GENERALIZED LIPSCHITZ ALGEBRAS

E.R. Bishop*

(received April 11, 1968)

Introduction. The purpose of this paper is to generalize the results of Sherbert on Lipschitz algebras and to study the relationship between homomorphisms of these algebras and continuous maps of the underlying metric spaces. In Sections 1, 2, and 3 we associate with each metric space a class of Lipschitz-type algebras and extend Sherbert's results in [7] to this class; in particular Sherbert's theorem 5.1 is extended to non-compact metric spaces (3.3, 3.4, 3.5). In Section 4 the relation between homomorphisms of these generalized Lipschitz algebras and continuous metric space maps is shown to have a natural expression in categorical terms, and in Section 5 this expression is applied to the theory of quasiconformal mappings.

I. Moduli of Continuity

We refer the reader to Bourbaki [1] for basic properties of convex and concave functions.

Definition. A real modulus of continuity α is a convex or concave homeomorphism of the real half line $[0, \infty]$ onto itself with $\alpha(0)=0$ and $\lim _{x \rightarrow \infty} \frac{\alpha(x)}{x}=1$.

Let $C C$ be the set of all concave moduli of continuity; $C V$ the set of all convex ones; $C=C C \cup C V$. Note that $C C \cap C V$ consists of the identity $\operatorname{map}, \alpha(x)=x$.
1.1. (Glaeser, [2, p. 8]). For any family F of bounded uniformly equicontinuous functions on a metric space (X, d) with complex values there exists a non-decreasing concave real function α, continuous at 0 with $\alpha(0)=0$, such that $|f(x)-f(y)| \leq \alpha(d(x, y))$ for all $f \varepsilon F, x, y \varepsilon X$.
1.2. We define a partial order on C by: $\alpha_{1} \leq \alpha_{2}$ if and only if $\alpha_{1}(x) \leq \alpha_{2}(x)$ for all x in $[0, \infty]$. With this order, C is a lattice.

[^0]Canad. Math. Bull. vol. 12, no. 1, 1969

Proof. We note that if h is the identity map on $[0, \infty]$, then $\alpha \leq h$ for α in CV and $\alpha \geq h$ for α in CC. If α_{1}, α_{2} are not comparable in C, they must be both in CC or both in CV .

Let α_{1}, α_{2} be non-comparable in CC. By concavity, the lower envelope $g(x)=\alpha_{1}(x) \wedge \alpha_{2}(x)$ is concave. Suppose $g(x)=g(y)$ for $\mathrm{x}<\mathrm{y}$. Since α_{1}, α_{2} are strictly increasing, this can happen only if:

$$
\alpha_{1}(\mathrm{x}) \backslash \alpha_{2}(\mathrm{x})=\alpha_{1}(\mathrm{x})=\alpha_{2}(\mathrm{y})=\alpha_{1}(\mathrm{y}) / \alpha_{2}(\mathrm{y})
$$

But by the first equality and the monotonicity of $\alpha_{2^{\prime}} \alpha_{1}(x) \leq \alpha_{2}(x)<\alpha_{2}(y)$. So g is strictly increasing on $[0, \infty]$. Also:

$$
\lim _{x \rightarrow \infty} \frac{\alpha_{1}(x) \wedge \alpha_{2}(x)}{x}=\lim _{x \rightarrow \infty}\left(\frac{\alpha_{1}(x)}{x}\right) \wedge \lim _{x \rightarrow \infty}\left(\frac{\alpha_{2}(x)}{x}=1 .\right.
$$

Thus $\alpha_{1}(x) \wedge \alpha_{2}(x)=\alpha_{1} \wedge a_{2}(x) \varepsilon C C$.
By a similar argument, $\quad \lim _{\mathrm{x} \rightarrow \infty} \frac{\alpha_{1}(\mathrm{x}) \vee \alpha_{2}(\mathrm{x})}{\mathrm{x}}=1$. However, $\alpha_{1}(x) \vee \alpha_{2}(x)$ may not be concave. By 1.1, α_{1} and α_{2} have a concave upper bound h which is continuous at 0 . If $h(x)=h(y)$ for $x<y$, then there exists a point $z>y$ with $h(z)>h(y)$, so the line segment [$x, h(x)$), ($z, h(z)$] lies above the graph of h at the point ($y, h(y)$), which contradicts the concavity of h. Consequently h is strictly increasing.

The graph of h consists by definition of points lying on line segments both ends of which are in $\left\{(\mathrm{x}, \mathrm{y}): 0 \leq \mathrm{x} \leq \infty, 0 \leq \mathrm{y} \leq \alpha_{1}(\mathrm{x}) \vee \alpha_{2}(\mathrm{x})\right\}$ including degenerate segments of one point only. Considering these point sets, it is apparent that $\lim _{x \rightarrow \infty} \frac{h(x)}{x}=1$. Hence $h(x)=\alpha_{1} \vee \alpha_{2}(x) \varepsilon C C$.

For α_{1}, α_{2} non-comparable in CV, $\alpha_{1}(x) \vee \alpha_{2}(x) \varepsilon C V$ by convexity and by the same argument as above, $\lim _{x \rightarrow \infty} \frac{1}{x} \alpha_{1}(x) \vee \alpha_{2}(x)=1$. To form $\alpha_{1} \wedge \alpha_{2}$, let the set U be the complement in the first quadrant of the ordinate set of $\alpha_{1}(x) \wedge \alpha_{2}(x)$. Take $g(x)$ to be that function whose ordinate set is the complement in the first quadrant of the convex hull of U. As in 1.1, $\mathrm{g} \varepsilon \mathrm{CV}$ and by a similar argument to that employed in forming the join in the concave case, $g(x)=\alpha_{1} \wedge \alpha_{2}(x)$ in $C V$.

An elementary calculation shows that the sublattices CC and CV are closed under composition. However, for $\alpha_{1} \varepsilon C C, \alpha_{2} \varepsilon C V$, the composition $\alpha_{1} \circ \alpha_{2}$, while still monotone increasing, may be neither concave nor convex. It also follows trivially from the definitions that for $\alpha \varepsilon C C, \alpha^{-1} \varepsilon C V$ and vice versa.
1.3. Every $\alpha \in C$ may be represented as:

$$
\alpha(x)=\int_{0}^{x} p(t) d t
$$

where p is a right continuous function, bounded a.e. on any finite interval, monotone increasing (decreasing) for α convex (concave).

Proof. By absolute continuity, every $\alpha \varepsilon C$ is differentiable a.e. and is equal to the integral of its derivative as stated; in particular to the integral of its right derivative. For α convex, a detailed proof is given in [6 , Theorem 1.1]; the proof for the concave case is similar. Since α is finite for finite x, p must be bounded a.e. on finite intervals.

