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Inferring rheology from free-surface
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We develop direct inversion methods for inferring the rheology of a fluid from observations
of its shallow flow. First, the evolution equation for the free-surface flow of an inertia-less
current with general constitutive law is derived. The relationship between the volume flux
of fluid and the basal stress, τb, is encapsulated by a single function F(τb), which depends
only on the constitutive law. The inversion method consists of (i) determining the flux and
basal stress from the free-surface evolution, (ii) comparing the flux with the basal stress
to constrain F and (iii) inferring the constitutive law from F. Examples are presented for
both steady and transient free-surface flows demonstrating that a wide range of constitutive
laws can be directly obtained. For flows in which the free-surface velocity is known, we
derive a different method, which circumvents the need to calculate the flux.
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1. Introduction

In many environmental and industrial settings, it is important to determine the rheology of
a fluid from observations of its free surface (Sellier 2016). A major example is the simple
slump test used in the mining, concrete and food industries to characterise particular
features such as the yield stress of the fluid. In other contexts, such as for lava flows and ice
sheets, deploying a rheometer may not be practical and instead free-surface observations
provide an alternative constraint on the rheology (Roussel & Coussot 2005; Balmforth
et al. 2007; Martin & Monnier 2015).

Previous methods for inferring the rheology of a fluid from its free surface typically
involve comparing observations with simulated predictions (Piau & Debiane 2005; Sayag
& Worster 2013; Sellier 2016; Al-Behadili et al. 2019). Simulated predictions are obtained
from a forward model, which calculates the free-surface shape for given fluid properties.
A particular form of the constitutive equation that has one or more free parameters, such
as the Herschel–Bulkley law, is assumed. The free-surface evolution is calculated from
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this model over a sample of the parameter space and the mismatch between the simulated
predictions and the observed data is minimised to constrain the rheological parameters.

These ‘best-fit’ methods rely upon a particular presupposed form of the constitutive law,
which may be inaccurate or even unphysical at some values of the stress (Matsuhisa & Bird
1965; Barnes & Walters 1985; Myers 2005; Ranganathan et al. 2021). They also require
a large amount of forward computation. Finally, since the entire form of the constitutive
law is determined by a global comparison with the observed flow, the parameters may
be non-unique. The latter two of these concerns are exacerbated as the number of free
parameters in the constitutive law is increased.

In this paper, direct-inversion methods to infer general constitutive laws from
free-surface data are described for inertia-less steady and transient flows. Our direct
inversion methods provide conceptual insight into how predictions of the stress at the
base of the fluid can be obtained from the free-surface elevation. The constitutive law is
reconstructed by comparing these stresses with the observed flux or velocity of the flow. In
contrast to the indirect, global best-fit methods, the rheology is constrained in a pointwise
and direct fashion. This reduces the non-uniqueness of the problem and the computation
required. It also enables a wide range of complicated constitutive laws to be inferred.

The first step in developing direct-inversion methods is to derive a model for the
flow thickness of a fluid with a given general constitutive law. We restrict our attention
to inelastic, isothermal fluids with time-independent rheology (known as ‘generalised
Newtonian fluids’). For two-dimensional flows, Pritchard, Duffy & Wilson (2015)
presented a governing equation for the flow thickness that is applicable to such rheologies.
They exploited the fact that in shallow flows, the stress distribution is a known linear
function of the vertical coordinate. The flux is written in terms of an integral over the
stress, which depends only on the constitutive law. In § 2, we derive a forward model
for a generalised Newtonian fluid in three dimensions by observing that the velocity and
pressure gradient of shallow flows are parallel and their direction is independent of vertical
position. This model suggests direct-inversion methods for steady and transient flows (§§ 3
and 4). Concluding remarks are made in § 5.

2. Forward model

In this section, we develop a three-dimensional forward model for the flow of a generalised
Newtonian fluid. The two-dimensional version was presented by Pritchard et al. (2015).
We analyse the flow of a generalised Newtonian fluid on topography with elevation given
by z = E(x, y). The fluid has thickness h(x, y, t) and the free surface is at z = E(x, y) +
h(x, y, t). The effects of surface tension and inertia are neglected. The flow is assumed
to be shallow; the thickness scale is much smaller than the length scales in the x and y
directions. The vertical velocity, w, is negligible relative to the velocities (u, v) in the x
and y directions. Using this lubrication approximation, the strain rate simplifies to

γ̇ =
∣∣∣∣∂u
∂z

∣∣∣∣ =
√

(∂u/∂z)2 + (∂v/∂z)2, (2.1)

where u = (u, v). As a constitutive law, we use a generalised Newtonian model with

