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Abstract. Let n be a positive integer. In this paper, we consider the diophantine
equation

nx + (n + 1)y = (n + 2)z, n ∈ � xyz �= 0.

We prove that this equation has only the positive integer solutions (n, x, y, z) =
(1, t, 1, 1), (1, t, 3, 2), (3, 2, 2, 2). Therefore we extend the work done by Leszczyński
(Wiadom. Mat., vol. 3, 1959, pp. 37–39) and Makowski (Wiadom. Mat., vol. 9, 1967,
pp. 221–224).

2000 Mathematics Subject Classification. Primary 11D61; secondary 11B39,
11J86.

1. Introduction. The Diophantine equation

ax + by = cz, a, b, c, x, y, z ∈ � (1.1)

has a very rich history. Many authors have studied equation (1.1) when some of the
variables a, b, c, x, y, z are fixed. In 1956, Sierpiński [15] proved that (x, y, z) = (2, 2, 2)
is the only positive integral solution of the equation 3x + 4y = 5z. The same year,
Jeśmanowicz [9] conjectured that if a, b, c are Pythagorean triples, i.e. positive integers
satisfying a2 + b2 = c2, then Diophantine equation ax + by = cz has only the positive
integral solution (x, y, z) = (2, 2, 2). Many special cases of this conjecture have been
settled. Other conjectures related to equation (1.1) were set and discussed. One is the
extension of Jeśmanowicz’ conjecture due to Terai (see for example [17–21]). In fact,
Terai conjectured that if a, b, c, p, q, r ∈ � are fixed and ap + bq = cr, where p, q, r ≥ 2,
and gcd(a, b) = 1, then Diophantine equation (1.1) has only the solution (x, y, z) =
(p, q, r). Many authors have proved or disproved that the conjecture is true in some
particular cases. One can see for example [5–7]. Authors have also studied equation
(1.1) when a, b, c are polynomial functions. See for example [5–7, 14, 17–21].

In this paper, we consider the following Diophantine equation:

nx + (n + 1)y = (n + 2)z, n ∈ � xyz �= 0. (1.2)
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In fact, equation (1.2) is a generalisation of the equation 3x + 4y = 5z studied
by Sierpiński [15]. The general equation was first studied by Leszczyński [12] and
Makowski [14]. In fact, Makowski extended Leszczyński’s work and found the
solutions when y = 1 for 1 ≤ n ≤ 48. The equation was solved when xyz = 0 (see
Theorem 2 in [14]). In this case, the solutions are (n, x, y, z) = (n, 0, 1, 1), (1, 0, 3, 2).
Therefore, we suppose xyz �= 0. Our main result is the following.

THEOREM. Equation (1.2) has only the positive integer solutions

(n, x, y, z) = (1, t, 1, 1), (1, t, 3, 2), (3, 2, 2, 2). (1.3)

The organisation of this paper is as follows: In Section 2, we recall some results due
to LeVeque [13], Siksek [16], Ivorra [8] and Laurent, Mignotte and Nesterenko [11].
Also we prove a result by the means of Lucas sequences. These results are useful
for the proof of our main theorem that will be shown in Section 3. First, for n = 1,
LeVeque’s result helps to find the solutions (n, x, y, z) = (1, t, 1, 1), (1, t, 3, 2). Then
we use an elementary method to prove that equation (1.2) has only the solution
(n, x, y, z) = (3, 2, 2, 2), for y ≥ 2 and n ≥ 2. Finally, by means of Baker’s method, we
extend Leszczyński–Makowski’s result by proving that equation (1.2) has no solution
when y = 1 and n ≥ 2.

2. Lemmas. First, we recall a simplified result due to LeVeque [13].

LEMMA 1. For fixed integers a > 1 and b > 1, the equation

ax − by = 1

has just the two solutions (1, 1) and (2, 3) if a = 3, b = 2. In all other cases, it has at
most one solution.

Let α, β be algebraic integers. If α + β and αβ are non-zero coprime rational
integers and α/β is not a root of unity, then (α, β) is called a Lucas pair. Given a Lucas
pair (α, β), one defines the corresponding sequence of Lucas numbers by

Un = Un(α, β) = αn − βn

α − β
, n = 0, 1, 2, . . . .

A prime p is called a primitive divisor of Un(α, β) if p|Un and p � (α − β)2U1U2 . . . Un−1.
An important problem is the existence of primitive divisor of Lucas numbers. In
2001, Bilu, Hanrot and Voutier [3] solved the problem. The remaining cases were
solved by Abouzaid [1]. The case α, β ∈ � was solved by Birkhoff–Vandiver [4] and
Zsigmondy [22] in 1904 and 1892, independently. They proved that Un(α, β) has a
primitive divisor if n > 6. Early in 1886, Bang [2] showed the result when β = 1. The
following lemma comes from Bang’s result.

LEMMA 2. For a fixed integer m ≥ 2; then equation

2X mY + 1 = (2m + 1)Z, m ≥ 2, (2.1)

has only the positive integer solution X = Y = Z = 1, except when m = 2s−2 − 1, for
some integer s ≥ 4, in which case equation (2.1) has the additional solution (X, Y, Z) =
(s, 1, 2).
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Proof. If Z = 1, it is clear that X = Y = 1 by comparing the two sides of equation
(2.1). Now, we assume Z ≥ 2.

We rewrite equation (2.1) in the form

UZ = UZ(2m + 1, 1) = (2m + 1)Z − 1
(2m + 1) − 1

= 2X−1mY−1. (2.2)

Since (2m + 1) − 1 = 2m, UZ has no primitive divisor by Lemma 2. Thus Z ≤ 6. So
equation (2.2) implies

UZ = 1 + (2m + 1) + (2m + 1)2 + · · · + (2m + 1)Z−1 ≡ Z (mod 2m). (2.3)

By (2.2) and (2.3) we have

Z ≡ 2X−1mY−1 (mod 2m). (2.4)

Now suppose Y = 1 and X ≥ 2; then equation (2.1) becomes

2X m + 1 = (2m + 1)Z.

Taking modulo 4, we have 1 ≡ 1 + Z · 2m + (Z
2

) · 2m + · · · + (2m)Z. This implies
Z is even. If Z = 2, then the above equation gives m = 2X−2 − 1. Therefore,
equation (2.1) has solution (X, Y, Z) = (s, 1, 2) for m = 2s−2 − 1 (s ≥ 4). If Z = 4,
we have 2X m = (2m + 1)4 − 1 = 8m(m + 1)(2m2 + 2m + 1). It follows that 2X−3 =
(m + 1)(2m2 + 2m + 1). So as 2m2 + 2m + 1 is an odd integer greater than 1, we get a
contradiction. In the case Z = 6, (2m + 1)6 − 1 has an odd divisor 4m2 + 2m + 1. This
is also impossible.

Finally, if Y ≥ 2, then (2.4) gives Z ≡ 0 (mod m). This implies m ≤ Z. As Z ≤ 6,
a straightforward computation gives no solution (m, Z) with m ≤ Z ≤ 6. �

Now we recall the following result due to Siksek [16] and Ivorra [8].

LEMMA 3. Let k be a positive integer. If the equation

x2 − 2k = yn, x, y, k, n ∈ �, gcd(x, y) = 1, y > 1, n ≥ 3

has a solution then k = 1.

Finally we recall the following result due to Laurent, Mignotte, and Nesterenko
(see Corollaire 2, p. 288, in [11]) on linear forms in two logarithms. For any non-
zero algebraic number γ of degree d over �, whose minimal polynomial over � is
a
∏d

j=1

(
X − γ (j)

)
, we denote by

h(γ ) = 1
d

⎛
⎝log |a| +

d∑
j=1

log max(1, |γ (j)|)
⎞
⎠

its absolute logarithmic height.

LEMMA 4. Let γ1 and γ2 be multiplicatively independent and positive algebraic
numbers, b1 and b2 ∈ � and

� = b1 log γ1 + b2 log γ2.
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Let D := [�(γ1, γ2) : �]; for i = 1, 2 let

hi ≥ max
{

h(γi),
|log γi|

D
,

1
D

}

and

b′ ≥ |b1|
D h2

+ |b2|
D h1

.

If |�| �= 0, then we have

log |�| ≥ −24.34 · D4
(

max
{

log b′ + 0.14,
21
D

,
1
2

})2

h1h2.

3. Proof of the main theorem. When n = 1, equation (1.2) becomes

3z = 1 + 2y.

It has only two positive solutions (y, z) = (1, 1), (3, 2) by Lemma 1. Therefore we
obtain the first two solutions contained in (1.3). Now we suppose that n ≥ 2. From
(1.2) we have 2 � n. Let n = 2m − 1 with m ≥ 2. We rewrite equation (1.2) into the form

(2m − 1)x + (2m)y = (2m + 1)z. (3.1)

We will prove the main theorem in two steps.

3.1. The Case y ≥ 2. From equation (3.1), one can see that (−1)x ≡ 1 (mod 2m).
This implies 2|x. By consideration modulo 4m2 of (3.1), we have

1 − 2mx ≡ 1 + 2mz (mod 4m2).

It follows x + z ≡ 0 (mod 2m). Therefore z is also an even integer. Let x = 2x1 and
z = 2z1. Equation (3.1) becomes

(2m − 1)2x1 + (2m)y = (2m + 1)2z1 .

We factor the above expression to obtain(
(2m + 1)z1 + (2m − 1)x1

)(
(2m + 1)z1 − (2m − 1)x1

) = (2m)y. (3.2)

Now let us study (3.2) according to the parity of x1.

• First we suppose 2|x1. Then we have

(2m + 1)z1 + (2m − 1)x1 ≡ 2 + 2m(z1 − x1) (mod 4m2). (3.3)

One can see that equation (3.3) implies

gcd
(
((2m + 1)z1 + (2m − 1)x1 )/2, m

) = 1. (3.4)
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Then we use equation (3.2) to have

(2m + 1)z1 + (2m − 1)x1 |2y−1.

Thus equation (3.1) implies

(2m)y < (2m + 1)z = (2m + 1)2z1 < 22y−2.

So we get 4(m/2)y < 1. This is impossible when m ≥ 2.

• Then we assume 2 � x1. In this case, from equation (3.2) we have

(2m + 1)z1 + (2m − 1)x1 ≡ 2m(z1 + x1) (mod 4m2), (3.5)

and

(2m + 1)z1 − (2m − 1)x1 ≡ 2 + 2m(z1 − x1) (mod 4m2). (3.6)

One can see that equation (3.6) implies

gcd
(
((2m + 1)z1 − (2m − 1)x1 )/2, m

) = 1. (3.7)

If 2 � z1, then both z1 ± x1 are even; then we use equation (3.6) to deduce

gcd
(
((2m + 1)z1 − (2m − 1)x1 )/2, 2

) = 1. (3.8)

Therefore, from (3.2), (3.7) and (3.8) we obtain{
(2m + 1)z1 + (2m − 1)x1 = 2y−1my,

(2m + 1)z1 − (2m − 1)x1 = 2.
(3.9)

Adding these two equations, the following results:

(2m + 1)z1 = 2y−2my + 1. (3.10)

If y = 2, we have

(2m + 1)z1 = m2 + 1.

Combining this and m2 + 1 < (2m + 1)2 we obtain z1 = 1. So the only positive solution
of 2m + 1 = m2 + 1 is m = 2. Therefore equation (1.2) has the positive integer solution
(x, y, z) = (2, 2, 2), when n = 3. Otherwise, we consider y ≥ 3 and use Lemma 2 to see
that equation (3.10) has no solution.

If 2|z1, then both z1 ± x1 are odd. Assume m is even; then from equation (3.6) we
have again (3.8). We have the same form as the system (3.9). When m is odd, we obtain
from equation (3.5)

gcd
(
((2m + 1)z1 + (2m − 1)x1 )/2, 2

) = 1.

Therefore, we use equation (3.2) to obtain{
(2m + 1)z1 + (2m − 1)x1 = 2my,

(2m + 1)z1 − (2m − 1)x1 = 2y−1.
(3.11)

https://doi.org/10.1017/S0017089509990073 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990073


664 BO HE AND ALAIN TOGBÉ

Adding these two equations gives

(
(2m + 1)z1/2)2 − 2y−2 = my.

It is easy to see that when y = 2 there is no solution. By Lemma 3, the only possibility
is y = 3, i.e.

(2m + 1)z1 − 2 = m3.

Since m3 < (2m + 1)3 and z1 is even, we have z1 = 2. But the only integer solution of
m3 − 4m2 − 4m + 1 = (m + 1)(m2 − 5m + 1) = 0 is m = −1. This is also impossible.

3.2. The case y = 1. The case y = 1 was already considered by Makowski [14].
He proved that equation

(2m − 1)x + 2m = (2m + 1)z (3.12)

has no positive integer solution (x, y, z) in the range 2 ≤ 2m − 1 ≤ 48. Thus we assume
m ≥ 25.

We take (3.12) modulo 2m and we have (−1)x ≡ 1 (mod 2m). This implies 2|x. We
take again (3.12) modulo 4m2 and we obtain

1 − 2mx + 2m ≡ 1 + 2mz (mod 4m2).

It follows x + z ≡ 1 (mod 2m). Therefore z is an odd integer. If z ≥ x, then

2m = (2m + 1)z − (2m − 1)x ≥ (2m + 1)x − (2m − 1)x ≥ (2m + 1)2 − (2m − 1)2 = 8m.

This is impossible. Hence z < x.
Let

� = z log(2m + 1) − x log(2m − 1).