We now consider the class C_{a} consisting of all $\alpha \in C$ such that

$$
0<\lim _{x \rightarrow 0} \inf \frac{\alpha(\lambda x)}{\alpha(x)} \text { for all } \lambda>0 .
$$

By concavity, $\mathrm{CC} \subset \mathrm{C}_{\mathrm{a}}$. By definition, for $\alpha \varepsilon \mathrm{C}_{\mathrm{a}}$, we can say that there exists $K>0$ with $\frac{\alpha(\lambda x)}{\alpha(x)}>K$ for all x, all $\lambda>0$.

For example, $\alpha(0)=0, \alpha(x)=e^{\frac{-1}{2}}$, in some interval $\left[0, x_{1}\right]$ shows that $\mathrm{C}_{\mathrm{a}} \cap \mathrm{CV}$ is properly contained in CV. All functions in C of form $\alpha(x)=x^{k}, k \geq 1$ in a neighbourhood of 0 are in $C V \cap C_{a}$; the example $\alpha(0)=0, \alpha(x)=-\frac{x}{\ln x}$ in an interval $\left[0, x_{1}\right]$ shows that such functions are not all of $\mathrm{CV} \cap \mathrm{C}_{\mathrm{a}}$.

For $\alpha \varepsilon C C$ we have the following inequalities by concavity:

$$
\begin{array}{ll}
\lambda \alpha(x) \leq \alpha(\lambda x) \leq \alpha(x) & \lambda \leq 1 \\
\alpha(x) \leq \alpha(\lambda x) \leq \lambda \alpha(x) & \lambda>1, \text { for all } \mathrm{x} .
\end{array}
$$

For $\alpha \varepsilon C V \cap C_{a}$, by convexity and the definition of C_{a},

$$
\begin{aligned}
& \inf _{t \varepsilon[0, \infty]}\left[\frac{\alpha(\lambda t)}{\alpha(t)}\right] \alpha(x) \leq \alpha(\lambda x) \leq \lambda \alpha(x)
\end{aligned} \lambda \leq 1 .
$$

By the definition of C, the supremum here is bounded, Consequently, for $\alpha \varepsilon C_{a}$, any $\lambda>0$, there exist $K_{1}, K_{2}>0$ with

$$
K_{1} \alpha(\mathrm{x}) \leq \alpha(\lambda \mathrm{x}) \leq \mathrm{K}_{2} \alpha(\mathrm{x}) \quad \text { for all } \mathrm{x}
$$

A simple calculation shows that $\mathrm{CV} \cap \mathrm{C}_{\mathrm{a}}$ is closed under composition, while it has already been established that $C C$ has this property. We note that since $C V=(C C)^{-1}, C_{a}$ is not closed under inversion. Also, by the remarks following 1.2, C_{a} is not closed under composition.

In order to get a more tractable class of functions, we consider the equivalence classes of C_{a} with respect to the relation:

$$
\alpha_{1} \sim \alpha_{2} \text { if and only if } 0<\lim _{x \rightarrow 0} \inf \frac{\alpha_{1}(x)}{\alpha_{2}(x)} \leq \lim _{x \rightarrow 0} \sup \frac{\alpha_{1}(x)}{\alpha_{2}(x)}<\infty
$$

It is easy to see that this is in fact an equivalence relation which is preserved under composition and inversion in C_{a}.

We note that $\alpha \sim \alpha O \lambda, \quad$ where $\alpha \circ \lambda(x)=\alpha(\lambda x), \quad \lambda$ real, if and only if $\alpha \in C_{a}$.

The set G of equivalence classes of C_{a} is closed under composition, as follows:
1.4. For $\alpha, \beta \in C_{a}$, there always exists $\gamma \varepsilon C_{a}$ with $\alpha \circ \beta \sim \gamma$.

Proof. Suppose $\alpha \circ \beta \varepsilon C_{a}$. By 1.3,

$$
\alpha(x)=\int_{0}^{x} q(t) d t \quad \beta(x)=\int_{0}^{x} q(t) d t,
$$

where p and q are monotone right continuous. Then

$$
\begin{aligned}
\alpha o \beta(x) & =\int_{0}^{x} p(\beta(t)) q(t) d t \\
& =\int_{0}^{x} g(t) d t
\end{aligned}
$$

where g is right continuous and >0 for any $t>0$. If, for some $x_{o}, g(t)$ is monotone on $0<x \leq x_{o}$, we can construct γ by:

$$
\begin{array}{lr}
\gamma(\mathrm{x})=\int_{0}^{\mathrm{x}} \mathrm{~g}(\mathrm{t}) \mathrm{dt} & 0<\mathrm{x} \leq \mathrm{x}_{1} \\
\gamma(\mathrm{x})=\mathrm{x}-\mathrm{x}_{1}+\gamma\left(\mathrm{x}_{1}\right) & \mathrm{x}>\mathrm{x}_{1},
\end{array}
$$

where x_{1} is the relative extremum of $\alpha \circ \beta(x)-x$ for $0<x_{0}$.
If there is no neighbourhood of 0 on which g is monotone, we note that $0<g(0)<\infty$, since by right continuity:
(i) If $g(0)=0$, g must be monotone increasing in some neighbourhood of 0 .
(ii) If $g(0)=\infty, g$ must be monotone decreasing in some neighbourhood of 0 .

We then set $\gamma(x)=x$. Obviously, $\lim _{x \rightarrow 0} \frac{\alpha \circ \beta(x)}{\gamma(x)}=g(0)$ and $\lim _{x \rightarrow \infty} \frac{\gamma(x)}{x}=g(1)$. In either case the inequalities (a) and (b) imply that $\gamma \varepsilon C_{a}$ if α and β are. Consequently, G is a semi-group under composition.

II. The Algebras L_{α}.

For (X, d) a metric space, we denote by $\mathrm{L}_{\alpha}(\mathrm{X}, \mathrm{d})$ the algebra of all complex-valued continuous functions on X which are finite in the norm:

$$
\begin{aligned}
\|f\| & =\|f\|_{\infty}+\sup _{x \neq y}\left\{\frac{|f(x)-f(y)|}{\alpha(d(x, y))}: x, y \in X, \alpha \varepsilon C_{a}\right\} \\
& =\|f\|_{\infty}+\|f\|_{d, \alpha} .
\end{aligned}
$$

2.1. With this norm, $L_{\alpha}(X, d)$ is a Banach algebra for each $\alpha \varepsilon C_{a}$.

Proof. L_{α} is trivially a linear space. The proof of completeness is exactly the same as that given by Mirkil [4, Theorem 4.5].