γ̇ = φ(τ), (2.2)

for a prescribed function φ(τ), where τ = |τ | is the magnitude of the shear stress. This
generalised form of the constitutive law is applicable to a wide range of inelastic fluids.
Well-known constitutive laws such as the Newtonian, Bingham and Herschel–Bulkley
models are special cases of this representation.
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Inferring rheology from free-surface observations

Under the shallow-flow assumption, the pressure p within the fluid is hydrostatic:

p = ρg(h + E − z), (2.3)

where ρ is the fluid density and g is gravity. The momentum equation in the x and y
directions is given by

∂τ

∂z
= −G, where G = −∇p = −ρg∇(h + E). (2.4a,b)

The vector G is the (negative) hydrostatic pressure gradient and ∇ = (∂/∂x, ∂/∂y). Upon
integrating with respect to z we obtain

τ = (h + E − z)G, (2.5)

since there is zero stress at the free surface. The stress is a linear function of the vertical
position within the flowing layer. The volume flux is rearranged as follows (Schwartz &
Eley 2002; Pritchard et al. 2015):

Q =
∫ E+h

E
u dz =

∫ E+h

E
(h + E − z)

∂u
∂z

dz, (2.6)

where we have used no slip at the base, z = E. Note that the vectors, G, τ , u and Q
are parallel with the same direction (in the (x, y) plane) as the flow. Since the pressure
gradient, G, is independent of z, the direction of τ and u is also independent of z (as
is the direction of ∂u/∂z and ∂τ/∂z). We take the magnitude of both sides of (2.6) and
these observations allow us to take the magnitude through the integral (the direction of
the integrand is independent of z). Next, we substitute for h + E − z from (2.5) in (2.6).
Also, (2.5) furnishes the relation −|G| dz = dτ and the magnitude of the flux becomes an
integral over the stress within the layer:

|Q| = |G|−2
∫ |G|h

0
τφ(τ) dτ. (2.7)

The quantity, |G|h is the magnitude of the stress at z = E(x, y) (the basal stress). In this
formulation, the flux has been written in terms of an integral of the stress, τ , and the shear
rate, φ(τ).

Since the flux and pressure gradient are parallel (in the (x, y) plane), we write

Q = F(|G|h)

|G|3 G, where F(τ0) =
∫ τ0

0
τφ(τ) dτ. (2.8)

A similar equation was derived by Schwartz & Eley (2002) with the integrand written in
terms of a stress-dependent viscosity. The function F(τ0) depends only on the rheology of
the fluid. It accounts for how the volume flux varies with the basal stress. Schwartz & Eley
(2002) describe this variation as the ‘fluidity’ of the flow. Mass continuity furnishes the
governing equation for the flow thickness:

∂h
∂t

+ ∇ ·
[
|G|−3F(|G|h)G

]
= 0, (2.9)

which completes the forward model for h(x, y, t) since the pressure gradient G depends
linearly on the gradient of the flow thickness. In the case that ∂h/∂y = ∂E/∂y = 0, the
two-dimensional governing equation of Pritchard et al. (2015) is recovered. Since we are
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Figure 1. Forward and inversion method for steady flow over topography. (a) Topographic and free-surface
elevation. (b) Flow thickness and locations of the points used for the inversion method. (c) Predictions of F(τ )

(dotted lines) and its true form (continuous line). (d) Reconstructed constitutive law for the three sets of points
in (b) is compared with its true shape ((3.5), solid line). (e,f ) Absolute error between the inferred and true
quantities in panels (c,d).

interested in general constitutive laws, there is no intrinsic scaling for the stress and strain
rate so we keep the problem dimensional throughout this paper. For steady flows (∂h/∂t=
0), the forward problem is solved with boundary conditions for h(x, y) at the edges of
a particular domain. The system is integrated numerically and details of the method are
given in Appendix A. The solution for steady flow over a topographical feature is shown
in figure 1(a,b) for a specific constitutive law, given in figure 1(d). Corresponding plots for
the steady flow around a cylinder on an inclined plane for a different constitutive law are
shown in figure 2.

