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Abstract Given a compact Lie group G, in this paper we establish L p-bounds for pseudo-differential
operators in L p(G). The criteria here are given in terms of the concept of matrix symbols defined on
the noncommutative analogue of the phase space G× Ĝ, where Ĝ is the unitary dual of G. We obtain
two different types of L p bounds: first for finite regularity symbols and second for smooth symbols. The
conditions for smooth symbols are formulated using S m

ρ,δ(G) classes which are a suitable extension of the

well-known (ρ, δ) ones on the Euclidean space. The results herein extend classical L p bounds established
by C. Fefferman on Rn . While Fefferman’s results have immediate consequences on general manifolds
for ρ > max{δ, 1− δ}, our results do not require the condition ρ > 1− δ. Moreover, one of our results also
does not require ρ > δ. Examples are given for the case of SU(2) ∼= S3 and vector fields/sub-Laplacian
operators when operators in the classes S m

0,0 and S m
1
2 ,0

naturally appear, and where conditions ρ > δ and

ρ > 1− δ fail, respectively.
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1. Introduction

In this work, we study the L p boundedness of pseudo-differential operators on compact

Lie groups. The investigation of the behaviour of pseudo-differential operators of

Hörmander’s class Sm
ρ,δ in L p is a fundamental problem in the theory of pseudo-differential

operators. The fact that the class S0
1,δ begets bounded operators on L p for every

1 < p <∞ is well known (e.g. [34, Ch. 13]). The boundedness on L p(Rn) for all

1 < p <∞ fails for general operators with symbols in S0
ρ,δ(R

n
×Rn) with ρ < 1.

Furthermore, when m > 0 is small, for operators with symbols in S−m
ρ,δ (R

n
×Rn) with

ρ < 1 one can only get L p(Rn) boundedness for finite intervals centred at p = 2, which

is a consequence of C. Fefferman’s estimates (cf. [7]) and the work on multipliers of

Hirschman (e.g. [16]) and Wainger (cf. [35]). The obstruction for the boundedness on

L p(Rn) for all 1 < p <∞ of operators in OpS0
ρ,δ(R

n
×Rn) with ρ < 1 is explained in

a more general setting by the works of Beals [2] and [3]. The C. Fefferman’s results

were extended to symbols with finite regularity by Li and Wang in [19]. A version of L p

Fefferman type bounds in the setting of S(m, g) classes has been established in [6].

The L p boundedness on compact groups for invariant operators (Fourier multipliers)

with symbols of finite regularity has been studied in [26, 28]. The case of the circle has

been considered in [20].

The (ρ, δ) classes S m
ρ,δ(G) on compact Lie groups with 0 6 δ 6 ρ 6 1 (δ < 1) have been

introduced in [23] and then in [24] motivated by the study of sharp G̊arding inequalities,

and subsequently developed in [9, 26–29].

In this paper, we first establish L p bounds for finite regularity symbols by applying

multiplier results of [26] and [28]. Secondly, we extend Fefferman’s bounds to compact

Lie groups obtaining some improvement with respect to the range of (ρ, δ) from the

point of view of pseudo-differential operators on compact manifolds. Our analysis will

be based on the global quantisation developed in [23] and [25] as a noncommutative

analogue of the Kohn–Nirenberg quantisation of operators on Rn . The classes S m
ρ,δ(G)

on a compact Lie group G extend the corresponding Hörmander ones when G is viewed

as a manifold. The advantage here is that we will not impose the usual restriction

1− δ 6 ρ when dealing with those classes on manifolds. Thus, here we allow ρ 6 1
2 and

ρ = δ.

In order to illustrate our main results we first recall the L p(Rn) bounds obtained by

Fefferman [7]. In the following theorem, we denote by σ(x, D) the pseudo-differential

operator with symbol σ(x, ξ), i.e.

σ(x, D) f (x) =
∫
Rn

e2π i x ·ξσ(x, ξ) f̂ (ξ) dξ.

Theorem A. (a) Let 0 6 δ < ρ < 1 and ν < n(1− ρ)/2. Let σ = σ(x, ξ) ∈ S−νρ, δ(R
n). Then

σ(x, D) is a bounded operator from L p(Rn) to L p(Rn) for

∣∣∣∣12 − 1
p

∣∣∣∣ 6 ν

n(1− ρ)
.
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(b) If
∣∣∣ 1

2 −
1
p

∣∣∣ > ν
n(1−ρ) , then the operator σ(x, D) associated to the symbol

σ(x, ξ) = σρ,ν(ξ) = ei |ξ |1−ρ
〈ξ〉−ν ∈ S−νρ, 0, (1.1)

is not bounded from L p(Rn) to L p(Rn).

(c) Let σ = σ(x, ξ) ∈ S−n(1−ρ)/2
ρ, δ (Rn). Then σ(x, D) does not have to be bounded on

L1(Rn) but is bounded from the Hardy space H1(Rn) to L1(Rn).

The part (a) can be deduced from (c) by complex interpolation. The part (b)

corresponds to the classical counter-example due to Hardy–Littlewood–Hirschman–

Wainger (cf. [16, 35, 36]). The complex interpolation and the duality (H1)′ = BMO
obtained by Stein and Fefferman in [8] reduce the proof of (c) to the estimation of

L∞−BMO bounds. We note that the conditions on the symbol in Theorem A restrict the

choice of the parameter ρ depending on the order of the symbol. Part (b) shows that part

(a) is sharp with respect to the size of the interval around p = 2. Moreover, the sharpness

of the choice of the value ρ is explained by an estimate due to Hörmander [17]. In this

paper, one of our main results will give an analogue of Theorem A on compact Lie groups.

In § 2, we recall basic elements of the theory of pseudo-differential operators on compact

Lie groups. In § 3, we establish our main results on L p boundedness, we consider two types

of conditions, the first ones imposing finite regularity on the symbol and the second ones

for C∞-smooth symbols.

To give a taste of our results we state two of our main theorems. Here, we rely on the

global noncommutative analogue of the Kohn–Nirenberg quantisation (3.7) on a compact

Lie group G developed in [23, 25] providing a one-to-one correspondence between matrix

symbols σ on the noncommutative phase space G× Ĝ and the corresponding operators

A ≡ σ(x, D) given by

A f (x) ≡ σ(x, D) f (x) =
∑
[ξ ]∈Ĝ

dξ Tr(ξ(x)σ (x, ξ) f̂ (ξ)). (1.2)

We refer to § 3 for the precise definitions of the appearing objects.

The following limited regularity result corresponds to Theorem 4.8. The notation Dξ
will indicate a suitable difference operator with respect to the discrete unitary dual.

Theorem 1.1. Let G be a compact Lie group of dimension n, and let 0 6 δ, ρ 6 1. Denote

by κ the smallest even integer larger than n
2 . Let 1 < p <∞ and ` > n

p with ` ∈ N.

Let A : C∞(G)→ D′(G) be a linear continuous operator such that its matrix symbol σ

satisfies

‖∂βx D
α
ξ σ(x, ξ)‖op 6 Cα,β〈ξ〉−m0−ρ|α|+δ|β| (1.3)

with

m0 > κ(1− ρ)
∣∣∣∣ 1

p
−

1
2

∣∣∣∣+ δ ([ n
p

]
+ 1

)
,

for all multi-indices α, β with |α| 6 κ, |β| 6 ` and for all x ∈ G and [ξ ] ∈ Ĝ. Then the

operator A is bounded from L p(G) to L p(G).
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Here [ np ] denotes the integer part of n
p .

For smooth symbols we prove the following theorem which corresponds to

Theorem 4.15. In particular, we will not impose the well-known restrictions ρ > 1
2 or

ρ > 1− δ when dealing with pseudo-differential operators on closed manifolds as an

advantage of the global calculus employed here.

Theorem 1.2. Let G be a compact Lie group of dimension n. Let 0 6 δ < ρ < 1 and

0 6 ν <
n(1− ρ)

2
.

Let σ ∈ S −νρ,δ (G). Then σ(x, D) extends to a bounded operator from L p(G) to L p(G) for∣∣∣∣ 1
p
−

1
2

∣∣∣∣ 6 ν

n(1− ρ)
.

Let us compare the statement of Theorem 1.2 on compact Lie groups with Theorem

A on Rn . First we can observe that Theorem A readily yields the corresponding

L p-boundedness result on a general compact manifold M for pseudo-differential operators

with symbols in class S−νρ,δ. However, for these classes to be invariantly defined on M one

needs the condition ρ > 1− δ (see e.g. [30]). Together with condition ρ > δ this implies, in

particular, that ρ > 1
2 . Therefore, Theorem A implies the statement of Theorem 1.2 under

the additional assumption that ρ > 1− δ (and hence also ρ > 1
2 ); see also Remark 3.3

for the relation between operators in these symbol classes. Thus, the main point of

Theorem 1.2 is to establish the L p-boundedness without this restriction. This is possible

due to the global symbolic calculus available thanks to G being a group. We point out that

the condition δ 6 ρ has been also removed for the L2-boundedness on Rn by Hounie [18].

2. Motivation and applications

Let us give several examples of one type of applications and relevance of the obtained

results. Let G = SU(2) ' S3 be equipped with the usual matrix multiplication of SU(2),

or with the quaternionic product on S3. Let X, Y, Z be three left-invariant vector fields,

orthonormal with respect to the Killing form. Then we have the following properties,

established in [29]:

(i) Let Lsub = X2
+ Y 2 be the sub-Laplacian (hypoelliptic by Hörmander’s sum of

squares theorem). Then its parametrix L]sub has symbol in the symbol class S −1
1
2 ,0
(G).

(ii) Let H = X2
+ Y 2

− Z , it is also hypoelliptic by Hörmander’s sum of squares

theorem. Then its parametrix H ] has symbol in the symbol class S −1
1
2 ,0
(G).

(iii) The operator Z + c is globally hypoelliptic if and only if ic 6∈ 1
2Z. In this case its

inverse (Z + c)−1 exists and has symbol in the symbol class S 0
0,0(G).

We note that especially in the case (iii), the class S 0
0,0(G) is not invariantly defined in

local coordinates while our global definition makes sense. For examples (i) and (ii), the

class S −1
1
2 ,0
(G) in local coordinates gives the Hörmander class S −1

1
2 ,

1
2
(R3). Consequently,
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Theorem A cannot be applied since the condition ρ > δ is not satisfied in this case.

Nevertheless, the results obtained in this paper apply, for example Theorem 1.1 works

for the class S 0
0,0(G), and both Theorems 1.1 and 1.2 for the class S −1

1
2 ,0
(G). Thus, this

can be used to derive a priori estimates in L p Sobolev spaces W p,s , for example

‖ f ‖L p(S3) 6 C p‖(Z + c) f ‖
W p,2| 1p−

1
2 |(S3)

, 1 < p <∞,

or

‖ f ‖L p(S3) 6 C p‖Lu‖
W p,| 1p−

1
2 |−1

(S3)
, 1 < p <∞,

and

‖ f ‖L p(S3) 6 C p‖Hu‖
W p,| 1p−

1
2 |−1

(S3)
, 1 < p <∞.

The above examples show that similar to the introduction of the classes Sm
ρ,δ by

Hörmander in the analysis of hypoelliptic operators on Rn , the classes S m
ρ,δ(G) also

appear in the analysis of (already) Fourier multipliers on Lie groups. Moreover, if a Lie

group is acting on a homogeneous manifolds G/K , the Fourier analysis on G gives rise

to the Fourier analysis on G/K in terms of class I representations of G.

We refer to [29] and [28] for other examples of the appearance of the globally defined

classes S −νρ,δ (G) in the context of compact Lie groups, also for noninvariant operators,

but let us give one explicit example here.

Let f ∈ C∞(G) be a smooth function on G and let L be the Laplacian on G. Consider

the (Schrödinger type) evolution problem{
i∂t u+ f (x)(1−L)δ/2u = 0,

u(0) = I.
(2.1)

Then, modulo lower-order terms, the main term of its solution operator can be seen as a

pseudo-differential operator with symbol

σt (x, ξ) = ei t f (x)〈ξ〉δ ,

where 〈ξ〉 stands for the eigenvalue of the elliptic operator (1−L)1/2 corresponding to

the representation ξ . One can check, for example using the functional calculus from [27],

that σ ∈ S 0
ρ,δ(G), with ρ = 1− δ. In particular, we may have ρ 6 δ, depending on the

range of δ in (2.1).

This example can be extended further if we take L in (2.1) to be a sub-Laplacian, since

the matrix symbol of the sub-Laplacian can be also effectively controlled, see e.g. [13],

with further dependence on indices, as already in the case of S3 in (i) above.

There are other examples of problems that can be effectively treated by the global

calculus rather than by localisations of the classical Hörmander calculus. For example, let

Lsub be a sub-Laplacian on G, i.e. a sum of squares of left-invariant vector fields satisfying

Hörmander’s commutator condition of order r . If we consider the Cauchy problem for

the corresponding wave equation

∂2
t u− a(t)Lsubu = 0, (2.2)

even with smooth function a > 0, it is weakly hyperbolic and its local analysis,

while involving the microlocal structure of the sub-Laplacian, is rather complicated.
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However, the problem (2.2) can be effectively analysed using the global techniques of

pseudo-differential operators on groups. Thus, such results have been obtained in [13]

with sharp regularity estimates (depending on the Hörmander commutation order r)

for the solutions of the Cauchy problem for (2.2) allowing a > 0 to be also of Hölder

regularity. The x-dependent pseudo-differential operators would appear if we allow a to

also depend on x .

There is a variety of other problems in analysis that require the control of

lower-order terms of the operator which are not provided by the classical theory of

pseudo-differential operators using localisations but can be controlled using the global

theory of pseudo-differential operators on groups or on homogeneous spaces. For example,

using such techniques, estimates for the essential spectrum of operators on compact

homogeneous manifolds have been obtained in [5], spaces of Gevrey functions and

ultradistributions have been described in [4] relating them with the representation theory

of the group acting on the space, Besov and other function spaces have been related to

the representation theory of groups in [21]. It should be noted that many of the developed

techniques work not only on groups but also on compact homogeneous manifolds G/K
via class I representations of the compact Lie group G, thus covering the cases of real,

complex or quaternionic spheres, projective spaces, and many other settings.

Furthermore, many techniques can be extended to noncompact situations, notably

those of nilpotent Lie groups; see [12]. Nilpotent Lie groups, in turn, have a wide range

of applications to various problems involving differential operators and equations on

general manifolds due to the celebrated lifting techniques of Rothschild and Stein [22].

We refer to [12] for further explanations and examples of this (nilpotent) setting.

3. Preliminaries

In this section, we recall some basic facts about the theory of pseudo-differential operators

on compact Lie groups and we refer to [23] and [25] for a comprehensive account of such

topics.

Given a compact Lie group G, we equip it with the normalised Haar measure µ ≡ dx
on the Borel σ -algebra associated to the topology of the smooth manifold G. The Lie

algebra of G will be denoted by g. We also denote by Ĝ the set of equivalence classes

of continuous irreducible unitary representations of G and by Rep(G) the set of all such

representations. Since G is compact, the set Ĝ is discrete. For [ξ ] ∈ Ĝ, by choosing
a basis in the representation space of ξ , we can view ξ as a matrix-valued function

ξ : G → Cdξ×dξ , where dξ is the dimension of the representation space of ξ . By the

Peter–Weyl theorem the collection{√
dξ ξi j : 1 6 i, j 6 dξ , [ξ ] ∈ Ĝ

}
is an orthonormal basis of L2(G). If f ∈ L1(G) we define its global Fourier transform at

ξ by

FG f (ξ) ≡ f̂ (ξ) :=
∫

G
f (x)ξ(x)∗ dx . (3.1)
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Thus, if ξ is a matrix representation, we have f̂ (ξ) ∈ Cdξ×dξ . The Fourier inversion

formula is a consequence of the Peter–Weyl theorem, so that

f (x) =
∑
[ξ ]∈Ĝ

dξ Tr(ξ(x) f̂ (ξ)). (3.2)

Given a sequence of matrices a(ξ) ∈ Cdξ×dξ , we can define

(F−1
G a)(x) :=

∑
[ξ ]∈Ĝ

dξ Tr(ξ(x)a(ξ)), (3.3)

where the series can be interpreted in a distributional sense or absolutely depending on

the growth of (the Hilbert–Schmidt norms of) a(ξ). For a further discussion we refer the

reader to [23].

For each [ξ ] ∈ Ĝ, the matrix elements of ξ are the eigenfunctions for the Laplacian LG
(or the Casimir element of the universal enveloping algebra), with the same eigenvalue

which we denote by −λ2
[ξ ], so that

−LGξi j (x) = λ2
[ξ ]ξi j (x) for all 1 6 i, j 6 dξ . (3.4)

The weight for measuring the decay or growth of Fourier coefficients in this setting is

〈ξ〉 := (1+ λ2
[ξ ])

1
2 , the eigenvalues of the elliptic first-order pseudo-differential operator

(I −LG)
1
2 . The Parseval identity takes the form

‖ f ‖L2(G) =

∑
[ξ ]∈Ĝ

dξ‖ f̂ (ξ)‖2HS

1/2

where ‖ f̂ (ξ)‖2HS = Tr( f̂ (ξ) f̂ (ξ)∗), (3.5)

which gives the norm on `2(Ĝ).
For a linear continuous operator A from C∞(G) to D′(G) we define its matrix-valued

symbol σ(x, ξ) ∈ Cdξ×dξ by

σ(x, ξ) := ξ(x)∗(Aξ)(x) ∈ Cdξ×dξ , (3.6)

where Aξ(x) ∈ Cdξ×dξ is understood as

(Aξ(x))i j = (Aξi j )(x),

i.e. by applying A to each component of the matrix ξ(x). Then one has [23, 25] the global

quantisation

A f (x) =
∑
[ξ ]∈Ĝ

dξ Tr(ξ(x)σ (x, ξ) f̂ (ξ)) ≡ σ(x, D) f (x), (3.7)

in the sense of distributions, and the sum is independent of the choice of a representation

ξ from each equivalence class [ξ ] ∈ Ĝ. If A is a linear continuous operator from C∞(G) to

C∞(G), the series (3.7) is absolutely convergent and can be interpreted in the pointwise

sense. The symbol σ can be interpreted as a matrix-valued function on G× Ĝ. We refer

to [23, 25] for the consistent development of this quantisation and the corresponding
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symbolic calculus. If the operator A is left-invariant then its symbol σ does not depend

on x . We often call such operators simply invariant.

The following inequality will be useful (e.g. [23, Theorem 12.6.1]): For A, B ∈ Cn×n , we

have

‖AB‖HS 6 ‖A‖op‖B‖HS, (3.8)

where ‖ · ‖op denotes the operator norm of the matrix A.

Our criteria will be formulated in terms of norms of the matrix-valued symbols. In order

to justify their appearance, we recall that if A ∈ 9m
ρ,δ(G) on a compact Lie group G is a

pseudo-differential operator in Hörmander’s class 9m
ρ,δ(G), i.e. if all of its localisations to

Rn are pseudo-differential operators with symbols in the class Sm
ρ,δ(R

n), then the matrix

symbol of A satisfies

‖σ(x, ξ)‖op 6 C〈ξ〉m for all x ∈ G, [ξ ] ∈ Ĝ.

Here ‖ · ‖op denotes the operator norm of the matrix multiplication by the matrix

σ(x, ξ). For this fact, see e.g. [23, Lemma 10.9.1] or [25] in the (1, 0) case. For the

complete characterisation of Hörmander classes 9m
1,0(G) in terms of matrix-valued

symbols, see also [29]. In particular, this motivates the usage of the operator norms

of the matrix-valued symbols.

We say that Qξ is a difference operator of order k if it is given by

Qξ f̂ (ξ) = q̂Q f (ξ)

for a function q = qQ ∈ C∞(G) vanishing of order k at the identity e ∈ G, i.e.,

(Px qQ)(e) = 0

for all left-invariant differential operators Px ∈ Diff k−1(G) of order k− 1. We denote the

set of all difference operators of order k by diff k(Ĝ). For a given function q ∈ C∞(G) it be

will convenient to denote the associated difference operator, acting on Fourier coefficients,

by

1q f̂ (ξ) := q̂ f (ξ). (3.9)

Definition 3.1. A collection of k first-order difference operators

11, . . . ,1k ∈ diff 1(Ĝ)

is called admissible, if the corresponding functions q1, . . . , qk ∈ C∞(G) satisfy

∇q j (e) 6= 0, j = 1, . . . , k,

and

rank(∇q1(e), . . . ,∇qk(e)) = dim G.

In particular, the group unit element e is an isolated common zero of the family {q j }
k
j=1.

An admissible collection is called strongly admissible if

k⋂
j=1

{x ∈ G : q j (x) = 0} = {e}.
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For a given admissible selection of difference operators on a compact Lie group G we

use the multi-index notation

1αξ := 1
α1
1 · · ·1

αk
k and qα(x) := q1(x)α1 · · · qk(x)αk .

Definition 3.2. Let {Y j }
dim G
j=1 be a basis for the Lie algebra of G, and let ∂ j be the

left-invariant first-order differential operators corresponding to Y j . For α ∈ Nn
0 , we denote

∂α = ∂
α1
1 . . . ∂αn

n .

We use the notation ∂αx for ∂α.

Let 11, . . . ,1k ∈ diff 1(Ĝ) be a strongly admissible collection of first-order difference

operators.

Let 0 6 δ 6 ρ 6 1 (δ < 1). We say that a matrix-valued symbol σ(x, ξ) belongs to

S m
ρ,δ(G) if it is smooth in x , and for all multi-indices α, β there exists a constant Cα,β > 0

such that

‖1αξ ∂
β
x σ(x, ξ)‖op 6 Cα,β〈ξ〉m−ρ|α|+δ|β|,

holds uniformly in x and ξ ∈ Rep(G). If δ < ρ, this class is independent of a strongly

admissible collection 11, . . . ,1k ∈ diff 1(Ĝ) of difference operators. Given a non-negative

integer l we associate a seminorm ‖σ‖l;S m
ρ,δ

defined by

‖σ‖l;S m
ρ,δ
:= sup
|α|+|β|6l,(x,ξ)

‖1αξ ∂
β
x σ(x, ξ)‖op

〈ξ〉m−ρ|α|+δ|β|
.

Remark 3.3. If the group G is viewed as a manifold, the localised Hörmander class of

operators is denoted by 9m
ρ,δ(G, loc). In [29] for (ρ, δ) = (1, 0), and then in [9, Corollary

8.13] for more general ρ and δ, it has been shown that the class of operators9m
ρ,δ generated

by the symbol class S m
ρ,δ(G), for 0 6 δ 6 ρ 6 1 (δ < 1) coincides with the Hörmander

class of operators 9m
ρ,δ(G, loc) for 0 6 δ < ρ 6 1 and 1− δ 6 ρ.

There is also a particular family of difference operators associated to representations

that we need and that we now describe following [26, 28]. Such difference operators play

an important role in the Mikhlin multiplier theorem proved in the above papers.

For a fixed irreducible representation ξ0 let us define the (matrix-valued) difference

operator

ξ0D = (ξ0Di j )i, j=1,...,dξ0

corresponding to the matrix elements of the matrix-valued function ξ0(x)− I. In other

words, if we set

qi j (x) := ξ0(x)i j − δi j

with δi j the Kronecker delta, and use the definition in (3.9), then

ξ0Di j = 1qi j .

https://doi.org/10.1017/S1474748017000123 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748017000123


540 J. Delgado and M. Ruzhansky

If the representation is fixed, we may omit the index ξ0 for brevity. For a sequence of

difference operators of this type,

D1 = ξ1Di1 j1 ,D2 = ξ2Di2 j2 , . . . ,Dk = ξkDik jk ,

with [ξm] ∈ Ĝ, 1 6 im, jm 6 dξm , 1 6 m 6 k, we define

Dα = Dα1
1 · · ·D

αk
k .

Let us now fix a particular collection 10 of representations: Let 1̃0 be the collection of

the irreducible components of the adjoint representation, so that

Ad = (dim Z(G))1⊕
⊕
ξ∈1̃0

ξ,

where ξ are irreducible representations and 1 is the trivial one-dimensional representation.

In the case when the centre Z(G) of the group is nontrivial, we extend the collection 1̃0
to some collection 10 by adding to 1̃0 a family of irreducible representations such that

their direct sum is nontrivial on Z(G), and such that the function

ρ2(x) =
∑
[ξ ]∈10

(
dξ − traceξ(x)

)
> 0

(which vanishes only in x = e) would define the square of some distance function on G
near the identity element. Such an extension is always possible, and we denote by 10 any

such extension; in the case of the trivial centre we do not have to take an extension and

we set 10 = 1̃0. We denote further by 4∗ the second-order difference operator associated

to ρ2(x),
4∗ = Fρ2(x)F−1.

In the sequel, when we write Dα, we can always assume that it is composed only of

ξmDim jm with [ξm] ∈ 10.

Such difference operators Dα enjoy a number of additional algebraic properties

compared to arbitrary difference operators, for example they satisfy the Leibniz formula,

and lead to the distance function ρ(x) that gives rise to the Calderon–Zygmund theory

in the spirit of Coifman and Weiss; see [28] for the details.

4. L p-boundedness

In this section, we establish the main results on the boundedness of operators on L p(G).
We observe that from Theorem A by Fefferman and the equivalence of classes described

in Remark 3.3, one can extend the Fefferman bounds to compact Lie groups for symbols

in S m
ρ,δ(G) as an immediate consequence, but assuming that δ < ρ and 1− δ 6 ρ. In

particular, this type of argument leads to the restriction ρ > 1
2 . So the case of interest to

us will be the one allowing ρ 6 1
2 and ρ = δ. Moreover, we also obtain some L p bounds

for symbols with finite regularity, which cannot be deduced from the aforementioned

equivalence of classes for smooth symbols. In the latter case we even allow δ > ρ.
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4.1. Symbols of finite regularity

In order to deduce some consequences the following lemma proved in [4] will be of

importance to us.

Lemma 4.1. Let G be a compact Lie group. Then we have∑
[ξ ]∈Ĝ

d2
ξ 〈ξ〉

−s <∞

if and only if s > dim G.

In the next lemma we deduce a sufficient condition for the L∞(G)-boundedness.

Lemma 4.2. Let G be a compact Lie group. Let σ be the symbol of a linear continuous

operator A : C∞(G)→ D′(G) such that

ess sup
x∈G

‖F−1
G σ(x, ·)‖L1(G) <∞. (4.1)

Then A extends to a bounded operator from L∞(G) to L∞(G), and

‖A f ‖L∞ 6 ess sup
x∈G

‖F−1
G σ(x, ·)‖L1(G)‖ f ‖L∞ , ∀ f ∈ L∞(G).

Proof. We first observe that

A f (x) =
∑
[ξ ]∈Ĝ

dξ Tr(ξ(x)σ (x, ξ) f̂ (ξ))

=

∫
G

∑
[ξ ]∈Ĝ

dξ Tr(ξ(x)σ (x, ξ)ξ(y)∗) f (y) dy

=

∫
G

∑
[ξ ]∈Ĝ

dξ Tr(ξ(y)∗ξ(x)σ (x, ξ)) f (y) dy

=

∫
G

∑
[ξ ]∈Ĝ

dξ Tr(ξ(y−1x)σ (x, ξ)) f (y) dy

=

∫
G
F−1

G σ(x, ·)(y−1x) f (y) dy

=( f ∗F−1
G σ(x, ·))(x).

Hence

|A f (x)| 6 ‖F−1
G σ(x, ·)‖L1(G)‖ f ‖L∞(G) 6 C‖ f ‖L∞(G),

for almost every x ∈ G.

Therefore,

‖A f ‖L∞(G) 6 ess sup
x∈G

‖F−1
G σ(x, ·)‖L1(G)‖ f ‖L∞(G),

completing the proof.
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The next statement gives a sufficient condition for an operator to be Hilbert–Schmidt

on L2(G) and bounded on L p(G) for 2 6 p 6∞. It also shows an example of when the

condition (4.1) is satisfied; see also Corollary 4.5. It will also imply further results on the

L p-boundedness. This is a particular feature of the compact situation.

Proposition 4.3. Let G be a compact Lie group. Let σ be the symbol of a linear continuous

operator A : C∞(G)→ D′(G) such that

ess sup
x∈G

∑
[ξ ]∈Ĝ

dξ‖σ(x, ξ)‖2HS <∞. (4.2)

Then (4.1) holds and A extends to a Hilbert–Schmidt bounded operator from L2(G) to

L2(G), and to a bounded operator from L p(G) to L p(G) for all 2 6 p 6∞.

The Hilbert–Schmidt norm of A is given by

‖A‖2HS =
∫

G

∑
[ξ ]∈Ĝ

dξ‖σ(x, ξ)‖2HS dx . (4.3)

Proof. We observe that the Cauchy–Schwarz inequality and the Parseval identity (3.5)

imply ∫
G
|F−1

G σ(x, ·)(y)| dy 6

(∫
G
|F−1

G σ(x, ·)(y)|2 dy
) 1

2

=

∑
[ξ ]∈Ĝ

dξ‖σ(x, ξ)‖2HS

 1
2

6

ess sup
x∈G

∑
[ξ ]∈Ĝ

dξ‖σ(x, ξ)‖2HS

 1
2

<∞. (4.4)

Hence by Lemma 4.2 the operator A is bounded from L∞(G) to L∞(G).
Now, from the proof of Lemma 4.2 we see that the kernel K A of A is given by

K A(x, y) = F−1
G σ(x, ·)(y−1x).

We observe that, by integrating (4.4) over G we get∫
G

∫
G
|K (x, y)|2 dy dx =

∫
G

∫
G
|F−1

G σ(x, ·)(y−1x)|2 dy dx

=

∫
G

∫
G
|F−1

G σ(x, ·)(z)|2 dz dx

=

∫
G

∑
[ξ ]∈Ĝ

dξ‖σ(x, ξ)‖2HS dx <∞.

Hence A is a Hilbert–Schmidt operator on L2(G), (4.3) holds and in particular A
is bounded on L2(G). By interpolating between p = 2 and p = +∞, we conclude

the proof.
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Remark 4.4. (i) The ess supx∈G in the condition (4.2) can be removed if the symbol

σ(x, ξ) is continuous on G for all [ξ ] ∈ Ĝ.

(ii) It is not hard to see that an analogous condition to (4.2) does not hold in the case of

noncompact groups. Indeed, for G = Rn consider a symbol σ of the form

σ(x, ξ) = β(x)α(ξ)

with β ∈ L∞(Rn) \ L2(Rn), α ∈ L2(Rn) \ {0}. Then,

ess sup
x∈Rn

∫
Rn
|σ(x, ξ)|2 dξ <∞,

but σ /∈ L2(Rn
×Rn) and σ does not beget a Hilbert–Schmidt operator on L2(Rn).

As a consequence we obtain the next corollary with a condition in terms of the size of

the symbol measured with the operator norm.

Corollary 4.5. Let G be a compact Lie group and let m be a real number such that m >
dim G

2 . Let σ be the symbol of a linear continuous operator A : C∞(G)→ D′(G) such that

‖σA(x, ξ)‖op 6 C〈ξ〉−m, (x, ξ) ∈ G× Ĝ. (4.5)

Then A extends to a Hilbert–Schmidt bounded operator from L2(G) to L2(G), and to a

bounded operator from L p(G) to L p(G) for all 2 6 p 6∞.

Proof. By applying (3.8) to the decomposition σ(x, ξ) = σ(x, ξ)Idξ , where Idξ is the

identity matrix in Cdξ×dξ , Lemma 4.1 and the assumption on the symbol, we obtain for

every x ∈ G: ∑
[ξ ]∈Ĝ

dξ‖σ(x, ξ)‖2HS 6
∑
[ξ ]∈Ĝ

d2
ξ ‖σ(x, ξ)‖

2
op

6 C
∑
[ξ ]∈Ĝ

d2
ξ 〈ξ〉

−2m <∞.

Then, supx∈G
∑
[ξ ]∈Ĝ dξ‖σ(x, ξ)‖2HS <∞, and an application of Proposition 4.3 concludes

the proof.

Remark 4.6. (i) The condition (4.5) on the order of the symbol, m > dim M
2 , is well known

(cf. [30]) in the context of compact manifolds M as a sharp order to ensure that a

pseudo-differential operator is Hilbert–Schmidt. Here, in contrast, we do not assume any

smoothness on the symbol nor do we require it to satisfy inequalities for the derivatives.

(ii) We observe that in the case of the torus Tn , if the symbol σ only depends on ξ and

for k > n
2 , k ∈ N, satisfies the inequalities

|1αξ σ(ξ)| 6 C〈ξ〉−|α| for all ξ ∈ Zn, (4.6)

and all multi-indices α such that |α| 6 k, then the operator A is bounded on L p(Tn) for

all 1 < p <∞. Here

1αξ = 1
α1
ξ1
· · ·1

αn
ξn
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are the usual partial difference operators on the lattice Zn . This classical result has been

extended to noninvariant operators on the torus, replacing (4.6) by

|∂βx 1
α
ξ σ(x, ξ)| 6 C〈ξ〉−|α| for all ξ ∈ Zn, (4.7)

and all multi-indices α, β such that |α| 6 k, |β| 6 k.
(iii) Moreover, recently in [28, Theorem 2.1] a version of the condition (4.6) has been

obtained for compact Lie groups. Let κ be the smallest even integer larger than dim G
2 . Let

A : C∞(G)→ D′(G) be a left-invariant linear continuous operator. Among other things

it was shown in [28] that if its matrix symbol σ satisfies

‖Dαξ σ(ξ)‖op 6 Cα〈ξ〉−|α| (4.8)

for all multi-indices α with |α| 6 κ and for all [ξ ] ∈ Ĝ, then the operator A is of weak

type (1, 1) and L p-bounded for all 1 < p <∞.
(iv) Further, a condition of type (ρ, 0) has been also obtained in [28, Corollary 5.1]. Let

ρ ∈ [0, 1] and let κ be as above. If A : C∞(G)→ D′(G) is left-invariant and its matrix

symbol σ satisfies

‖Dαξ σ(ξ)‖op 6 Cα〈ξ〉−ρ|α| (4.9)

for all multi-indices α with |α| 6 κ and for all [ξ ] ∈ Ĝ, then the operator A is bounded

from the Sobolev space W p,r (G) to L p(G) for 1 < p <∞ and

r > κ(1− ρ)
∣∣∣∣ 1

p
−

1
2

∣∣∣∣ .
Here the Sobolev space W p,r (G) consists of all the distributions f such that (I −LG)

r
2 f ∈

L p(G).
(v) Lemma 4.2, Proposition 4.3 and Corollary 4.5 admit suitable extensions to general

compact topological groups and nilpotent groups; see e.g. [11].

As a consequence of [28, Corollary 5.1] (or Remark 4.6(iv)), we obtain:

Theorem 4.7. Let ρ ∈ [0, 1] and let κ be the smallest even integer larger than dim G
2 . If

A : C∞(G)→ D′(G) is left-invariant and its matrix symbol σ satisfies

‖Dαξ σ(ξ)‖op 6 Cα〈ξ〉−r−ρ|α| (4.10)

with

r = κ(1− ρ)
∣∣∣∣ 1

p
−

1
2

∣∣∣∣ ,
for all multi-indices α with |α| 6 κ and for all [ξ ] ∈ Ĝ, 1 < p <∞, then the operator A
is bounded from L p(G) to L p(G).
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Proof. We observe that the symbol

0(ξ) = σ(ξ)〈ξ〉r

satisfies

‖Dαξ0(ξ)‖op 6 Cα〈ξ〉−ρ|α|,

for all multi-indices α with |α| 6 κ and for all [ξ ] ∈ Ĝ. Then, the left-invariant operator

Op(0) corresponding to 0 is bounded from W p,r (G) into L p(G) with r = κ(1− ρ)
∣∣∣ 1

p −
1
2

∣∣∣.
But

Op(0) = A(I −LG)
r
2

and (I −LG)
r
2 is an isomorphism between W p,r (G) and L p(G). Therefore, A is bounded

from L p(G) into L p(G).

We note that if the condition (4.10) holds for ρ = 1, then r = 0, and A is bounded on

L p(G) for every 1 < p <∞. Hence, Theorem 4.7 absorbs the condition (4.10). We now

derive a (ρ, δ)-type condition following the main idea in the proof of Theorem 5.2 in [28]

and using Theorem 4.7.

Theorem 4.8. Let 0 6 δ, ρ 6 1 and dim G = n. Denote by κ the smallest even integer

larger than n
2 . Let 1 < p <∞ and let ` > n

p be an integer. If A : C∞(G)→ D′(G) is a

linear continuous operator such that its matrix symbol σ satisfies

‖∂βx D
α
ξ σ(x, ξ)‖op 6 Cα,β〈ξ〉−m0−ρ|α|+δ|β| (4.11)

for all x, with

m0 > κ(1− ρ)
∣∣∣∣ 1

p
−

1
2

∣∣∣∣+ δ ([ n
p

]
+ 1

)
,

for all multi-indices α, β with |α| 6 κ, |β| 6 ` and for all [ξ ] ∈ Ĝ, then the operator A is

bounded from L p(G) to L p(G).

Proof. We first write

A f (x) = ( f ∗ rA(x))(x),

where

rA(x)(y) = RA(x, y)

denotes the right-convolution kernel of A. Let

Ay f (x) := ( f ∗ rA(y))(x),

so that Ax f (x) = A f (x).
Now we see that

‖A f ‖p
L p(G) =

∫
G
|Ax f (x)|p dx 6

∫
G

sup
y∈G
|Ay f (x)|p dx .

By applying the Sobolev embedding theorem, we obtain

sup
y∈G
|Ay f (x)|p 6 C

∑
|γ |6`

∫
G
|∂
γ
y Ay f (x)|p dy.
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Now, by Fubini Theorem we have

‖A f ‖p
L p(G) 6 C

∑
|γ |6`

∫
G

∫
G
|∂
γ
y Ay f (x)|p dx dy

6 C
∑
|γ |6`

sup
y∈G

∫
G
|∂
γ
y Ay f (x)|p dx

= C
∑
|γ |6`

sup
y∈G
‖∂
γ
y Ay f ‖p

L p(G)

6 C
∑
|γ |6`

sup
y∈G
‖ f 7→ f ∗ ∂γy rA(y)‖

p
L(L p(G))‖ f ‖p

L p(G).

Thus, the operator A will be bounded on L p(G) provided that the left-invariant operators

f 7→ f ∗ ∂γy rA(y)

are uniformly bounded on L p(G) with respect to y ∈ G, |γ | 6 `. We shall now estimate for

each y ∈ G, the conditions under which such operators are bounded on L p(G) according

to Theorem 4.7. The symbol of the left-invariant operator Dy,γ : f 7→ f ∗ ∂αy rA(y) is given

by

σDy,γ (ξ) = ∂
γ
y σ(y, ξ).

From (4.11) we have

‖Dαξ σDy,γ (ξ)‖op 6 Cα,β〈ξ〉−m0+δ|γ |−ρ|α|, (4.12)

for all multi-indices α, β with |α| 6 κ, |γ | 6 ` and for all [ξ ] ∈ Ĝ.

Hence Dy,γ is bounded on L p(G) provided that

−m0+ δ|γ | 6 −r = −κ(1− ρ)
∣∣∣∣ 1

p
−

1
2

∣∣∣∣
and |γ | 6 `. But this follows from the condition

m0 > κ(1− ρ)
∣∣∣∣ 1

p
−

1
2

∣∣∣∣+ δ ([ n
p

]
+ 1

)
,

since ` > [ np ] + 1 and (4.12) holds for |γ | 6 [ np ] + 1. Then, the operators Dy,γ are

uniformly bounded on L p(G) with respect to y ∈ G, |γ | 6 `, which concludes the

proof.

Remark 4.9. (i) If in Theorem 4.8 the operator A is left-invariant, then the symbol σ

depends only on ξ and the conditions of the theorem recover those of Theorem 4.7.

(ii) In Theorem 4.8 the usual condition δ 6 ρ is not imposed, and in particular δ > ρ is

allowed.

(iii) For relatively large values of p, for instance if p > n, the Theorem 4.8 only requires

smoothness of the first order with respect to x for the symbol σ , i.e. reduces to conditions

on first-order derivatives only.
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(iv) By (ii) and (iii), in the extreme situation ρ = 0, δ = 1, and for p > n, the condition

(4.11) with m0 = κ(1− ρ)
∣∣∣ 1

p −
1
2

∣∣∣+ δ([ np ] + 1) takes the form

‖∂βx D
α
ξ σ(x, ξ)‖op 6 Cα,β〈ξ〉

−κ

∣∣∣ 1
p−

1
2

∣∣∣+(|β|−1)
(4.13)

for all multi-indices α, β with |α| 6 κ, |β| 6 1 and for all [ξ ] ∈ Ĝ.

We note that in such situation, the required regularity (= 1) is independent of the

dimension dim G = n, which is in contrast to the situation in the Euclidean setting. In

particular, that is the case of the finite regularity improved version of Fefferman’s bounds

obtained by Li and Wang in [19].

For values near p = 2 the situation is opposite and the condition in Theorem 4.8 does

not improve C. Fefferman’s type conditions that can be obtained for C∞-smooth symbols.

We obtain sharper conditions on the symbol but requiring C∞-smoothness. In particular,

the usual restriction ρ > 1
2 for (ρ, δ) classes on manifolds will not be imposed here as an

advantageous consequence of the global symbolic calculus on compact Lie groups at our

disposal.

Remark 4.10. Recently, the Mikhlin multiplier theorem obtained by the second author

and Wirth in [26, 28] has been reobtained by Fischer in [10] using different collections

of difference operators. If the integer part of n/2 is odd, the orders of required difference

operators coincide, while if it is even, the order is improved by one. However, at the

same time, the collections of difference operators one has to work with are different: the

difference operators in [10] come from fundamental representations of the group, while

our collection Dα comes from the finite decomposition of the adjoint representation into

irreducible components. However, since they are related, it is probable that the evenness

of κ can be removed for our collection of difference operators Dα.

In any case, if in (4.11) one replaces the collection Dα of difference operators by the

collection of difference operators associated to fundamental representations of the group,

a simple modification of the proof yields the statement of Theorem 4.8 with κ being the

smallest integer larger than n
2 without requiring its evenness, giving an improvement of

the order by one for half of the dimensions.