From (3.12) we get e� − 1 = 2m
(2m−1)x . Notice that m ≥ 25; it follows that

0 < � <
1

0.98(2m − 1)x−1
. (3.13)

We know that

x − 1
x

≥ z
x

>
log(2m − 1)
log(2m + 1)

;

thus we have

x >
log(2m + 1)

log
(
1 + 2

2m−1

) > (m − 0.5) log(2m + 1). (3.14)

As m ≥ 25, the above inequality implies x ≥ 99.
Now we apply Lemma 4, and we take

D = 1, b1 = z, b2 = −x, γ1 = 2m + 1, γ2 = 2m − 1.
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We have h1 = log γ1, h2 = log γ2. From (3.13) we get

z
log (2m − 1)

− x
log (2m + 1)

<
1

0.98(2m − 1)x−1 log(2m + 1) log(2m − 1)

< 0.154 · 10−166.

Hence, if we take

b′ = 2x
log (2m + 1)

+ 1.54 · 10−167,

then

b′ >
z

log (2m − 1)
+ x

log (2m + 1)
= |b1|

D h2
+ |b2|

D h1
.

If log b′ + 0.14 ≤ 21, we have

log |�| ≥ −24.34 · 212 log(2m − 1) log(2m + 1). (3.15)

We use (3.13) to obtain

log |�| < −(x − 1) log(2m − 1) + 0.021. (3.16)

Inequalities (3.15) and (3.16) imply

x − 1 < 24.34 · 212 log(2m + 1). (3.17)

Combining this and (3.14), we have

m < 0.5 + 1
log(2m − 1)

+ 24.34 · 212 log(2m + 1)
log(2m − 1)

< 10846.

Now if log b′ + 0.14 > 21, then we obtain

log |�| ≥ −24.34
(

log
(

2x
log(2m + 1)

+ 1.54 · 10−167
)

+ 0.14
)2

× log(2m + 1) log(2m − 1).

The above inequality and (3.16) imply

x
log(2m + 1)

<
−0.021 + log(2m + 1)

log(2m + 1) log(2m − 1)

+ 24.34
(

log
(

2x
log(2m + 1)

+ 1.54 · 10−167
)

+ 0.14
)2

.

It follows that

x
log(2m + 1)

< 0.24 + 24.34
(

log
(

x
log(2m + 1)

+ 0.77 · 10−167
)

+ 0.834
)2

. (3.18)
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We get x < 1656 log(2m + 1). Then b′ = 2x/ log(2m + 1) + 1.54 · 10−167 < 3313, so
that log b′ < 8.11. But since we were assuming log b′ + 0.14 > 21, this is clearly a
contradiction.

From all this, we deduce upper bounds for x and m, i.e.

m ≤ 10845 and x < 107187. (3.19)

From the definition of � and (3.13), one can see that∣∣∣∣ log(2m − 1)
log(2m + 1)

− z
x

∣∣∣∣ <
1

0.98x(2m − 1)x−1 log(2m + 1)
. (3.20)

From the fact m ≥ 25 and (3.14), we have x ≥ 99. It is easy to verify that

2x2 < 0.98x(2m − 1)x−1 log(2m + 1).

Thus the left side of (3.20) is less than 1
2x2 . Therefore, z

x is a convergent in the simple

continued fraction expansion of log(2m − 1)
log(2m + 1) . On the other hand, if pr/qr is the rth such

convergent, then ∣∣∣∣ log(2m − 1)
log(2m + 1)

− pr

qr

∣∣∣∣ >
1

(ar+1 + 2)q2
r
,

where ar+1 is the (r + 1)st partial quotient to log(2m − 1)
log(2m + 1) (see e.g. [10]). When z

x = pr
qr

(notice x ≥ qr and z ≥ pr), from m ≥ 25 and x ≥ 99 we obtain that

ar+1 >
0.98(2m − 1)x−1 log(2m + 1)

x
− 2 > 10165. (3.21)

Finally, we wrote a short PARI/GP program, and we found no integer m such that
25 ≤ m ≤ 10845 and satisfying (3.21) with qr < 107187. This completes the proof of
our main theorem.
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(2003), 839–846.
17. N. Terai, The Diophantine equation x2 + qm = pn, Acta Arith. 63 (1993), 351–358.
18. N. Terai, The Diophantine equation ax + by = cz, Proc. Japan Acad. A Math. Sci. 70

(1994), 22–26.
19. N. Terai, The Diophantine equation ax + by = cz II, Proc. Japan Acad. A Math. Sci. 71

(1995), 109–110.
20. N. Terai, The Diophantine equation ax + by = cz III, Proc. Japan Acad. A Math. Sci.

72 (1996), 20–22.
21. N. Terai and K. Tawakuwa, A note on the the Diophantine equation ax + by = cz, Proc.

Japan Acad. A Math. Sci. 73 (1997), 161–164.
22. K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. 3 (1892), 265–284.

https://doi.org/10.1017/S0017089509990073 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990073