3. Inversion methods for steady flows

The steady inverse problem involves inferring the rheology of the fluid (i.e. the function,
φ(τ)), given the elevation of the topography, the fluid free surface and its density. To obtain
the constitutive law, the function F(τ ) is reconstructed. We rewrite (2.8) as

F(|G|h) = |Q||G|2. (3.1)

The quantities |Q|, |G| and h (the flux, pressure gradient and flow thickness) are
determined at various points in the flow, each of which provides a prediction of F(τ )

at τ = |G|h. We calculate these three quantities as follows. First, we measure the flow
thickness, h, from the difference between the free-surface elevation and the (known)
topographic elevation. The pressure gradient, |G|, is calculated from the gradients of the
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Figure 2. Steady flow around a cylinder. (a) Free-surface elevation (blue) relative to the cylinder and plane.
(b) Flow thickness and three streamlines (dashed lines). (c) Predictions of F(τ ) from the streamlines (circles)
and its true form (continuous line). (d) Prediction of the constitutive law (red dashed line) and its true form
((3.6), continuous line).

free surface using (2.4b). Finally, to determine the flux, |Q|, the steady version of the
governing equation (2.9) is rewritten as

∇ ·
(
|Q|Ĝ

)
= 0, where Ĝ = G/|G|, (3.2)

and Ĝ is the unit vector in the (x, y) plane in the direction of the flow. This equation is
solved for |Q| rather than for h as in the forward problem. The method of characteristics
furnishes

dx
ds

= Ĝ,
d|Q|
ds

= −|Q|∇ · Ĝ, (3.3a,b)

where x = (x, y), and s parameterises the characteristic curves in the (x, y) plane, which
are the streamlines of the flow. A similar method was used by Sellier & Panda (2010) for
reconstructing bottom topography from the free-surface flow of thin films of Newtonian
fluid (see also Heining, Sellier & Aksel 2012). The direction of the streamlines is given
by the (known) direction of G. Then by integrating (3.3), the magnitude of the flux |Q| is
obtained along the streamlines.

The integration along characteristics requires the value of |Q| at some upstream location.
If we only have the steady free-surface elevation and we have no data concerning the time
scale of the flow (such as the flux or free-surface velocity), then the inverse problem is
incomplete. In its simplest form, this incompleteness arises in the problem of determining
the viscosity of a Newtonian flow from its steady free-surface elevation; one must know
something of the time scale to constrain the shear rate. In general, without knowing the
flow time scale, the constitutive law can be determined up to a multiplicative constant
(essentially a reference viscosity).

In some cases, the flux far upstream may be known or could at least be estimated. In the
case where the far upstream flux is not known, but there is some other data concerning the
time scale of the flow, we make an arbitrary choice of |Q| = 1 m2 s−1 far upstream, which
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will subsequently be corrected. We then determine |Q| along the streamlines, from which
we calculate F and φ as described below. Owing to the linearity of (3.3b) and the linear
relationship between |Q|, φ and F, the incorrect upstream flux merely leads to a constant
multiplicative error in these quantities. This multiplicative constant may be constrained by
comparison with observed data of the flux or free-surface velocity from at least one point
along the streamline (e.g. by using the formulation in § 4.2).

We use the data (of |Q|, |G| and h) along the streamlines to infer the relationship between
|G|h and |Q||G|2, which provides an approximation for F(τ ) using (3.1). For a given stress,
τ ′, we determine F(τ ′) from observations of the flow at a point where the basal stress
equals τ ′. With a prediction for F(τ ) in hand, the constitutive relation is reconstructed via

γ̇ = φ(τ) = 1
τ

dF
dτ

. (3.4)

This requires a prediction of the derivative of F from scattered data; we either fit a
polynomial or a piecewise linear function (e.g. figure 1c). We can only predict the function
F(τ ), and hence the constitutive law φ(τ), over the range of values that the basal shear
stress, |G|h, takes within the flow. The more the steady flow is diverted by the topography
or obstruction, the greater the range of τ over which the constitutive law can be inferred.
Further details of the method are provided in the following subsections by studying two
examples: flow over topography (§ 3.1) and flow around a cylinder (§ 3.2). In each case,
we assume that the upstream flux is known.

3.1. Rheology from steady flow over topography
We deploy the inversion method to show how the constitutive law can be inferred from
the shape of the free surface that arises in steady flow over a topographic feature. The
topography consists of a slope at an angle β = 0.6 to the horizontal with a Gaussian mound
added at the origin (shown in figure 1a). The feature extends to infinity in the positive
and negative y directions and hence the problem is two-dimensional. The flow is in the x
direction and the volume flux, |Q|, is constant along the x axis. The forward problem for
the flow thickness is solved numerically as described in Appendix A with the following
constitutive relation (black line in figure 1d):

γ̇ = φ(τ) =
(

1 + M − 1√
1 + a2τ 2

)
τ

μ
, (3.5)

where M = 0.2, μ = 400 Pa s and a = 1.1 × 10−4 Pa−1. The flux far upstream is
1.67 m2 s−1 per unit width and the fluid density is ρ = 1200 kg m−3. The flow thickness
far upstream is thus 1 m. The calculated free-surface elevation is shown relative to the
topography in figure 1(a) and the flow thickness is plotted in figure 1(b). The flow deepens
(and slows) upstream of the mound, where the basal stress is small (cf. Hinton, Hogg &
Huppert 2019). The flow is thinner and faster on the downstream side of the mound and
the basal stress is greater.