The fact that the given norm is a Banach algebra norm follows from the inequality

$$
\frac{\lfloor f(x) g(x)-f(y) g(y) \mid}{\alpha(d(x, y))} \leq|f(x)| \frac{\lfloor g(x)-g(y) \mid}{\alpha(d(x, y))}+|g(y)| \frac{|f(x)-f(y)|}{\alpha(d(x, y))}
$$

Since L_{α} is a function algebra containing the constants, it is semisimple with unit $f(x)=1, x \varepsilon X$. For each $\alpha \varepsilon C_{a}, L_{\alpha}$ is closed under complex conjugation, inversion and truncation; consequently, by a result given by Sherbert [7, Proposition 4.2], if L_{a} separates (X, d) it is a regular algebra.
2.2. Let X be a locally compactmetric space, $\alpha \varepsilon C_{a}$. A necessary and sufficient condition that L_{α} separate X is that for each $s \varepsilon X$, there exist $K_{s}>0$ such that $f_{s}(x)=K_{s} \alpha(d(x, s)) \wedge 1$ be in L_{α}.

Proof. Sufficiency is obvious.
Necessity: For arbitrary $s \varepsilon X$, let K be a compact ball of radius $r>0$ about s. For each pair $(x, y) \varepsilon K, x \neq y$, there exists $g \varepsilon L_{\alpha}$ and open neighbourhoods S_{x} and S_{y} of x and y respectively such that $|g(u)-g(v)| \geq a>0$ for any $(u, v) \varepsilon S_{x} \times S_{y}$. The sets $\left\{S_{x} \times S_{y}:(x, y) \in K\right\}$ form an open cover of $K \times K$ in $X \times X$ with the metric product topology. Let $\left\{S_{x_{i}} \times S_{y_{i}}\right\} i=1, \ldots, n$ be a finite cover with associated functions $g_{i} \varepsilon L_{\alpha}$. For each pair $(x, y) \varepsilon K, x \neq y$, $(x, y) \varepsilon S_{x_{i}} \times S_{y_{i}}$ for some i and $\left|g_{i}(x)-g_{i}(y)\right| \geq a_{i}$. Let $a=\min \left\{a_{i}: i=1, \ldots, n\right\}$ and $\operatorname{set} h_{i}=(x / a) g_{i}$. Thenfor each $(\mathrm{x}, \mathrm{y}) \varepsilon \mathrm{X}$ and some i :

$$
\frac{\left|h_{i}(x)-h_{i}(y)\right|}{\alpha(d(x, y))} \geq \frac{r}{\alpha(d(x, y))} \geq \frac{|\alpha(d(x, s)) \wedge r-\alpha(d(y, s)) \wedge r|}{\alpha(d(x, y))}
$$

Thus $K_{s} \alpha(d(x, s)) \wedge \mathcal{l} L_{\alpha}$, where $K_{s}=\frac{1}{r}$.

It follows from the triangle inequality that if $\alpha \circ \mathrm{d}$ is a metric, then L_{α} contains f_{s} with $K_{s}=k$ for all $s \varepsilon X$. The example : $\alpha(x)=\tan \frac{\pi x}{4}$ in a suitable interval $\left[0, x_{1}\right]$ shows that it is not necessary that $\alpha \circ d$ be a metric for L_{α} to separate x.

From the general theory, the maximal ideal space of L_{α} coincides with its spectrum for each α. If L_{α} separates X, X corresponds homeomorphically with a subset of the maximal ideal space M_{α} of L_{α} which is dense in the Gelfand topology and the metric topology on X coincides with the topology induced on X by the Gelfand topology on M_{α}; if X is compact, S and M_{α} are homeomorphic.
2.3. For any (X, d), if $\alpha_{1} \sim \alpha_{2}$ in C_{a}, then $L_{\alpha_{1}}$ and $L_{\alpha_{2}}$ contain the same functions.

Proof. By the definition of equivalence, there exist $K_{1}, K_{2}>0$ with

$$
\mathrm{K}_{1} \alpha_{1}(\mathrm{x}) \leq \alpha_{2}(\mathrm{x}) \leq \mathrm{K}_{2} \alpha_{1}(\mathrm{x}) \text { for all } \mathrm{x} \varepsilon[0, \infty]
$$

The d, α norms for $L_{\alpha_{1}}$ and $L_{\alpha_{2}}$ are thus boundedly equivalent, and the sup norm is independent of α.
2.4. For any (X, d), set $r=\frac{d}{1+d}$. Thenfor any $\alpha \in C_{a}, L_{\alpha}(X, d)$ and $L_{\alpha}(X, r)$ contain the same functions.

Proof. For $d(x, y) \leq 1$

$$
\begin{aligned}
\alpha(\mathrm{d}(\mathrm{x}, \mathrm{y})) \geq \alpha\left(\frac{\mathrm{d}(\mathrm{x}, \mathrm{y})}{1+\mathrm{d}(\mathrm{x}, \mathrm{y}))}\right) & =\alpha(\mathrm{r}(\mathrm{x}, \mathrm{y})) \\
& \geq \alpha \frac{\mathrm{d}(\mathrm{x}, \mathrm{y})}{2} \\
& \geq \mathrm{K} \alpha(\mathrm{~d}(\mathrm{x}, \mathrm{y})) \quad \text { for some } \mathrm{K}>0
\end{aligned}
$$

For $d(x, y)>1$, any bounded f,

$$
\begin{aligned}
& \frac{|f(x)-f(y)|}{\alpha(d(x, y))} \leq \frac{2\|f\|_{\infty}}{\alpha(1)}<\infty \\
& \frac{|f(x)-f(y)|}{\alpha(r(x, y))} \leq \frac{2\|f\|_{\infty}}{\alpha\left(\frac{1}{2}\right)}<\infty .
\end{aligned}
$$

Consequently, a bounded function f on X is bounded in $\|\cdot\|_{d, \alpha}$ if and only if it is bounded in $\|\cdot\|_{r, \alpha}$. Since the uniform norm is independent of the metric, $L_{\alpha}(X, d)$ and $L_{\alpha}(X, r)$ contain the same functions.
2.5. Let (X, d) be any locally compactmetric space; let $\alpha, \beta \in C_{a}$ such that $\lim _{x \rightarrow 0} \inf \frac{\alpha(x)}{\beta(x)}=0$ and $\lim _{x \rightarrow 0} \sup \frac{\alpha(x)}{\beta(x)}<\infty$ and such that L_{β} separates X. Then L_{α} is properly contained in L_{β}.

Proof. By 2.2, $f_{s} \varepsilon L_{\beta}$ for all $s \varepsilon X$. For any s and all x such that $\beta(d(s, x))<1$, we have

$$
\frac{\left|f_{s}(s)-f_{s}(x)\right|}{K_{s} \beta(d(s, x))}=1=\frac{\left|f_{s}(s)-f_{s}(x)\right|}{R_{s} \alpha(d(s, x))} \cdot \frac{\alpha(d(s, x))}{\beta(d(s, x))}
$$

Thus $\|f\|_{d, \alpha}$ is infinite for each s and so f_{s} is not in L_{α}, Let $f \varepsilon L_{\alpha}$. By hypothesis, there exists $K, 0<K<\infty$, such that $\alpha(x) \leq K \beta(x)$ for all $x \varepsilon[0, \infty]$. Consequently, $f \varepsilon L_{\beta}$. Note that $L_{\alpha} \subseteq L_{\beta}$ whether L_{β} separates X or not.

For each $\alpha \varepsilon C_{a}$ such that L_{α} separates $S,(X, d)$ a fixed metric space, we introduce the metric σ_{α} on M_{α} as follows: For $\phi, \psi \varepsilon M_{\alpha}$;

$$
\sigma_{\alpha}(\phi, \psi)=\sup \left\{|\phi(f)-\psi(f)|: f \varepsilon L_{\alpha},\|f\| \leq 1\right\}
$$

We use the same symbol for the induced metric on X.

$$
\sigma_{\alpha}(x, y)=\sup \left\{|f(x)-f(y)|: f \varepsilon L_{\alpha},\|f\| \leq 1\right\}
$$

2.6. For any locally compact metric space (X, d) of finite diameter and any $\alpha \varepsilon C_{a}$ such that L_{α} separates (X,d) and the set $\left\{f_{s}: s \varepsilon X\right\}$ is bounded in L_{α}, the metric σ_{α} is boundedly equivalent on X to the distance given by $\alpha \circ \mathrm{d}$.

Proof. By definition, $\sigma_{\alpha}(\mathrm{x}, \mathrm{y}) \leq \alpha(\mathrm{d}(\mathrm{x}, \mathrm{y}))$.
By hypothesis, $\left\|f{ }_{s}\right\|<P$ for some finite P, all $s \varepsilon X$. Then for $x, y \in X$, set $g(x)=1 / P f_{x}(s)$ for $s \varepsilon X$. Then:
$\sigma_{\alpha}(x, y) \geq|g(x)-g(y)| \geq K \alpha(d(x, y))$.

COROLLARY. For any metric space (X, d) and any $\alpha \varepsilon \mathrm{C}_{\mathrm{a}}$ satisfying the above conditions, there exists a metric on X such that L_{α} is precisely the Lipschitz algebra with respect to that metric.

We note that if the triangle inequality for $\alpha o d$ holds at all points of X., or fails at all points of X, (for locally compact X) the set $\left\{f_{s}: s \varepsilon X\right\}$ is bounded in L_{α}. The case in which $\alpha o d$ satisfies the triangle inequality at some points of X and not at others remains open.

Also, the uniform structures U_{α} on X generated by the sets $\{(x, y): \alpha(d(x, y)) \leq \varepsilon\} \quad$ are all equivalent to the metric uniformity determined by d (i.e., U_{1}). Hence for α with $\left\{f_{s}: s \varepsilon X\right\}$ bounded in L_{α}, the σ_{α} are uniformly equivalent metrics on X.

III. Homomorphisms and Space Mara,

For every $\alpha \in C_{a}$ such that $L_{\alpha}(X, d)$ separates X, L_{α} is regular, closed under inversion and complex conjugation and contains the constant functions. For a homomorphism $T: L_{\alpha}(X, d) \rightarrow L_{\beta}(Y, r), \alpha, \beta \varepsilon C_{a}$, we refer to the induced map $t: M_{\beta} \rightarrow M_{\alpha}$ as the adjoint of T and write $T *$ for t. From the general theory we know that t is continuous; to ensure that $t(Y) \subseteq X$ we have:
3.1. Let A, B be algebras of continuous bounded complex-valued functions on the topological spaces X, Y respectively, such that X is dense in M_{A} and every compact open neighbourhood of the unit of A contains a function of compact support in X. Then for any unitary homomorphism $T: A \rightarrow B$ which is continuous in the compact open topology, the adjoint $t: M_{B} \rightarrow M_{A}$ carries Y into X.

Proof. Let $y \varepsilon Y . M_{y}=\{f \varepsilon B: f(y) \neq 0\}$ is closed in the compact open topology on B. Suppose ty $\notin X$.

$$
M_{t y}=\{f \in A: f(t y)=T f(y)=0\}
$$

is exactly $T^{-1}\left(M_{y}\right)$ and hence is compact open closed in A. Since ty $\notin X$, all functions f in A of compact support in X are in $M_{t y}$, for if K is the support of $f, X-K$ is dense in $M_{A}-X$ and thus
\hat{f} vanishes on $M_{A}-X$. But every compact open neighbour hood of the unit, 1 , of A contains a function of compact support. Hence $1 \varepsilon M_{t y}$, which is a contradiction of the fact that T is unitary, so ty εX for all $\mathrm{y} \in \mathrm{Y}$.

In other words, the given conditions ensure that the mapping t carries fixed ideals of B to fixed ideals of A. An argument similar to this was given by Nakai [3, Lemma 3.2] in the special case of the Royden ring of functions on a Riemann surface, but as far as we know this is its first statement as a general proposition.
3.2. For X a locally compactmetric space, let A be any regular sub-algebra of $C(X)$ which is closed under truncation and complex conjueation. Then every compact open neighbourhood of the unit of A contains a function $h \varepsilon A$ with compact support in X.

Proof. Let K be any compact set in S, U an open neighbourhood of K with compact closure. For each $p \varepsilon M_{A}-U$, we have by regularity a function $f_{p} \varepsilon A$ with: $f_{p}(p)=1, f_{p}(K)=0 . \operatorname{Set} V_{p}=\left\{q:\left|f_{p}(q)\right|>\frac{1}{2}\right\}$.

Then $p \varepsilon V_{p}$, and the sets U and $\left\{V_{p}\right\}_{p \notin U}$ form an open cover of M_{A}. We select a finite cover, $U, V_{p_{1}} \ldots V_{p_{n}}$.

Now set $f=\sum_{i=1}^{n} f_{p_{i}} \bar{f}_{i} \varepsilon A$.
For $q \varepsilon X, q \notin U$ we have $q \varepsilon V_{p_{j}}$ for some j, so
$f(q) \geq\left|f_{p_{j}}(q)\right|^{2}>\frac{1}{4}$. For $q \varepsilon K, f(q)=0$ we take $h=1-[(4 f) \wedge 1] \varepsilon A$. h is then the required function.

It follows that we can refer to the adjoint $t: Y \rightarrow X$ of a compact open continuous algebra homomorphism $T: L_{\alpha}(X) \rightarrow L_{\beta}(Y)$ when $L_{\alpha}(X)$ separates X and X is locally compact.

Where $t: X \rightarrow Y$ is continuous, we will also refer to the induced algebra homomorphism $T: C(X) \rightarrow C(Y)$ defined by $T f(x)=f(t x)$ as the adjoint of t and write t^{*} for T.

We classify the continuous maps of one metric space (X, d) into another (Y, r) as follows:

A continuous map $t: X \rightarrow Y$ is β-modally continuous if it satisfies $r(t x, t y) \leq K \beta(d(x, y))(*)$ for $\beta \varepsilon C_{a}$, some $K>0$ and all $x, y \in X$. We
will denote the fact that a continuous map t satisfies condition (*) for a particular $\beta \in C_{a}$ by writing $t:(X, d) \rightarrow(Y, r)(\beta)$. We note that if t is β-modally continuous and $\alpha \sim \beta$ in C_{a}, then t is α-modally continuous.
3.3. Let $t:(X, d) \rightarrow(Y, r)$ be $\beta-\bmod a l l y$ continuous. For $\alpha \varepsilon C_{a}$, the restriction T_{α} of the adjoint T of t to L_{α} determines a compact open continuous homomorphism $T_{\alpha}: L_{\alpha}(Y) \rightarrow L_{\alpha \circ \beta}(X)$. (We consider $\alpha \circ \beta$ to be replaced by an equivalent element of C_{a} when necessary, as in 1.5.)

Proof. For $f \varepsilon L_{\alpha}(Y)$;

$$
\begin{aligned}
& \|T f\|_{\infty} \quad=\sup \{|f(t x)|: x \in X\} \\
& \leq \sup \{|f(y)|: y \varepsilon Y\}=\|f\|_{\infty} \text {. } \\
& \|T f\|_{d, \alpha O \beta}=\sup _{x \neq y}\left\{\frac{\lfloor\operatorname{Tf}(x)-\operatorname{Tf}(y) \mid}{\alpha O \beta(d(x, y))}: x, y \varepsilon X\right\} . \\
& =\sup \left\{\frac{|f(t x)-f(t y)|}{\alpha o \beta(d(x, y))}: x, y \varepsilon X\right\} . \\
& \leq \sup \left\{\frac{|f(t x)-f(t y)|}{K^{\prime} \alpha(r(t x, t y))}: x, y \varepsilon X\right\} \text {. } \\
& \leq \frac{1}{K^{\prime}} \sup _{s \neq t}\left\{\frac{|f(s)-f(t)|}{\alpha(r(s, t))}: s, t \in Y\right\}=\frac{1}{K^{\prime}}\|f\|_{r, \alpha} .
\end{aligned}
$$

Thus $T\left(L_{\alpha}(Y)\right) \subseteq L_{\alpha O \beta}(X)$ and T is trivially a homomorphism. To show that T is compact open continuous, for $\varepsilon>0, g \varepsilon L_{\alpha}(Y), K$ compact in X , consider:

$$
N(T g, K, \varepsilon)=\left\{f \varepsilon L_{\alpha O \beta}(X):\|f-T g \mid K\|_{\infty}<\varepsilon\right\}
$$

and

$$
N(g, t K, \varepsilon)=\left\{f \varepsilon L_{\alpha}(Y):\|f-g \mid t K\|_{\infty}<\varepsilon\right\}
$$

The continuity of t implies that $t K$ is compact in Y, so $N(g, t K, \varepsilon)$ is an element of the subbase of the compact open neighbourhood system of g and $T(N(g, t K, \varepsilon)) \subseteq N(T g, K, \varepsilon)$ since $\left\|f-g\left|t K\left\|_{\infty}=\right\| T f-T g\right| K\right\|_{\infty}$.
This establishes the compact-open continuity of T. In the case where Y is compact, T is continuous in the uniform topology of $L_{\alpha}(Y)$, since the two topologies coincide.
3.4. Let $(X, d),(Y, r)$ where (X, d) is locally compact be metric spaces with $\alpha \varepsilon C_{a}$ such that $L_{\alpha}(X)$ separates $S, \alpha^{-1} \& C_{a}$ and the set $\left\{f_{s}: s \varepsilon X\right\}$ is bounded in $L_{\alpha}(X)$. Let $T: L_{\alpha}(X) \rightarrow L_{\beta}(Y)$ bea compact-open continuous homomorphism for some $\beta \varepsilon C_{a}$. Thenits. adjoint t is an open α^{-1} o β-modally continuous map of (Y, r) into $(\mathrm{X} d)$

Proof. By the preceding discussion, t carries Y into $X=M_{c}$, Since T is a Banach algebra homomorphism, the set $\left\{\mathrm{Tf}_{\mathrm{s}}: \mathrm{s}: \mathrm{X}\right.$ is bounded in norm in L_{β}, say by K. For all $x, y \in Y$,

$$
\begin{aligned}
K & \geq \frac{\left|\operatorname{Tf}_{s}(x)-T f_{s}(y)\right|}{\beta(r(x, y))} \\
& \geq K_{s} \frac{|\alpha(d(s, t x))-\alpha(d(s, t y))|}{\beta(r(x, y))}
\end{aligned}
$$

Then for $\mathrm{s}=\mathrm{ty}$:

$$
\begin{aligned}
& K_{s} \alpha(d(t x, t y)) \leq K \beta(r(x, y)) \\
& \text { i.e. } \quad d(t x, t y) \leq K^{\prime} \alpha^{-1} \circ \beta(r(x, y))
\end{aligned}
$$

for suitable $K^{\prime}>0$ since $\alpha^{-1} \& C_{a}$ by hypothesis.
In the case where X is compact, we note that all three of the conditions of 3.3 are still necessary in order to reach the same conclusion. If $\alpha=\beta=1$, the identity in C_{a}, this reduces to the case of the Lipschitz algebras of X and Y as considered by Sherbert. In this case, the separation of X by L_{α}, the inclusion of α^{-1} in C_{a} and the boundeciness of $\left\{f_{s}: s \varepsilon X\right\}$ in L_{α} follow from the definition of L_{α}.

From here on, we will consider all metric spaces used to be locally compact.

3.5. A compact-open continuous homomorphism

$$
\mathrm{T}: \mathrm{L}_{1}(\mathrm{X}, \mathrm{~d}) \rightarrow \mathrm{L}_{\alpha}(\mathrm{Y}, \mathrm{r})
$$

where $\alpha^{-1} \varepsilon C_{a}$ and the set $\left\{f_{s}: s \varepsilon Y\right\}$ is bounded in $L_{\alpha}(Y)$, is an isomorphism of $L_{1}(X)$ onto $L_{\alpha}(Y)$ if and only if the adjoint $t: Y \rightarrow X$ is a homeomorphism of Y onto X satisfying

$$
\begin{equation*}
\mathrm{K}^{\prime} \alpha(\mathrm{r}(\mathrm{x}, \mathrm{y})) \leq \mathrm{d}(\mathrm{tx}, \mathrm{ty}) \leq \mathrm{K} \alpha(\mathrm{r}(\mathrm{x}, \mathrm{y})) \tag{3.5.0}
\end{equation*}
$$

for some $K, K^{\prime}>0$, all $x, y \varepsilon Y$.

Proof. Let T be a compact open continuous isomorphism of $L_{1}(X)$ onto $L_{\alpha}(Y)$. Since T is onto, t is $1-1$, so $t^{-1}: M_{1} M_{2}$ is defined on $t\left(M_{\alpha}\right)$. Now suppose $t: M_{\alpha} \rightarrow M_{1}$ is not onto, so that here exists $\psi \varepsilon M_{1}, \psi \notin t\left(M_{\alpha}\right)$. Since M_{α} is compact, $t\left(M_{\alpha}\right)$ is compact in M_{1}. By the regularity of L_{1}, there exists $f \varepsilon L_{1}$ with $\hat{f}(y)=1, \hat{f}(x)=0$ for all $x \in t\left(M_{\alpha}\right)$.

So

$$
\operatorname{T\hat {f}}(\psi)=\hat{f}(t \psi)=0 \quad \text { for all } \psi \varepsilon M_{\alpha}
$$

This contradicts the assumption that T is $1-1$, so t must be onto, $M_{\alpha} \rightarrow M_{1}$. Likewise $t^{-1}: M_{1} \rightarrow M_{\alpha}$ is onto and

$$
t^{-1}(X) \subseteq Y \subseteq t^{-1}\left(M_{1}\right)=M_{\alpha}
$$

i.e., $X \subseteq t Y$ since t is 1-1. By the compact open continuity of T, $t Y \subseteq X$, so $t Y=X$ and t is onto.

The rest of the proof follows, exactly as in Sherbert [7, Theorem 5.1].
COROLLARY. Every compact open continuous automorphism T of $\mathrm{L}_{\alpha}(\mathrm{X}, \mathrm{d})$ where $\alpha^{-1} \varepsilon C_{a}$ and the set $\left\{\mathrm{f}_{\mathrm{s}}: \mathrm{s} \varepsilon \mathrm{X}\right\}$ is bounded in L_{α}, is of the form: $T f(x)=f(t x) f \varepsilon L_{\alpha}, x \varepsilon X$ where $t: X \rightarrow X$ is a homeomorphism satisfying

$$
\mathrm{K}^{\prime} \mathrm{d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{d}(\mathrm{tx}, \mathrm{ty}) \leq \mathrm{K} \mathrm{~d}(\mathrm{x}, \mathrm{y}) \quad \mathrm{x}, \mathrm{y} \varepsilon \mathrm{X}, \mathrm{~K}, \mathrm{~K}^{\prime}>0
$$

IV. Categorical Considerations

We can express some aspects of the relationship between modally continuous space maps and compact open continuous algebra homomorphisms in terms of suitable categories. The following proposition is obvious:
4.1. Let C_{a} be directed by the lattice order and assign to each $\alpha \varepsilon C_{a}$ the corresponding algebra L_{α} on a fixed metric space (X, d).

For $\alpha \leq \beta$ in C_{a} let $h_{\alpha}^{\beta}: L_{\alpha} \rightarrow L_{\beta}$ be the mapping of L_{α} onto itself as a subset of $L_{\beta} .\left(L_{\alpha}, h_{\alpha}^{\beta}\right)$ then forms a direct system of Banach algebras and Banach algebra homomorphisms.

Since by 1.1 every uniformly continuous function on (X, d) satisfies some modulus of continuity in C_{a}, the union of this system is the algebra of all uniformly continuous complex-valued bounded functions on X . It is conjectured that the uniform closure of this algebra is the direct limit of this system in the category of commutative semi-simple Banach algebras.

Now let G stand for the set of equivalence classes of C_{a} under the relation defined above. G inherits the lattice order of C_{a} and is closed under composition by 1.4. We have then associated with each metric space (X, d) the direct system of algebras ($\left.L_{\phi}(\mathrm{X}), h_{\phi}^{\eta}\right)_{\eta, \phi \varepsilon G}$ where $L_{\phi}(X)$ is the algebra with compact-open topology given by $\alpha \varepsilon C_{a}$ and ϕ is the equivalence class of α in $G . L_{\phi}(X)$ then consists of the same set of functions as $L_{\alpha}(X)$ for all $\alpha \varepsilon \phi$, and it is easily seen that this is again a direct system of algebras over (X, d). Moreover, any β-modally continuous map $\mathrm{t}:(\mathrm{X}, \mathrm{d}) \rightarrow(\mathrm{Y}, \mathrm{r})$ with $\beta \in \mathrm{C}_{\mathrm{a}}$ determines by its adjoint the algebra homomorphisms $\mathrm{T}_{\phi}: \mathrm{L}_{\phi}(\mathrm{Y}) \rightarrow \mathrm{L}_{\phi \text { o }}(\mathrm{X})$ for all $\phi \varepsilon G$, where η is the equivalence class of β in C_{a}.

This leads us to consider the category fefined as follows :
The objects are the direct systems of topological algebras:

$$
\left(B_{\phi}, h_{\phi}^{\eta}\right) \phi, \eta \in G, \phi \leq \eta
$$

with the property that, for $\phi \leq \eta, \mathrm{B}_{\phi}$ is a sub-algebra of B_{η}, and the algebra homomorphism $h_{\phi}^{\eta}: B_{\phi} \rightarrow B_{\eta}$ is in fact the natural injection. The morphisms are pairs of the forms:

$$
\epsilon=\left(\left(T_{\phi}\right) \phi \varepsilon G, \eta\right) \eta \varepsilon G
$$

where $T_{\phi}: B_{\phi} \rightarrow B_{\phi O \eta}$ is compact open continuous with

$$
\theta \circ \epsilon^{\prime}=\left(\left(T_{\phi \circ \eta}^{\prime} \circ I_{\phi}\right), \eta \circ \eta^{\prime}\right)
$$

where defined, and for any $\phi \leq \eta, T_{\eta} \circ h_{\phi}^{\eta}=T_{\phi}$, i.e. $T_{\eta} \mid B_{\phi}=T_{\phi}$. The composition defined is evidently associative and θ is the identity homomorphism of B_{ϕ} and η is the equivalence class in G containing the identity map in C_{a}.

On the other hand, we consider the category \mathcal{L} whose objects are the metric spaces (X, d) and whose morphisms are the η-modally continuous maps for $\eta \in G ;(t, \eta)$ such that $t:(X, d) \rightarrow(Y, r)(\beta)$ for any β in the class η of G.

Again, it is readily seen that

$$
\left(t^{\prime}, \eta^{\prime}\right) \circ(t, \eta)=\left(t^{\prime} \circ t, \eta \circ \eta^{\prime}\right)
$$

where defined; this composition is associative and the identity for (X, d) is simply the pair (t, η) where η is the identity equivalence class in G and t is the identity mapping on X .

We can now define the category mapping $F: \mathcal{L} \rightarrow \beta$ as follows

$$
\begin{aligned}
& F(X, d)=\left(L(X, d, \phi), h_{\phi}^{\eta}\right)_{\phi, \eta \varepsilon G, \phi<\eta}, \\
& F(t, \eta)=\left(\left(T_{\phi}\right)_{\phi \varepsilon \cdot G}, \eta\right)
\end{aligned}
$$

on the objects and morphisms respectively of \mathcal{L}.
4.2. This mapping $F: \mathcal{S} \rightarrow \mathcal{B}(G)$ is a contravariant functor which maps the set of modally continuous $t:(X, d) \rightarrow(Y, r)(\eta) \eta \varepsilon G$ one to one onto the set of all morphisms $F(Y, r) \rightarrow F(X, d)$.

Proof. Let $\theta=\left(\left(T_{\phi}\right)_{\phi \varepsilon G}, \eta\right)$ for $\eta \varepsilon G$. In order to show that F is onto, we need to find (t, η) in $£$ such that $F(\mathrm{t}, \eta)=\theta$. We take $t=T_{\rho} *$, the adjoint of an algebra homomorphism $T_{\rho}: L_{\rho}(Y) \rightarrow L_{\rho o \eta}(X)$ in θ such that $L_{p}(X)$ satisfies the requirements of L_{α} in 3.4. It is sufficient to take ρ the equivalence class of the identity map in C_{a}.

$$
\text { By } 3.4, \mathrm{t}:(\mathrm{X}, \mathrm{~d}) \rightarrow(\mathrm{Y}, \mathrm{r})(\eta) \text {. Moreover, we claim that }
$$

$T_{\rho}^{*}(X)=T_{\phi}^{*}(X)$ for all $\phi \varepsilon G$, all $x \in X$ where T_{ρ}^{*} is defined. Suppose that $\phi \leq \rho$, so that $L_{\phi}(Y) \subseteq L_{\rho}(Y)$. Then $T_{\phi}=T_{\rho} \mid L_{\phi}$ i.e., $T_{\phi(x)}^{*}=T_{\rho}^{*}(x)$ where defined, so the above assertion holds.

For $L_{\rho}(Y) \subseteq L(Y)$, we recall that the adjoint t of $T_{\rho}: L_{\rho}(Y) \rightarrow L_{\rho \circ \eta}(X)$ carries all points (i.e., fixed maximal ideals) of X to points of Y. Since $L_{\rho}(Y)$ separates Y, if two ideals are identified by t, they correspond to the same point of Y. Suppose $\mathrm{tx}_{1}=\mathrm{tx} \mathrm{Z}_{2}$; consider the adjoint h of $\mathrm{T}_{\phi}: \mathrm{L}_{\phi}(\mathrm{Y}) \rightarrow \mathrm{L}_{\phi \text { o }}(\mathrm{X})$. Suppose $h x_{1} \neq h x_{2}$. Then for all $s \varepsilon X, f_{s}\left(h x_{1}\right) \neq f_{s}\left(h x_{2}\right)$;

$$
\text { i.e., } T_{\phi} f_{s}\left(x_{1}\right)=T_{\phi} f_{s}\left(x_{2}\right)
$$

But since $f_{s} \varepsilon L_{\rho}(Y)$ for all $s \varepsilon Y$:

$$
T_{\phi} f_{s}\left(x_{1}\right)=T_{\rho} f_{s}\left(x_{1}\right)=T_{\rho} f_{s}\left(x_{2}\right)=T_{\phi} f_{s}\left(x_{2}\right) .
$$

So we must have $h x_{1}=h x_{2}=t y_{1}$ for the adjoint of T_{ρ}. This takes care of all cases, since for $\phi, P \in G$ we have that $\phi \leq p, P \leq \phi$ or ϕ and p are not comparable, we can find $\eta \varepsilon G$ with $\eta \geq \phi$ and $\eta \geq \rho$, and in this case, $L_{\eta}(Y)$ will have the same properties as $L_{\rho}(Y)$. This reduces the matter to the two cases we have considered. It follows that the adjoint of every $T_{\phi} \varepsilon \in$ is determined by that of T_{ρ}, so we can take $t=T^{*}$ and then $F(t, \eta)=e$ as required.

Finally, let

$$
\begin{aligned}
& \theta_{1}=\left(\left(T_{1 \phi}\right)_{\phi \varepsilon G^{\prime}} \eta_{1}\right) \\
& \theta_{2}=\left(\left(T_{2 \phi}\right)_{\phi \varepsilon G^{\prime}} \eta_{2}\right) .
\end{aligned}
$$

Then if $\theta_{1}=\theta_{2}$, we have $\eta_{1}=\eta_{2}, T_{1 \rho}=T_{2 \phi}$, for all $\phi \varepsilon G$. In particular, $T_{1 \rho}=T_{2 \rho}$ for ρ as above, and since these homomorphisms are enough to determine t, ϵ_{1} and e_{2} are the image under F of the same (t, η) in δ; so F is one to one as stated.

Since F is a functor, it takes isomorphisms of $\mathcal{\&}$ to isomorphisms of \mathcal{B}. An isomorphism in $\mathcal{\&}$ is a map $t:(X, d) \rightarrow(Y, r)(\eta)$ such that t^{-1} exists with $t^{-1}:(Y, r) \rightarrow(X, d)\left(\eta^{-1}\right)$ where $\eta^{-1} \varepsilon G$. Such a map must correspond under F with $e=\left(\left(T_{\phi}\right)_{\phi \varepsilon G}, \eta\right)$ where all T_{ϕ} are isomorphisms $T_{\phi}: L_{\phi}(Y) \rightarrow L_{\phi \circ \eta}(X)$. We note that the existence of t and t^{-1} as above implies that t satisfies

$$
\mathrm{r}(\mathrm{tx}, \mathrm{ty}) \leq \mathrm{K} \alpha(\mathrm{~d}(\mathrm{x}, \mathrm{y})) \quad \mathrm{x}, \mathrm{y} \varepsilon \mathrm{X}, \quad \alpha \varepsilon \eta
$$

$$
d\left(t^{-1} z, t^{-1} w\right) \leq C \beta(r(z, w)) \quad z, w \varepsilon Y, \beta \varepsilon \eta^{-1}
$$

Hence, for suitable $K_{1}, K_{2}>0$,

$$
\mathrm{K}_{1} \alpha(\mathrm{~d}(\mathrm{x}, \mathrm{y})) \leq \mathrm{r}(\mathrm{tx}, \mathrm{ty}) \leq \mathrm{K}_{2} \alpha(\mathrm{~d}(\mathrm{x}, \mathrm{y}))
$$

Thus the isomorphisms of \mathbb{B} come from maps (t, η) in \mathcal{L} such that t^{-1} is defined, $\eta^{-1} \varepsilon G$ and t satisfies the above double condition with respect to α, for any α in the equivalence class η.

V. Quasiconformality.

We take as definition of quasiconformality the following, shown by Gehring [5, p. 97] to be equivalent to the classical definition in terms of the moduli of rings:

For t a homeomorphism of a plane domain D, we define, for $\mathrm{x} \in \mathrm{D}$:

$$
\begin{aligned}
& L(x, r)=\sup _{|x-y|=r}|t x-t y| \\
& \ell(x, r)=\inf ^{L x-y \mid=r}|t x-t y| \\
& H(x)=\lim _{r \rightarrow 0} \sup \frac{L(x, r)}{\ell(x, r)}
\end{aligned}
$$

We say that a topological mapping of a domain D is quasiconformal if and only if $\mathrm{H}(\mathrm{x})$ is bounded on D .

We have the following relation between quasiconformal mappings and the morphisms discussed in the last section:
5.1. Let X and Y be plane domains. The direct systems $S(X)$ and $S(Y)$ of generalized Lipschitz algebras over X and Y are objects of the category \mathbb{B}. Let θ be a \mathcal{B}-isomorphism, $\theta: S(X) \rightarrow S(Y)$. Then the adjoint t of θ is a quasiconformal map of Y onto X.

Proof. As shown above, t is a homeomorphism satisfying

$$
\mathrm{K}_{1} \alpha(|\mathrm{x}-\mathrm{y}|) \leq|\mathrm{tx}-\mathrm{ty}| \leq \mathrm{K}_{2} \alpha(|\mathrm{x}-\mathrm{y}|) \quad \mathrm{x}, \mathrm{y} \varepsilon \mathrm{Y}
$$

where α is in the equivalence class of y and $|x-y|$ is the usual metric in the plane. Then for every $y \varepsilon Y$:

$$
\begin{aligned}
H(y) & =\lim _{r \rightarrow 0} \sup \frac{\sup |t x-t y|}{\inf |t x-t y|} \quad|x-y|=x \\
& \leq \lim _{r \rightarrow 0} \frac{K_{2} \alpha(|x-t|)}{K_{1} \alpha(|x-y|)}=\frac{K_{2}}{K_{1}} .
\end{aligned}
$$

In general, a quasiconformal map of one domain onto another cannot be shown to give rise to a β-isomorphism of the associated direct systems of algebras, since such a map does not necessarily satisfy the double inequality

$$
\mathrm{K}_{1} \alpha(|\mathrm{x}-\mathrm{y}|) \leq|\mathrm{tx}-\mathrm{ty}| \leq \mathrm{K}_{2} \alpha(|\mathrm{x}-\mathrm{y}|)
$$

for any $\alpha \varepsilon C_{a}$. Huwever, using a well known result from the theory of quasiconformal mappings, we have:
5.2. Let t be a K-quasiconformal map of the open unit disc U in the plane onto itself, with $t(0)=0$. The adjoint T of t determines a \quad-morphism

$$
\epsilon=\left(\left(T_{\phi}\right)_{\phi \varepsilon G^{\prime}} \eta\right), \quad \text { i.e. } \quad €: S(U) \rightarrow S(U) \quad(\eta)
$$

of the direct system $S(U)$ into istelf, where η is the equivalence class of $\alpha(x)=x^{\frac{1}{k}}$. Moreover, for each $\phi \varepsilon G$, we have:

$$
\begin{equation*}
L_{\phi \circ \beta}(U) \subseteq T_{\phi}\left(L_{\phi}(U)\right) \subseteq L_{\phi \circ \alpha} \tag{U}
\end{equation*}
$$

where $\beta(x)=x^{k}$.
Proof. This follows from the results in Section 3 and 4 and from the fact that for the map t and each pair of points z_{1}, z_{2} in U :

$$
c^{-K}\left|z_{1}-z_{2}\right|^{K} \leq\left|t\left(z_{1}\right)-t\left(z_{2}\right)\right| \leq c\left|z_{1}-z_{2}\right|^{\frac{1}{K}}
$$

where C is an absolute constant whose smallest possible value is 16. [5, p. 102].

These results may be extended without difficulty to the case of domains in real n-space.

REFERENCES

1. N. Bourbaki, Fonctions d'une Variable Reele (Hermann, 1950).
2. G. Glaeser, Etudes de quelques Algebres Tayloriennes. J. Anal. Math. 6 (1958) 1-124.
3. M. Nakai, On a ring isomorphism induced by quasi-conformal mappings. Nagoya Math. J. 14 (1959) 201-221.
4. H. Mirkil, Continuous translation of Hölder and Lipschitz functions. Canad. J. Math. 12 (1960) 674-685.
5. H.P. Kunzi, Quasikonforme Abbildungen. (Springer-Verlag, 1960)
6. Krasnosel' skii and Rutickii, Convex functions and Orlicz spaces. (P. Noordhoff Ltd., 1961).
7. D.R. Sherbert, Banach algebras of Lipschitz functions. Pac. J. Math. 13 (1963) 1387-1399.

University of Waterloo Waterloo
Ontario

[^0]: * These results appeared in the author's doctoral thesis, done at

 McMaster University under the direction of Dr. B. Banaschewski.