4.2. C∞-smooth symbols

We turn now to a different perspective by looking for conditions for C∞-smooth symbols.

We employ the geodesic distance on the group G and it will be denoted by d. For the

distances from the unit element e we write |y| = d(y, e). The corresponding BMO space

with respect to this distance will be denoted by BMO(G). The following lemma will be

useful to obtain L∞−BMO(G) bounds by applying partitions of unity.

Here and in the sequel it will be also useful to introduce the number

a := 1− ρ

that we use everywhere without special notice. Before formulating the following lemma

we record asymptotic properties that will be of use on several occasions: asymptotically
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as λ→∞ we have ∑
〈ξ〉6λ

d2
ξ 〈ξ〉

αn
� λ(α+1)n for α > −1, (4.14)

and ∑
〈ξ〉>λ

d2
ξ 〈ξ〉

αn
� λ(α+1)n for α < −1. (4.15)

We refer to [1] for their proof.

Lemma 4.11. Let G be a compact Lie group of dimension n and let 0 < a < 1.

Let 0 6 δ < 1− a. Let σ ∈ S
−

na
2

1−a,δ(G) be supported in

{(x, ξ) ∈ G× Ĝ : R 6 〈ξ〉 6 3R},

for some R > 0. Then σ(x, D) extends to a bounded operator from L∞(G) to L∞(G),
and for l > n

2 we have

‖σ(x, D) f ‖L∞(G) 6 C‖σ‖
l,S

−
na
2

1−a,δ

‖ f ‖L∞(G),

with C independent of σ , f and R.

Proof. Let σ ∈ S −m
ρ,δ (G) be supported in

{(x, ξ) ∈ G× Ĝ : R 6 〈ξ〉 6 3R}, (4.16)

for some fixed R > 0. In order to prove Lemma (4.11) we apply Lemma 4.2. We split G
into the form

G = {y ∈ G : |y| 6 b} ∪ {y ∈ G : |y| > b},

where b = Ra−1.

By applying Cauchy–Schwarz inequality, Parseval identity and the inequality (3.8) to

the decomposition

σ(x, ξ) = σ(x, ξ)Idξ

we obtain∫
|y|6b
|F−1

G σ(x, ·)(y)| dy 6 (µ({|y| 6 b}))
1
2

(∫
G
|F−1

G σ(x, ·)(y)|2 dy
) 1

2

=

(
µ({|y| 6 Ra−1

})
) 1

2

∑
[ξ ]∈Ĝ

dξ‖σ(x, ξ)‖2HS

 1
2

6 C R
n(a−1)

2

 ∑
{R6〈ξ〉63R}

dξ‖σ(x, ξ)‖2HS

 1
2

6 C R
n(a−1)

2

 ∑
{R6〈ξ〉63R}

d2
ξ ‖σ(x, ξ)‖

2
op

 1
2

https://doi.org/10.1017/S1474748017000123 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748017000123


L p-bounds for pseudo-differential operators 549

6 C‖σ‖
0,S

−
na
2

1−a,δ

R
n(a−1)

2

 ∑
{R6〈ξ〉63R}

d2
ξ 〈ξ〉

−na

 1
2

6 C‖σ‖
0,S

−
na
2

1−a,δ

R
n(a−1)

2 R
n(1−a)

2 (4.17)

6 C‖σ‖
0,S

−
na
2

1−a,δ

<∞, (4.18)

with C independent of R and σ . For the inequality (4.17) we have applied the estimate

(4.14).

We now consider the integral
∫
|y|>b |F

−1
G σ(x, ·)(y)| dy. To analyse it we take the

difference operator 1q associated to q that vanishes at e of order l and e is its isolated

zero, i.e., there exist constants C1,C2 > 0 such that

C1|y|l 6 |q(y)| 6 C2|y|l .

We first note that |q(y)| 6 C |y|l , for small |y|, e.g. |q(y)| 6 Cdl , for |y| 6 d for some

suitable d. We have, using the boundedness of r ,∫
|y|>b
|F−1

G σ(x, ·)(y)| dy =
∫
|y|>b

|q(y)(F−1
G σ(x, ·))(y)|
|q(y)|

dy

6

(∫
{|y|>b}

|q(y)|−2 dy
) 1

2
(∫

G
|q(y)(F−1

G σ(x, ·))(y)|2 dy
) 1

2

6 C
(∫
{|y|>b}

|y|−2l dy
) 1

2

 ∑
{R6〈ξ〉63R}

dξ‖1qσ(x, ξ)‖2HS

 1
2

6 C(bn−2l)
1
2

 ∑
{R6〈ξ〉63R}

d2
ξ ‖1qσ(x, ξ)‖2op

 1
2

6 C‖σ‖
l,S

−
na
2

1−a,δ

R(a−1)( n
2−l)

 ∑
{R6〈ξ〉}

d2
ξ 〈ξ〉

−na−2l(1−a)

 1
2

6 C‖σ‖
l,S

−
na
2

1−a,δ

R(a−1)( n
2−l)R(1−a)( n

2−l) (4.19)

6 C‖σ‖
l,S

−
na
2

1−a,δ

<∞,

with C independent of R and σ. For the estimation of the integral
∫
{|y|>b} |y|

−2l dy we

note that the essential case is b small, and so the bound can be reduced to a local

estimation.

We now establish a L∞(G)−BMO(G) estimate which will have as a consequence the

main results for smooth symbols. The space BMO(G) correspond to the system of balls

B(x, r) determined by the geodesic distance d.
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Theorem 4.12. Let G be a compact Lie group of dimension n and let 0 < ρ < 1. Let

0 6 δ < ρ and σ ∈ S
−

n(1−ρ)
2

ρ,δ (G). Then σ(x, D) extends to a bounded operator from L∞(G)
to BMO(G) and moreover, for l > n

2 we have

‖σ(x, D) f ‖BMO(G) 6 C‖σ‖
l,S

−
n(1−ρ)

2
ρ,δ

‖ f ‖L∞(G),

with C independent of σ and f .

Proof. Here and everywhere we write a := 1− ρ. Let us fix f ∈ L∞(G) and B =
B(x0, r) ⊂ G. We show that there exist an integer k and a constant C > 0 independent

of f and B such that

1
µ(B(x0, r))

∫
B
|σ(x, D) f (x)− gB | dx 6 C‖σ‖

k,S
−

na
2

1−a,δ

‖ f ‖L∞ , (4.20)

where we have written g = σ(x, D) f and gB =
1

µ(B(x0,r))

∫
B g dx .

We also write

R0 = sup{R : ∃x ∈ G such that B(x, R) ⊂ G}.

We split σ(x, ξ) into two symbols,

σ = σ 0
+ σ 1,

with σ 0 supported in 〈ξ〉 6 2R0r−1 and σ 1 supported in 〈ξ〉 > 1
2 R0r−1, satisfying the

following estimates

‖σ 0
‖

l,S
−

na
2

1−a,δ

, ‖σ 1
‖

l,S
−

na
2

1−a,δ

6 Cl‖σ‖
l,S

−
na
2

1−a,δ

for every l > 1. (4.21)

In order to establish the existence of the above splitting (4.21) one can consider a

function 0 6 γ ∈ C∞(R) which equals to 1 if |t | 6 1
2 and with supp γ = {|t | 6 1}. We set

γ̃ (ξ) = γ (r〈ξ〉)

and

σ 0(x, ξ) = σ(x, ξ)γ̃ (ξ).

Moreover, the seminorms of σ 0 can be controlled by those of σ by

‖σ 0
‖

l,S
−

na
2

1−a,δ

6 Cl‖σ‖
l,S

−
na
2

1−a,δ

for all l > 1. (4.22)

Now, by taking σ 1
= σ − σ 0, the estimate (4.22) is still valid for σ 1.

Now we note that for a left-invariant vector field X on G we have

X (ξ(x)σ (x, ξ)) = X (ξ(x))σ (x, ξ)+ ξ(x)Xσ(x, ξ)

= ξ(x)σX (ξ)σ (x, ξ)+ ξ(x)Xσ(x, ξ),

where we have used the fact that

ξ(x)σX (ξ) = (Xξ)(x)

from (3.6) applied to A = X .
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Hence

X A f (x) =
∑
[ξ ]∈Ĝ

dξ Tr
(
ξ(x)(σX (ξ)σ (x, ξ)+ Xσ(x, ξ)) f̂ (ξ)

)
.

In particular, with X = Xk = ∂xk being a left-invariant vector field we obtain

∂xkσ
0(x, D) f (x) = σ ′(x, D) f (x), (4.23)

where

σ ′(x, ξ) = σXk (ξ)σ (x, ξ)+ Xkσ(x, ξ).

By using a suitable partition of unity we write

σ ′(x, ξ) =
∞∑
j=1

ρ j (x, ξ),

with ρ j supported in 〈ξ〉 ∼ 2− jr−1, and such that

‖ρ j‖
l,S

−
na
2

1−a,δ

6 C2− jr−1
‖σ‖

l,S
−

na
2

1−a,δ

. (4.24)

In order to construct such partition of unity, we consider η : R→ R defined by

η(t) =
{

0 if |t | 6 1,
1 if |t | > 2.

We put ρ(t) = η(t)− η(2−1t). Then

supp ρ = {1 6 |t | 6 4}.

One can see that

1 = η(t)+
∞∑
j=1

ρ(2 j t) for all t ∈ R.

Indeed,

η(t)+
∑̀
j=1

ρ(2 j t) = η(t)+ η(2t)− η(t)+ η(22t)− η(2t)+ · · ·+ η(2`t)− η(2`−1)

= η(2`t)→ 1 as `→∞.

In particular, we can write t = r〈ξ〉 and then

1 = η(r〈ξ〉)+
∞∑
j=1

ρ(r2 j
〈ξ〉).

The support of η is {|t | > 1} and if r〈ξ〉 6 1, then

η(r〈ξ〉) ≡ 0

and hence

1 =
∞∑
j=1

ρ(r2 j
〈ξ〉)

for {〈ξ〉 6 r−1
}.
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Now, since supp σ ′ = supp σ 0 in view of (4.23), we have

σ ′(x, ξ) =
∞∑
j=1

ρ(r2 j
〈ξ〉) · σ ′(x, ξ).

We set

ρ j (x, ξ) = ρ(r2 j
〈ξ〉) · σ ′(x, ξ) = α j (ξ)σ

′(x, ξ).

The estimate (4.24) for the seminorms of ρ j now follows from the relation between σ and

σ ′ as well as from the fact that ρ j (x, ξ) = α j (ξ)σ
′(x, ξ).

We now apply Lemma 4.11 to the pieces ρ j obtaining

‖∂xkσ
0(x, D) f ‖L∞ 6

∞∑
j=0

‖ρ j (x, D) f ‖L∞

6 Cr−1
∞∑
j=0

2− j
‖σ‖

l,S
−

na
2

1−a,δ

‖ f ‖L∞

6 Cr−1
‖σ‖

l,S
−

na
2

1−a,δ

‖ f ‖L∞ .

An application of the Mean Value Theorem gives us

|σ 0(x, D) f (x)− gB | 6 C‖σ‖
l;S

−
na
2

1−a,δ

‖ f ‖L∞ .

Hence
1

|B(x0, r)|

∫
B
|σ 0(x, D) f (x)− gB | dx 6 C‖σ‖

l,S
−

na
2

1−a,δ

‖ f ‖L∞ , (4.25)

which gives (4.20) for σ 0.

We now consider the term σ 1, we recall that we fixed a ball B(x0, r) ⊂ G. We now

also fix a cut-off function φ over G, with 0 6 φ 6 10, φ > 1 on B(x0, r) and such that its

Fourier transform φ̂ verifies supp(φ̂) ⊂ {〈ξ〉 6 (C−1r)
1

1−a }. Let us write

φ(x) · σ 1(x, D) f (x) = σ 1(x, D)(φ f )(x)+
[
φ, σ 1(x, D)

]
f (x) = I + I I. (4.26)

For the estimation of I we begin by factorising it in a suitable way. Let L be the

following power of the Laplacian on G, L = (1−LG)
na
2 . By [27, Theorem 4.2] we have

L ∈ OpS na
1,0(G) and it is known that L−1 is a positive operator (cf. [14, 15, 33]), i.e.,

L−1(g) > 0 if g > 0. We write

σ 1(x, D)(φ f ) =
(
σ 1(x, D) ◦ L

)(
L−1(φ f )

)
. (4.27)

Since OpS
na
2

1,0 (G) ⊂ OpS
na
2

1−a,δ(G), we note that σ 1(x, D) ◦ L is a pseudo-differential

operator in OpS 0
1−a,δ. We also have

L−1
: H−

na
2 −→ L2. (4.28)
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By the L2 boundedness for operators of order 0 (cf. [9, Proposition 8.1]), applied to

the operator σ 1(x, D) ◦ L, we deduce the existence of a constant C and an integer l0 such

that

‖σ 1(x, D)(φ f )‖2L2 6 C‖σ 1
A‖

2

l0;S
−

na
2

1−a,δ

· ‖L−1(φ f )‖2L2 . (4.29)

On the other hand, by (4.28) we have

‖L−1(φ f )‖2L2 6 C‖φ f ‖2
H−

na
2
.

We also observe that ‖φ̂(ξ)‖2HS 6 C ′dξ . Indeed, by the definition of the Fourier transform

on compact groups, since ξ(x) is unitary and 0 6 φ 6 10 we have

‖φ̂(ξ)‖HS 6
∫

G
‖ξ∗(x)‖HS|φ(x)| dx 6 10

√
dξ ,

where we have used the identities

‖ξ∗(x)‖2HS = Tr(ξ∗(x)ξ(x)) = Tr(Idξ ) = dξ .

Since L is a positive operator, we obtain

‖L−1(φ f )‖2L2 6 ‖ f ‖2L∞‖L
−1(φ)‖2L2

6 C1‖ f ‖2L∞‖φ‖
2
H−

na
2

6 C1‖ f ‖2L∞(C
−1r)n

6 C‖ f ‖2L∞ |B(x0, r)|.

For the estimation of ‖φ‖2
H−

na
2

we have used the following inequalities:

‖φ‖2
H−

na
2

6
∑

〈ξ〉6Cr
1

1−a

dξ 〈ξ〉−na
‖φ̂(ξ)‖2HS

6 C ′
∑

〈ξ〉6Cr
1

1−a

d2
ξ 〈ξ〉

−na

6 C2r
1

1−a (1−a)n
= C2rn .

For the last inequality we have applied the estimate (4.14).

Thus

‖σ 1(x, D)(φ f )‖2L2 6 C‖σ 1
‖

2

l0;S
−

na
2

1−a,δ

‖ f ‖2L∞ |B(x0, r)|. (4.30)

By the Cauchy–Schwarz inequality we get

1
|B(x0, r)|

∫
B
|σ 1(x, D)(φ f )(x)| dx 6

(
1
|B|

∫
B
|σ 1(x, D)(φ f )(x)|2 dx

) 1
2

6 C‖σ 1
‖

l0;S
−

na
2

1−a,δ

‖ f ‖L∞ . (4.31)

This proves the desired estimated for I .
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For the estimation of I I , we begin by writing
[
φ, σ 1(x, D)

]
f (x) in the form

θ(x, D) f (x),

where θ(x, ξ) is a suitable symbol. To calculate θ(x, ξ) we write B := σ 1(x, D), consider

the convolution kernel kx of B and observe that[
φ, σ 1(x, D)

]
f (x) = φ(x)B f (x)− B(φ f )(x)

= φ(x)( f ∗ kx )(x)− ((φ f ) ∗ kx )(x)

=

∫
G
φ(x) f (xy−1)kx (y) dy−

∫
G
φ(xy−1) f (xy−1)kx (y) dy

=

∫
G

f (xy−1)
(
φ(x)kx (y)−φ(xy−1)kx (y)

)
dy.

Hence, θ(x, ξ) is given by

θ(x, ξ) =
∫

G

(
φ(x)kx (y)−φ(xy−1)kx (y)

)
ξ(y)∗ dy.

On the other hand, by using Taylor expansions on compact Lie groups (see e.g. [23]

or [29]), we can write

φ(xy−1) = φ(x)+
∑
|α|=1

ψα(x, y)qα(y),

where ψα ∈ C∞(G×G), qα ∈ C∞(G), qα(e) = 0. Hence

θ(x, ξ) =
∑
|α|=1

∫
G
ψα(x, y)qα(y)kx (y)ξ(y)∗ dy

=

∑
|α|=1

1ψα(x,·)1qασ(x, ξ).

Thus

‖θ(x, ξ)‖op 6 C〈ξ〉−
na
2 −(1−a). (4.32)

For the last inequality we have used the following estimate:

sup
[ξ ]∈Ĝ
‖1ψα(x,·)τ(ξ)‖op 6 C‖ψα(x, ·)‖Ck sup

[ξ ]∈Ĝ
‖τ(ξ)‖op,

for k > n
2 . We now write

θ(x, ξ) =
∞∑
j=0

θ j (x, ξ),

with θ j (x, ξ) supported in 〈ξ〉 ∼ 2 jr−1.

By (4.32) and from the inequalities for the support of θ j one has

〈ξ〉−(1−a) 6 C2− j (1−a)

and

‖θ j‖
l;S

−
na
2

1−a,δ

6 Cl2− j (1−a)
‖σ‖

l;S
−

na
2

1−a,δ

,

for all l.
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According to Lemma 4.11 applied to the symbols θ j and l > n
2 we have

∥∥[φ, σ 1(x, D) f
]∥∥

L∞ 6
∞∑
j=0

‖θ j (x, D) f ‖L∞

6
∞∑
j=0

C2− j (1−a)
‖σ‖

l;S
−

na
2

1−a,δ

‖ f ‖L∞

6 C‖σ‖
l;S

−
na
2

1−a,δ

‖ f ‖L∞ . (4.33)

Since φ > 1 on B(x0, δ), by using (4.31) and (4.33) into (4.26) we have

1
|B(x0, δ)|

∫
B
|σ 1(x, D) f (x)| dx 6

1
|B(x0, δ)|

∫
B
|φ(x) · σ 1(x, D) f (x)| dx

6 C‖σ‖
l;S

−
na
2

1−a,δ

‖ f ‖L∞ ,

which concludes the proof.

We now establish a theorem for symbols in S m
ρ,δ(G). We recall that the L2 boundedness

holds for operators with symbols in S 0
ρ,δ(G) (cf. [9, Proposition 8.1]). As a consequence

of real interpolation between L2 boundedness and the previous L∞−BMO boundedness

we have:

Theorem 4.13. Let G be a compact Lie group of dimension n and let 0 < ρ < 1. Let

0 6 δ < ρ and σ ∈ S
−

n(1−ρ)
2

ρ,δ (G). Then σ(x, D) extends to a bounded operator from L p(G)
to L p(G) for 1 < p <∞.

Proof. We write A = σ(x, D). The symbol σ satisfies the condition of Theorem 4.12.

Hence A is bounded from L∞(G) to BMO(G). Moreover, A is bounded from L2(G) to

L2(G). This implies the boundedness of A from L p(G) to L p(G) for 2 6 p 6∞. On the

other hand, since σA∗ ∈ S 0
ρ,δ(G) then A∗ : L p(G)→ L p(G) is bounded for 2 6 p 6∞

and hence by duality we get that A : L p(G)→ L p(G) is bounded also for 1 6 p 6 2.

Remark 4.14. The index n(1−ρ)
2 in Theorem 4.13 cannot be improved, i.e., if one takes

instead an index ν0 <
n(1−ρ)

2 , one only gets L p boundedness for some finite interval around

p = 2 and not for any p outside that interval. This situation will be explained in more

detail by the next theorem and Remark 4.16.

We now apply the complex interpolation for an analytic family of operators (cf. [31, 32])

to obtain L p bounds for orders ν with 0 6 ν 6 n(1−ρ)
2 :

Theorem 4.15. Let G be a compact Lie group of dimension n and let 0 < ρ < 1. Let

0 6 δ < ρ and σ ∈ S −νρ,δ with

0 6 ν <
n(1− ρ)

2
.
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Then σ(x, D) extends to a bounded operator from L p(G) to L p(G) for∣∣∣∣ 1
p
−

1
2

∣∣∣∣ 6 ν

n(1− ρ)
.

Proof. Let σ ∈ S −ν1−a,δ(G). We consider the family of operators {Tz}06Re z61 defined by

the symbols

γz(x, ξ) := ez2
σ(x, ξ)〈ξ〉ν+

na
2 (z−1),

where the operators Tz are defined via the global quantisation (3.7). One can verify that

for every z = t + is such that 0 6 t 6 1, s ∈ R and k ∈ N, we have

‖γz‖k,S 0
1−a,δ

6 et2
−s2

p(|z|)‖σ‖k,S −ν1−a,δ
,

where p(λ) is a polynomial of degree k.

Since 0 6 t 6 1,−∞ < s <∞ and es2
dominates |z|k for z ∈ {0 6 Re z 6 1}, there exists

a constant Ck > 0 independent of z such that

et2
−s2

p(|z|) 6 Ck .

Hence

‖γz‖k,S 0
1−a,δ

6 Ck‖σ‖k,S −ν1−a,δ
, (4.34)

with Ck > 0 independent of z. More precisely, Ck only depends on finitely many

seminorms of σ .

By the L2 boundedness for S 0
ρ,δ classes there exist a constant C > 0 and an integer N

such that

‖Tz f ‖L2(G) 6 C‖γz‖N ,S 0
1−a,δ
‖ f ‖L2(G). (4.35)

From (4.34) and (4.35) we obtain

‖Tz f ‖L2(G) 6 C1‖σ‖N ,S −ν1−a,δ
‖ f ‖L2(G),

for a suitable constant C1 > 0.

It is clear that the family {Tz}06Re z61 is analytic in the strip

S = {z = x + iy ∈ C : 0 < x < 1}

and continuous in S. Thus, the family {Tz}06Re z61 defines an analytic family of operators

uniformly bounded on L(L2(G), L2(G)). In order to apply the complex interpolation we

observe that

sup
−∞<s<∞

‖T1+is f ‖L2(G) 6 C1‖σ‖N ,S −ν1−a,δ
‖ f ‖L2(G), f ∈ L2(G),

where C1 is independent of f .

On the other hand

Tis f (x) =
∫

G

∑
[ξ ]∈Ĝ

dξ Tr(ξ(y−1x)e−s2
σ(x, ξ)〈ξ〉ν−

na
2 +i na

2 s) f (y) dy.
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Since

γis(x, ξ) = e−s2
σ(x, ξ)〈ξ〉ν〈ξ〉−

na
2 〈ξ〉i

na
2 s,

and

〈ξ〉i
na
2 s Idξ ∈ S 0

1−a,δ

(see [28]), we have

γis ∈ S
−

na
2

1−a,δ.

Moreover,

‖γis‖
k,S

−
na
2

1−a,δ

6 C‖σ‖k,S −ν1−a,δ
,

with C > 0 independent of s.

An application of Theorem 4.12 to the operator Tis gives

‖Tis f ‖BMO(G) 6 C‖σ‖k,S −ν1−a,δ
‖ f ‖L∞(G).

The complex interpolation for an analytic family of operators gives us

‖Tt f ‖L p(G) 6 C p‖σ‖k,S −ν1−a,δ
‖ f ‖L p(G),

where p = 2
t , 0 < t 6 1. The corresponding symbol of the operator Tt is given by

γt (x, ξ) = e−t2
σ(x, ξ)〈ξ〉ν+

na
2 (t−1).

Since 0 6 ν 6 na
2 , there exists t, 0 6 t 6 1 such that

ν =
na
2
(1− t).

Hence the operator A = σ(x, D) is bounded from L p(G) into L p(G) for p = 2
t and

‖σ(x, D) f ‖L p(G) 6 C p‖σ‖k,S −ν1−a,δ
‖ f ‖L p(G).

We note that

ν =
na
2

(
1−

2
p

)
= na

(
1
2
−

1
p

)
.

By interpolation between p = 2 and p = 2
t we obtain the L p(G) boundedness for p

verifying
1
2
−

1
p
6

ν

na
.

We can now apply a duality argument for the case 1 6 p 6 2. Since the symbol of

the operator A∗ = σ(x, D)∗ also belongs to S −ν1−a,δ we have A∗ : L p(G)→ L p(G), for
1
2 −

1
p 6 ν

na . Then

A : L p(G)→ L p(G)
for 1

p −
1
2 6 ν

na . Therefore, A : L p(G)→ L p(G) is bounded for∣∣∣∣ 1
p
−

1
2

∣∣∣∣ 6 ν

na
.

Remark 4.16. The index n(1−ρ)
2 in Theorem 4.15 is sharp. Indeed, for G = T1, if ν0 <

1−ρ
2

one only gets boundedness on finite intervals around p = 2. This is a consequence of

the well-known classical multiplier theory on the torus (cf. [16]) and Wainger (cf. [35]).
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Indeed, let G = T1 and 0 < ρ < 1, 0 < ν0 <
1−ρ

2 and consider

σ(ξ) =
ei〈ξ〉a

〈ξ〉ν0
,

for ξ ∈ Z. Then σ ∈ S −ν0
ρ,0 (T

1) and the corresponding operator σ(D) is bounded on

L p(T1) for the interval ∣∣∣∣ 1
p
−

1
2

∣∣∣∣ < ν0

a
and is not bounded for p outside that interval. The L p boundedness inside the interval

with centre at p = 2 can also be obtained from the general result in Theorem 4.15.
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