The inversion method is carried out for three sets of observations of the synthetic
forward prediction. The first inversion uses the free-surface gradient, free-surface elevation
and topographic elevation at 80 points along the x axis, shown by red crosses in figure 1(b).
The function F is predicted from these data (see (3.1)). At each of the 80 points, we
determine the flow thickness, h, and the pressure gradient, |G|, from the gradient of the
free surface (calculated via a finite difference approximation using the 80 points). The flux
is a known constant along the x axis. From these measurements, we calculate the basal
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shear stress, |G|h and |G|2|Q| at the 80 points. These data are sorted from the smallest to
the largest basal stress and plotted using linear interpolation. This prediction is shown as a
red dashed line in figure 1(c), which shows close agreement with the true F(τ ) (continuous
black line). The prediction of F furnishes an estimate of φ(τ) via (3.4). This is plotted as
a red dashed line in figure 1(d) and shows excellent agreement with the true constitutive
law (continuous black line). The same method is then carried out with 15 sample points
(blue circles and blue dotted lines) and 6 sample points (green stars and green dashed
lines), demonstrating that good predictions of the constitutive law may be obtained with 15
observations focused in the region where the flow thickness varies significantly. Figure 1
illustrates that when there are fewer data points (e.g. the green curves), small errors in F
can lead to more significant errors in the constitutive law because the derivative of F is not
well-approximated. The error is larger at smaller values of τ owing to the 1/τ prefactor in
(3.4).

Finally, it should be noted that this method requires the topographic elevation. In the
context of ice sheets, this is frequently obtained via either airborne or ground-based
radio-echo sounding. For lava flows, the pre-eruption topography is often known. The
other examples in this paper do not require such detailed topographic data (e.g. slump
tests on a horizontal plane).

3.2. Rheology from steady flow around cylinders
In this subsection, we infer the rheology of a fluid from observations of its steady flow
around a circular cylinder on an inclined plane with the axis of the cylinder in the
z direction (see figure 2). The fluid has the following constitutive law (black line in
figure 2d):

γ̇ = φ(τ) = τ 2/μ2

1 + a2τ 2 , (3.6)

with μ2 = 107 Pa2 s and a = 2 × 10−4 Pa−1. The plane is inclined with gradient tan β =
0.2. Far upstream of the cylinder, the steady thickness is H = 4 m and the flux per
unit width is 9.74 m2 s−1. The cylinder radius is 3 m and the fluid has density ρ =
1200 kg m−3. The forward problem is solved numerically as described in Appendix A with
no-flux boundary condition on the cylinder. The flow is symmetric about the centreline
(which is the x axis). Figure 2(a) shows the free-surface elevation and figure 2(b) shows
the flow thickness, which increases by approximately 15 % upstream of the cylinder and
decreases by a similar amount downstream (cf. Hinton, Hogg & Huppert 2020).

The solution for the free-surface elevation is used as the input for the inversion method.
The free-surface elevation and its gradient are known on a discrete grid with 10 cm spacing
in the x and y directions. The pressure gradient can be obtained from the free-surface
gradient and the flux is calculated along three streamlines using (3.3) (dashed lines in
figure 2b). The prediction for F(τ ) from each streamline is shown as a different set of
coloured circles in figure 2(c). There is good agreement with the true form (black line).
A fourth-order polynomial is fitted to the three sets of data from which we obtain an
inference of the constitutive law via (3.4). Figure 2(d) compares the predicted constitutive
law (red dashed line) with its true form (black line). The range of strain rates over which
the constitutive law is inferred is fairly small because the cylinder is relatively thin, leading
to only small variations in the basal stress. Observations of flow around a wider cylinder
would provide predictions of γ̇ = φ(τ) over a larger range.

937 R4-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

15
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.157


E.M. Hinton

4. Inversion methods for transient flows

For the forward transient problem, the governing equation (2.9) is solved with the relevant
initial and boundary conditions and a source term may be included on the right-hand side
in the case of a supplied input flux. Details of the transient forward numerical method are
given in Appendix A.

In the following two subsections (§§ 4.1 and 4.2), two inversion methods for obtaining
the rheology from transient free-surface flow are described and examples are given in
each case. The method of § 4.1 is relevant to two-dimensional and axisymmetric flows.
We determine the flux at a given location and compare this with the pressure gradient
to predict F(τ ) in an analogous fashion to the steady method. Section 4.2 introduces a
different approach, which utilises the free-surface velocity of the flow.

4.1. Flux-based method
For a two-dimensional flow, the flux across any given station, x = L, can be obtained
from the rate of change of the volume in x < L, which in turn can be calculated from the
evolution of the free surface. The flux at x = L can be written as

Q(x = L, t) = qs − ∂

∂t

(∫ L

−∞
h dx

)
, (4.1)

where qs is any source flux in −∞ < x < L if it exists. Given the free-surface elevation
at various times, the flux, the flow thickness and the pressure gradient can be obtained at
x = L at those times. The function F(τ ) is reconstructed by using (3.1). Unlike the steady
method, additional data about the upstream flux or free-surface velocity are not required to
fully constrain F(τ ) (and the constitutive law) because the transient evolution of the free
surface provides sufficient data to determine the time scale of the flow.

As an example, we consider a two-dimensional slump of material, with volume per
unit length of 1 m2, released as a square block on a horizontal plane. Slumps of
Herschel–Bulkley fluids on a horizontal plane were described in detail by Balmforth et al.
(2000). We use the following constitutive law:

γ̇ = φ(τ) = τ

μ0
+ α sin(τ/τ ∗), (4.2)

with τ ∗ = 10 Pa, α = 0.08 s−1 and μ0 = 83 Pa s. Figure 3(a) shows the free-surface
evolution, calculated numerically using the forward model (2.9). The flow is symmetric
about x = 0.

For the inversion method, we use the free-surface elevation data at 10 cm intervals along
the x axis and half-second intervals in time. Equation (4.1) is used to estimate the flux at
x = ±1.5 m (blue dashed line in figure 3a). Figure 3(b) shows the flow thickness and the
basal stress, |G|h, calculated from the gradient of the free surface, at x = L = 1.5 m as
a function of time. The undulations arise from the nonlinearities in the constitutive law.
The basal stress, flow thickness and flux provide a prediction for F(τ ), which is plotted
with blue circles in figure 3(c) and compared with the true shape of F (black line). The
derivative of F is obtained via linear interpolation and this furnishes a prediction of the
constitutive law (red crosses in figure 3d). Provided the flow thickness in −L < x < L and
its gradient at x = L can be obtained to sufficient accuracy at multiple times, the inversion
method is able to capture the detailed nonlinearities in the constitutive law. The constitutive
law is determined for larger stresses at earlier times and smaller stresses at late times as
the fluid slumps (see figure 3b).
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(blue dashed lines). (b) Flow thickness (black line, left axis) and basal stress (dashed line, right axis) at the
edge location. (c) Prediction of F (circles) vs true F (solid line). (d) Inferred constitutive law (red crosses) and
the true constitutive law, (4.2) (solid line).
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Figure 4. (a) Free-surface shape for a yield-stress fluid at 10, 102, 103 and 104 s. (b) The constitutive law
(black line) and inference from the inversion method (red crosses).

The inversion method can also be applied to a material with a yield stress. We repeat
the forward solution from above but the fluid now has a yield stress of 25 Pa. The free
surface is shown at four times in figure 4(a). At late times, the stationary slumped shape is
approached. The inversion method is applied to predict the constitutive law and we include
the additional constraint that φ(0) = 0 (see figure 4b). The basal stress at x = L reduces
in time and slowly converges to the yield stress (algebraically with respect to time (c.f
Hogg & Matson 2009)). Hence, to capture the constitutive law close to the yield stress, the
slumping fluid must be observed for a long time. The yield stress is accurately captured
at t = 104 s (see figure 4b). In previous research, the final slump shape has been used to
obtain the yield stress and our method can reproduce those results as well as capturing the
constitutive law at other strain rates from the transient evolution (Roussel & Coussot 2005;
Balmforth et al. 2007). Finally, it should be noted that the method of this section is easily
adapted to axisymmetric flows.
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Figure 5. Inferring the constitutive law from the free-surface velocity data of Al-Behadili et al. (2019).
(a) Φ(τ) predicted using our inversion method applied to their data (circles and squares) with a polynomial
best fit (red dashed line) and the correct shape (black continuous line). (b) