ing) for a convex (concave) . 

Proof . By absolu te continuity, eve ry a £ C is dofferentiable a . e . 
and is equal to the i n t eg ra l of i ts de r iva t ive as s ta ted; in p a r t i c u l a r to 
the i n t e g r a l of i ts r i gh t d e r i v a t i v e . F o r a convex, a detai led proof is 
given in [ 6 , T h e o r e m 1.1]; the proof for the concave c a s e is s i m i l a r . 
Since a i s f inite for finite x , p m u s t be bounded a . e . on finite i n t e r v a l s . 

We now cons ide r the c l a s s C cons is t ing of a l l a £ C such that 
a 

0 < l im inf SLLsL for a l l \ > 0 . 
x-*o c*(x) 

By concavi ty , CC C C . By definition, for a e C , we can say that 

t h e r e ex i s t s K > 0 with a , f' > K for al l x, a l l X > 0. 

1 
F o r example , a{0) = 0 , a(x) = eX » in s o m e i n t e r v a l [0, x ] 

shows that C O CV is p r o p e r l y contained in CV. All functions in C 
a k 

of f o r m Û'(X) = x , k >̂  1 in a neighbourhood of 0 a r e in C V H C ; 

the example a(0) = 0, a(x) = - in an i n t e rva l [0, x ] shows that 

such funct ions a r e not a l l of CV D C . 
a 

F o r ae CC we have the following inequal i t ies by concavi ty : 

X <*(x) < Q ( \ X ) < <*(x) X < 1 

a(x) < a(Xx) < X<*(x) X > 1, for a l l x . 

F o r atCVC) C t by convexi ty and the definit ion of C& , 
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inf r a (X t ) , . . . , . . 

te[o,=o] I - ^ f l a{x) 1 tt(Xx) K-Xa(K) X ± * 

\a(x) < Û ( \ X ) < sup [ , \ ] a(x) \ > 1 

" u [ o , = o ] M 

By the defini t ion of C, the s u p r e m u m h e r e i s bounded, Consequent ly , 
for az C , any X > 0, t h e r e ex is t K , K. > 0 with 

a 1 2 

K a(x) < a ( \ x ) < rC a(x) for a l l x. 
1 "~ ~~ 2 

A s imp le ca lcu la t ion shows that C V O C is c losed under 

compos i t ion , while it has a l r e a d y been es tab l i shed that CC has this 
-1 

p r o p e r t y . We note that s ince CV = (CC) , C is not c losed under 
a 

i n v e r s i o n . Also , by the r e m a r k s following 1.2, C is not c losed under 
c o m p o s i t i o n . 

In o r d e r to get a m o r e t r a c t a b l e c l a s s of funct ions , we cons ide r 
the equ iva lence c l a s s e s of C with r e s p e c t to the r e l a t i o n ; 

a 

a 'v a if and only if 0 < lirrj inf -—7— < l im sup -—7—" < 00 , 
1 2 x->0 a (x) - x-*o a ? ' 

It is ea sy to see that th is is in fact an equ iva lence r e l a t i o n which 
is p r e s e r v e d under compos i t i on and i n v e r s i o n in C 

a 

We note that a ^ao\y w h e r e ao^(x) = a(Xx), X r e a l , if and only 
if a e C , 

a 

The se t G of equ iva lence c l a s s e s of C is c losed under 
a 

compos i t ion , as fo l lows : 

1 .4 . F o r a , 6 e C , t h e r e a lways ex i s t s y z C with aoQ^y . 
r a . . - a „ 

Proof . Suppose aofiz C . By 1.3, 

x x 
o(x) - / q(t)dt p(x) = J q( t )dt , 

o o 

w h e r e p and q a r e monotone r i gh t con t inuous . Then 
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aop(x) = / p((3(t)) q(t)dt 
o 
X 

= / g(t)dt , 

where g is r ight continuous and > 0 for any t > 0. if, for some 
x , g(t) is monotone on 0 < x < x , we can cons t ruc t y by: 

o ~ o 

r(x) = / g(t)dt o < x < x 

y(x) = x - x . + y(x i ) x > x , 
1 1 1 

w h e r e x4 is the r e l a t i v e e x t r e m u m of a o 6 (x) - x for 0 < x < x . 
1 o 

If t h e r e is no neighbourhood of 0 on which g is monotone, we note 
that 0 < g(0) < » , s ince by r igh t cont inui ty: 

(i) If g(0) = 0, g m u s t be monotone inc reas ing in some neighbourhood 
of 0. 

(ii) If g(0) = oo, g m u s t be monotone dec r ea s in g in some neighbourhood 
of 0. 

We then set y(x) = x . Obviously, l im a P \ = g(0) and 

Y ( X ) 
l im J = g ( l ) . In e i ther c a s e the inequal i t ies (a) and (b) imply that 
x-*-oo x n 

y £ C if a and {3 a r e , Consequently, G is a s e m i - g r o u p under 

compos i t i on . 

II. The Algebras L . 
a 

F o r (X, d) a m e t r i c space , we denote by L> (X, d) the a lgeb ra of a l l 
a 

c o m p l e x - v a l u e d continuous functions on X which a r e finite in the n o r m : 
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2 . 1 . With this norm, L (X, d) is a Banach algebra for each ae C , 
— — — — a a , . a 

Proof» L is trivially a linear space. The proof of completeness - - a 

is exactly the same as that given by Mirkil [4, Theorem 4.5]. 

The fact that the given norm is a Banach algebra norm follows from 
the inequality 

[f(x)g(x)-f(y)g(y)[ , , |g(x) - g(y)_j , , |f(x) - f(y) | 
a(d(x,y)) - | 1 W | a(d(x, y)) + | g l y ' 1 a(d(x,y)) ' 

Since L is a function algebra containing the constants, it is semi
ez 

simple with unit f(x) = 1, x e X . For each a £ C , L is closed under 
a a 

complex conjugation, inversion and truncation; consequently, by a result 
given by Sherbert [7, Proposition 4. 2], if L separates (X, d) it is a 

regular algebra. 

2.2. Let X be a locally compact metric space, a £ C . A_ 

necessary and sufficient condition that L separate X is that for each 
. , — — < .—. , _ a — - . . — 
s £ X, there exist K > 0 such that f (x) = K a(d(x, s)) A 1 be in L . 

— s ~ s s a 

Proof. Sufficiency is obvious. 

Necessity: For arbitrary seX, let K be a compact ball of 
radius r > 0 about s. For each pair (x, y) e K, x f y, there exists 
g e L and open neighbourhoods S and S of x and y respectively 

such that |g(u) - g(v) [ > a > 0 for any (u, v) e S X S . The sets 

{S X S : (x, y) £ K) form an open cover of K X K in XXX with the 
x y 

metric product topology. Let {S X S } i = 1, , . , ,n be a finite cover 

i i 
with associated functions g. £ L . For each pair (x, y) £ K, x ^y , 

l a 
(x, y) £ S X S for some i and |g.(x) - g.(y) | > a. . Let 

i i 
a = min (a. : i = 1, . • . , n) and set h. - (r/a)g . Then for each 

i i i 
(x, y) £ X and some i : 

1 h i ( x ) " h i ( y ) ! r k ( d ( x > S ) ) A r - g(â(y,s)) A r [ . 

a(d(x,y)) ~ a(d(x,y)) - a(d(x,y)) 

Thus K a(d(x, s)) A U L , where K = - . 
s a s r 
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It follows from the triangle inequality that if ao d is a metric, then 
L contains f with K = k for all s e X . The example : 

a s s 
a(x) = tan — in a suitable interval [0, x ] shows that it is not necessary 

4 1 
that ûod be a metric for L to separate x. 

a 

From the general theory, the maximal ideal space of L coincides 
a 

with its spectrum for each a. If L separates X, X corresponds 
a 

homeomorphically with a subset of the maximal ideal space M of L 
a a 

which is dense in the Gelfand topology and the metric topology on X 
coincides with the topology induced on X by the Gelfand topology on M ; 

a 
if X is compact, S and M are homeomorphic. 

a 

2.3. For any (X, d), if or ~or_ in C , then L and L _ — 1 2 — a . a a 
1 2 

contain the same functions. 

Proof. By the definition of equivalence, there exist K , K > 0 with 

K A aÂ (x) < aA-x.) < K at (x) for all x £ [0, oo], 
1 1 "" 2 ~~ 2 1 

The à, a norms for L and L are thus boundedly equivalent, 

and the sup norm is independent oî a . 

2.4. For any (X, d), set r =-—, . Then for any a £ C . 1. l + ( 3 . 1. a 

and L (X, r) contain the same functions. 

L (X, d) 
a 

Proof. For d(x, y) < 1 

a(d(x, y)) > a 
d(x,y) 

1 +d(x,y)) 
= a(r(x, y)) 

d(x,y) 
> a 

For d(x, y) > 1, any bounded f, 

|f(x) - f(y)| 

> Ka(d(x, y)) for some K > 0. 

2 f 

a(d(x,y)) - o(l) 

j f W - f ( y ) | 2 |[ f Ht 

«lr(x,y» - "Tgj" < œ . 
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Consequently, a bounded function f on X is bounded in || ' || , 
^ a, a 

if and only if it is bounded in II • || . Since the uniform norm is 

independent of the metric, L (X, d) and L (X, r) contain the same 
a a 

functions. 

2 .5 . Let (X, d) be any locally compact metric space; let 

a, 6 £ C such that lim inf ~—r = 0 and lim sup —7—. < 00 and such that r a x ^ 0 p^xj x ^ 0 r- p^xj —„ 

Li separates X . Then L is properly contained in L . 
p a . — - p 

Proof. By 2.2, f £ L for all s e X. For any s and all x such 
- y ' s (3 7 

that p(d(s,x))< 1, we have 

| f g ( 8 ) - f s ( x ) I | f g ( s ) - f s ( x ) | q ( d ( s , x ) ) 

= i 
K(3(d(s,x)) Ra(d(s,x)) j3(d(s, x)) 

s s 

Thus ||f || , is infinite for each s and so f is not in L , Let 
" s"â,a s a 

feL . By hypothesis, there exists K, 0 < K < oo , such that a(x) < K(3 (x) 
a "~ 

for all x e [0, 00]. Consequently, f e L . Note that L C L whether L J H y J3 a - p 
L separates X or not. 

For each at C such that L separates S, (X,d) a fixed metric 
a a 

space, we introduce the metric cr on M as follows: For 4> , \\j e M : 
a a a 

cr (<)>, 4,) = sup { |<|,(£) - 4-(f) I : f e L , || f || < 1} . 

We use the same symbol for the induced metric on X . 

cr (x, y) = sup { |f(x) - f(y) | : f £ L , || f || < 1} . 
a a ~~ 

2.6 . For any locally compact metric space (X, d) of finite diameter 
and any a z C such that L separates (X, d) and the set {f : s£X) is 

i_ a a — i s — 

bounded in L , the metric cr is boundedly equivalent on X to the distance 
,— a _ a . . .—, _ , 

given by aod . 

Proof. By definition, cr (x, y) < a(d(x, y)). 

a _ 
By hypothesis, || f || < P for some finite P, all s e X* Then for 

1 s 

x, y £ X, set g(x) = / P f (s) for s £ X . Then: 
x 
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c r ( x , y ) > |g (x) - g(y) | > Kûr(d(x. y ) ) . 
a ~~ ~*~ 

COROLLARY, For any metric space (X, d) and any at C 

satisfying the above conditions, there exists a metric on X such that 
L is precisely the Lipschitz algebra with respect to that metric. 

We note that if the triangle inequality for aoà holds at all points 
of X, or fails at all points of X, (for locally compact X) the set 
{f : s e X} is bounded in L . The case in which ao d satisfies the 

s a 
triangle inequality at some points of X and not at others remains open. 

Also, the uniform structures U on X generated by the sets 
a 

{(x, y) : or(d(x, y)) <c E} are all equivalent to the metric uniformity 
determined by d (i .e. , U J . Hence for a with (f : s £ X} bounded 

1 s 
in L , the cr are uniformly equivalent metrics on X. 

a a 

III. Homomorphisms and Space Mans, 

For every a £ C such that L (X,d) separates X, L is regular, 
a a a 

closed under inversion and complex conjugation and contains the constant 
functions. For a homomorphism T: L (X, d) -*• L (Y, r), a, ô e C , we 

r a P K a 
refer to the induced map t ; M -*• M as the adjoint of T and write T* 

(3 a 
for t . From the general theory we know that t is continuous; to ensure 
that t(Y) CIX we have: 

3.1. Let A, B be algebras of continuous bounded complex-valued 
functions on the topological spaces X, Y respectively, such that X is 
dense in M and every compact open neighbourhood of the unit of A 

A 
contains a function of compact support in X. Then for any unitary 
homomorphism T: A -*• B which is continuous in the compact open 
topology, the adjoint t: M -*• M carries Y into X. 

Proof. Let y £ Y . M = {f £ B : f(y) ^ 0} is closed in the compact 

open topology on B. Suppose ty i X , 

Mt - { f e A : f(ty) = Tf(y) = 0} 

-1 
is exactly T (M ) and hence is compact open closed in A. Since 

ty i X , all functions f in A of compact support in X are in M , 

for if K is the support of f, X - K is dense in M - X and thus 
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f van i shes on M - X . But every compac t open neighbourhood of the 
.A. 

un i t , i , of A conta ins a function of compac t suppo r t . Hence i £ M , 

which is a con t rad ic t ion of the fact that T is un i t a ry , so ty e X for al l 
y e Y. 

In o ther w o r d s , the given condi t ions e n s u r e that the mapp ing t 
c a r r i e s fixed idea l s of B to fixed idea l s of A. An a r g u m e n t s i m i l a r 
to this was given by Nakai [3, L e m m a 3 .2 ] in the spec i a l c a s e of the 
Royden r ing of functions on a R i e m a n n su r face , but as far as we know this 
is i ts f i r s t s t a t e m e n t as a g e n e r a l p ropos i t i on . 

3 . 2 . F o r X a local ly c o m p a c t m e t r i c space , let A be any r e g u l a r 
sub- a lgeb ra of C(X) which is closed under t runca t ion and complex 
conjugat ion. Then eve ry compac t open neighbourhood of the unit of A 
conta ins a function h £ A with compac t suppor t in X . 

Proof . Let K be any compac t se t in S, U an open neighbourhood 
of K with compac t c l o s u r e . F o r each p e M - XJf we have by r e g u l a r i t y a 

function f £ A with: f (p) = 1, f (K) = 0. Set V = { q : jf (q) | > - } . 
P P P P P 2 

Then p £ V , and the s e t s U and {V } . TT f o r m an open cover of 
P p p € U 

M . . We s e l e c t a finite cove r , U, V . . . V 
A p , p 

1 n 
n 

Now se t f = 2 f f E A . 
i=l P i P i 

F o r q £ X, q é U we have q £ V for s o m e j , so 

f(q) > |f (q) | 2 > | . F o r q £ K, f(q) = 0 we take h = 1 - [(4f)A 1 ] E A . 
P j 

h is then the r e q u i r e d funct ion. 

It follows that we can r e f e r to the adjoint t : Y -*• X of a compac t 
open continuous a l g e b r a h o m o m o r p h i s m T : L. (X) -*• L (Y) when L (X) 

a p a 
s e p a r a t e s X and X is local ly c o m p a c t . 

Where t : X -* Y is cont inuous , we will a l so r e f e r to the induced 
a lgeb ra h o m o m o r p h i s m T : C(X)-* C(Y) defined by Tf(x) = f(tx) as the 
adjoint of t and w r i t e t* for T , 

WTe c lass i fy the continuous m a p s of one m e t r i c space (X, d) into 
another (Y, r) as fol lows: 

A cont inuous m a p t : X-*Y is (3-modally cont inuous if it s a t i s f i e s 
r ( tx , ty) < Kp(d(x, y)) (*) for (3 £ C , s o m e K > 0 and all x, y £ X . We 
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will denote the fact that a continuous map t satisfies condition (#) for 

a particular (5 e C by writing t : (X, d)-* (Y, r) (£). We note that if 

t is j3~modally continuous and a ^(3 in C , then t is a-modally 

continuous. 

3 • 3 . Let t : (X, d) -> (Y, r) be (3 -modally continuous. For 
ae C , the restr ict ion T of the adjoint T of t to L determines a 

a a a ' 

compact open continuous homomorphism T : L. (Y) -*• L 0(X). (We 

consider ao(3 to be replaced by an equivalent element of C when 

necessary, as in 1.5.) 

Proof. For f e L (Y); 
a 

|| Tf 1^ = sup {|f(tx) | : x e X } 

< sup { |f(y) | : y e Y} = ||f 

II Tf II - s u p t I Tf(*) - T f k U . x v e x \ 
11 T f "d.aop " x*y { *op(d(x,y)) - X * y £ X } * 

|f(tx) - f( ty) | 
= sup { „ . , . ' . ' : x, y t X . 

^ x aop(d(x, y)) 
, |f(tx) - f(ty)[ v n 

* S U P <K'o<r(tx,ty)) •• *• y « *} • 

1 SUp r |f(8) - f ( t ) | . , i || || 
- K' s*t { o(p(8tt)) • S ' t E Y ) K' «J«p., 

•Pius T(L (Y)) C L (X) and T is trivially a homomorphism. To show 
a ~ a op 

that T is compact open continuous, for e > o, g e L (Y), K compact in 

'oo 

X, consider: 

N(Tg, K, e) = {£ e L ^ W : R f - T g ^ < e} 

and 

N(g, tK, e) = {£ e L (Y) : | | f - g | t K | | < t } -
<* 

The continuity of t implies that tK is compact in Y, so N(g,tK, E) 
is an element of the subbase of the compact open neighbourhood system of 
g and T(N(g,tK,e))Ç N(Tg,K, £) since || f- g | tK \\^ = || Tf- Tg | K || ^ . 

This establishes the compact-open continuity of T . In the case where 
Y is compact, T is continuous in the uniform topology of L (Y) , since 
the two topologies coincide. 
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3 . 4 . Let (X ,d) , (Y, r ) , w h e r e (X, d) is loca l ly compac t be 
- 1 

m e t r i c s p a c e s with a t C such that L (X) s e p a r a t e s S, a t C and 
C _ a _ . — a C a _ -

the se t {f : s t X) is bounded in L (X). Let T : L (X) -* L (Y) be a 
s ~ * a a p •—" 

c o m p a c t - o p e n cont inuous h o m o m o r p h i s m for some 8 t C . Then its . _ . . . a _~ 
adjoint t is an open g p p - m o d a l l y continuous m a p of ( Y , r ) inio (X d ) . 

P roof . By the p r e c e d i n g d i s c u s s i o n , t c a r r i e s Y into X _̂_M , 

Since T is a Banach a lgeb ra h o m o m o r p h i s m , the se t { Tf : s f X; is 

bounded in n o r m in L , say by K. F o r al l x, y e Y , " 

. K > l T f s ( x ) " T f s ( ^ l 

> K 

P(r(x, y)) 

la (d(s , tx)) - o{à(sy t y ) ) | 
- s p ( r (x , y)) 

Then for s = ty : 

K a(d( tx, ty)) < K p (r(x, y)) 

-1 
i . e . , d(tx, ty) < K' a op ( r (x ,y ) ) 

-1 
for su i t ab le K1 > 0 s ince a z C by h y p o t h e s i s . 

a 

In the c a s e w h e r e X is compac t , we note that a l l t h r e e of the 
condi t ions of 3 . 3 a r e s t i l l n e c e s s a r y in o r d e r to r e a c h the s a m e conc lus ion . 
If a =p = 1 , the ident i ty in C , th is r e d u c e s to the c a s e of the L ipsch i t z 

a l g e b r a s of X and Y as c o n s i d e r e d by S h e r b e r t . In this c a s e , the 
-1 

s e p a r a t i o n of X by L , the inc lus ion of a in C and the boundedness 
a a 

of {f • s £ X ) in L follow f rom the defini t ion of L « 
s a a 

F r o m h e r e on, we will c o n s i d e r al l m e t r i c s p a c e s used to be local ly 
c o m p a c t . 

3 . 5 . A c o m p a c t - o p e n cont inuous h o m o m o r p h i s m 

T : L (X,d) -* L (Y, r ) 
1 a 

w h e r e a e C and the se t {f : s t Y) is bounded in L (Y), is an 
a s a 

i s o m o r p h i s m of L (X) onto L (Y) if and only if the adjoint t : Y -• X 

i s a home om or phi s m of Y onto X sa t is fying 
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( 3 . 5 . 0 ) K ' c* ( r (x ,y ) ) < d(tx, ty) < K o(r (x , y)) 

for some K, Kf > 0, a l l x, y e Y . 

Proof . Let T be a compact open continuous i s o m o r p h i s m of 

L ( X ) onto L { Y ) . Since T is onto, t is 1 - 1 , so t : M M is 1 » 1 2 
defined on t(M ). Now suppose t : M -*- M, is not onto, so thai, he r e 

ex i s t s \\i E M , \\i 4 t (M ). Since M is compact , t(M ) is compac t in 
1 a a a 

M . By the r e g u l a r i t y of L t h e r e ex i s t s f e L with f(y) = 1, f(x) = 0 

for al l x e t(M ). 
a 

So Tf (i|j) = f(ti)i) = 0 for al l ty E M 
a 

This con t r ad i c t s the a s sumpt ion that T is 1 - 1 , so t m u s t be 
- 1 

onto, M -** M. . L ikewise t : M -»• M is onto end 
a 1 1 a 

t " 1 (X)CY C t" ( M ^ = M^ 

i . e . , X C t Y s ince t is 1 - 1 . By the compact open continuity of T, 
t Y C X , so tY = X and t is onto . 

The r e s t of the proof follows, exact ly as in She rbe r t [7, T h e o r e m 5 . 1 ] . 

COROLLARY. Eve ry compac t open continuous a u t o m o r p h i s m T oi_ 
- 1 

L (X, d) where a e C and the se t {f : s e X) is bounded in L , is 
a _ a «— s J _ a — 

of the f o r m : Tf(x) = f(tx) f e L , x e X where t : X -*• X is a homeo-
. a - -, 
m o r p h i s m sat isfying 

K»d(x, y) < d(tx, ty) < K d(x, y) x, ytX, K, K» > 0. 

IV. Ca tegor i ca l Cons idera t ions 

We can e x p r e s s s o m e a spec t s of the r e l a t ionsh ip be tween moda l ly 
continuous space m a p s and compac t open continuous a lgebra h o m o m o r p h i s m s 
in t e r m s of su i tab le c a t e g o r i e s . The following p ropos i t ion is obvious : 

4 . 1 . Let C be d i r ec ted by the la t t ice o r d e r and a s s ign to each 

ac C the c o r r e s p o n d i n g a lgeb ra L on a fixed m e t r i c space (X, d) . 
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For a< 6 in C let h . L» -*• L be the mapping of L onto itself 
_ r _ a a p _ E E — s _ ff . 

as a subset of L . (L , hP) then forms a direct system of Banach 
p a a 

algebras and Banach algebra homomorphisms. 

Since by 1.1 every uniformly continuous function on (X, d) satisfies 

some modulus of continuity in C , the union of this system is the algebra 
a 

of all uniformly continuous complex-valued bounded functions on X. It 
is conjectured that the uniform closure of this algebra is the direct limit 

of this system in the category of commutative semi-simple Banach algebras. 

Now let G stand for the set of equivalence classes of C under 

the relation defined above. G inherits the lattice order of C and is 
a 

closed under composition by 1.4. We have then associated with each 
n 

metric space (X, d) the direct system of algebras (L (X) , h, ) _ 
c|> c(> r\ , <(> z G 

where L. (X) is the algebra with compact-open topology given by 

acC and ô is the equivalence class of a in G, L (X) then consists 
a cj> 

of the same set of functions as L (X) for all a e 6, and it is easily seen 
a 

that this is again a direct system of algebras over (X,d). Moreover, any 
(3-modally continuous map t: (X, d) -*- (Y, r) with j3 e C determines by 

its adjoint the algebra homomorphisms T : L,(Y)-*L, (X) for all <beG, 
<(> cj> 9 on 

where r\ is the equivalence class of (3 in C . 

This leads us to consider the category IB defined as follows : 

The objects are the direct systems of topological algebras: 

(B, , h )cj>, rj e G, 4> < r| 
o 4> — -

with the property that, for 6 < r, , B is a sub-algebra of B , and the 
"~ 9 Tl 

algebra homomorphism h^ : B -*• B is in fact the natural injection. 
q> 4> rj 

The morphisms are pairs of the forms: 

G = ((T. )cj> E G, T]) n £ G 

where T : B -+• B is compact open continuous with 
6 <J> (por) 

G o G1 = ( (T 1 o T ), r\ o r)1) 
OOTj G 
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where defined, and for any $ < r\ T o h*1 = T , i . e . T I B = T . 
"• ' n <t> <t> "n 4> * 

The compos i t ion defined is evidently a s soc i a t i ve and 8 is the identi ty 
h o m o m o r p h i s m of B and r\ is the equivalence c l a s s in G containing 

9 
the ident i ty m a p in C 

a 

On the o ther hand, we cons ide r the ca tegory <£ whose objects a r e 
the m e t r i c spaces (X,d) and whose m o r p h i s m s a r e the n - m o d a l l y 
continuous m a p s for rj e G ; (t, n ) such that t : (X , d) -*- (Y , r ) (p ) for 
any (3 in the c l a s s n of G. 

Again, it is r ead i ly seen that 

(f, V ) o ( t fn) = (t> o t, -n o V ) 

whe re defined; this compos i t ion is a s soc i a t i ve and the identi ty for (X, d) 
is s imply the pa i r ( t ,n) whe re n is the identi ty equivalence c l a s s in 
G and t is the identi ty mapping on X. 

We can now define the ca t ego ry mapping F : £ -+ H as follows 

F (X ,d ) = (L(X,d,<t>), h11 ) T) £ G , (j> < T| 

F ( t , n ) = ( (T ) . , n ) 
4> 4> eG ' 

on the objects and m o r p h i s m s r e s p e c t i v e l y of Z . 

4 . 2 . This mapping F : £-*• IB (G) is a c o n t r a v a r i a n t functor which 
m a p s the se t of modal ly continuous t : (X, d) -+• (Y, r) (n) n e G one to one 
onto the set of a l l m o r p h i s m s F(Y, r ) -*- F(X, d) . 

Proof . Let 9 = ( (T ) _, n) for n e G. In o r d e r to show that 
• cj) c|> £ G 

F is onto, we need to find (t, rj) in £ such that F( t ,TJ) = 9. We take 
t = T *, the adjoint of an a lgeb ra h o m o m o r p h i s m T : L (Y) -• L. (X) 

in 9 such that L (X) sa t i s f i e s the r e q u i r e m e n t s of L in 3 . 4 . It is 
p a 

sufficient to take n the equivalence c l a s s of the identi ty m a p in C . 

By 3 .4 , t : (X, d) -*• (Y, r ) (n). M o r e o v e r , we c la im that 
T* (X) = T* (X) for al l 4> E G, a l l x E X where T* is defined. Suppose 

P + P 
that à < p, so that L (Y) C L (Y) . Then T± = T | L i . e . , 

— 9 ~~ p 9 p 9 
T* . . = T* (x) w h e r e defined, so the above a s s e r t i o n ho lds . 

<Mx) p 
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F o r L (Y) C L ( Y ) , w e r e c a l l that the a d j o i n t t of 

T : L (Y)-*• L (X) c a r r i e s a l l p o i n t s ( i . e . , f i x e d m a x i m a l i d e a l s ) 
p p P°T) 

of X to p o i n t s of Y . S i n c e L (Y) s e p a r a t e s Y, if t w o i d e a l s a r e 
P 

i d e n t i f i e d b y t , t h e y c o r r e s p o n d to t h e s a m e p o i n t of Y . S u p p o s e 
tx^ = t x : c o n s i d e r t h e a d j o i n t h of T : L (Y) -**. X. ( X ) . S u p p o s e 

1 2 cp (j) à Or) 
h x £ h x . T h e n f o r a l l s e X , f ( h x ) f f (hx ); 

i . e . , T f (x ) = T f (x ) 
(j) s 1 cj> s 2 

B u t s i n c e f e L (Y) f o r a l l s e Y 
P 

T f (x ) = T f ( x ) = T f ( x ) = T f ( x j . 
cj> s 1 p s l p s 2 (f> s 2 

So w e m u s t h a v e h x = h x = ty f o r t h e a d j o i n t of T , T h i s t a k e s c a r e 
1 2 1 p 

of a l l c a s e s , s i n c e f o r 4> , p e G w e h a v e t h a t 4> <. p , p £ 4> o r <|> and p 

a r e n o t c o m p a r a b l e , w e c a n f ind n z G w i t h r\ >_ <|> and n >_ p , and in 
t h i s c a s e , L (Y) w i l l h a v e t h e s a m e p r o p e r t i e s a s L» (Y) . T h i s r e d u c e s 

T) P 

t h e m a t t e r t o t h e t w o c a s e s w e h a v e c o n s i d e r e d . It f o l l o w s t h a t t h e a d j o i n t 
of e v e r y T £ 6 i s d e t e r m i n e d b y t h a t of T , s o w e c a n t a k e t = T * 

4> p p 
and t h e n F{t,r\) = G a s r e q u i r e d . 

F i n a l l y , l e t e , * ( ( T ^ £ ^ 

T h e n if 6 i = G . w e h a v e n A = n 0 , T , = T , f o r a l l <(> E G, 
1 2 1 '2 l p 2cj) 

In p a r t i c u l a r , T = T_ f o r n a s a b o v e , and s i n c e t h e s e h o m o m o r p h i s m s r l p 2p H 

a r e e n o u g h to d e t e r m i n e t, 6 a n d G a r e t h e i m a g e u n d e r F of t h e s a m e 

(t, r\) i n £ ; s o F i s o n e t o o n e a s s t a t e d . 

S i n c e F i s a f u n c t o r , i t t a k e s i s o m o r p h i s m s of £ t o i s o m o r p h i s m s 
of |B. A n i s o m o r p h i s m in i! i s a m a p t : (X, d ) °* (Y, r ) (n) s u c h t h a t 
- 1 - 1 - 1 - 1 

t e x i s t s w i t h t : (Y, r ) -*- (X, d) ( n ) w h e r e r\ e G . S u c h a m a p 
m u s t c o r r e s p o n d u n d e r F w i t h G = ( ( T ) ^ . n ) w h e r e a l l T a r e 

4) 4> e G 4) 
i s o m o r p h i s m s T : L (Y) -* L ( X ) . We n o t e t h a t t h e e x i s t e n c e of t 

and t a s a b o v e i m p l i e s t h a t t s a t i s f i e s 
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r ( tx , ty) < K o(d(x, y)) x, y e X , a t r\ 

- 1 - 1 
d(t z, t w ) < C p ( r ( z , w ) ) Z , W E Y , p e r ) 

Hence, for su i tab le K , K > 0 , 

K 1 a (d(x, y)) < r ( tx , ty) < K£ a (d (x, y)) . 

Thus the i s o m o r p h i s m s of B come f rom m a p s (t, rj) in £ such that 
-1 . - 1 

t is defined, r\ e G and t sa t i s f i es the above double condit ion with 
r e s p e c t to a, for any a in the equivalence c l a s s n . 

V. Quas iconformal i ty . 

We take as definit ion of quas iconformal i ty the following, shown by 
Gehr ing [5, p . 97] to be equivalent to the c l a s s i c a l definition in t e r m s of 
the modu l i of r i n g s : 

F o r t a h o m e o m o r p h i s m of a plane domain D, we define, for 
x £ D: 

L(x, r ) = sup | tx - t y | 
| x - y | = r 

i (x, r ) •= inf | t x - t y | 
| x - y | = r 

H(x) = l im sup L(x, r ) 
r-*o i (x, r ) 

We say that a topologica l mapping of a domain D is quas i confo rma l 
if and only if H(x) i s bounded on D. 

We have the following r e l a t i on between quas iconfo rmal mapp ings and 
the m o r p h i s m s d i s cus sed in the las t sec t ion : 

5 . 1 . Let X and Y be plane d o m a i n s . The d i r e c t s y s t e m s S(X) 
and S(Y) of gene ra l i zed Lipsch i tz a l g e b r a s over X and Y a r e objec ts 
of the ca t ego ry 8 . Let 0 be a fl-isomorphism, 6 : S(X)-* S(Y) . Then 
the adjoint t oî_ 9 i s a quas i confo rma l m a p of Y onto X. 
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Proof. As shown above, t is a homeomorphism satisfying 

K1 o(|x - y|) < | t x - ty| < K2 <*(|x - y|) x, y e Y. 

where a is in the equivalence class of y and |x - y| is the usual 
metric in the plane. Then for every y e Y : 

H(y) = lim sup SUP 1 ? ' 'J \ | x - y| = r 
r-*o inf I tx - ty J ! J ' 

K2 * ( | x - t | ) K2 

< lim — T-T- f - •— 
— r-*o K a( |x - y|) K 

.In general, a quasiconformal map of one domain onto another cannot be 
shown to give rise to a 8-isomorphism of the associated direct systems 
of algebras, since such a map does not necessarily satisfy the double 
inequality 

K1 a( |x - y|) < |tx - ty j < K a (|x - y[) 

for any a t C . However, using a well known result from the theory of 
a 

quasiconformal mappings, we have: 

5.2. Let t be a K-quasiconformal map of the open unit disc U 

in the plane onto itself, with t(0) = 0. The adjoint T of t determines 

JË ® -morphism 

<f) cp £ vjr 

of the direct system S(U) into istelf, where r\ is the equivalence class 

of a(x) = x . Moreover, for each 4> e G, we have : 

L ft (U) C T (L (U)) C L (U) 
q> Op — q> cp "~ (j)Oû! 

k 
where (3 (x) = x 

Proof. This follows from the results in Section 3 and 4 and from 
the fact that for the map t and each pair of points z , z in U: 
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c"K \zi - z 2 | K < |t(z4) - t (z 2 ) | < c | z 1 - z 2 | K 

where C is an absolute cons tant whose s m a l l e s t poss ib le va lue is 16. 
[5, p . 102]. 

These r e s u l t s m a y be extended without difficulty to the c a s e of 
domains in r e a l n - s p a c e . 
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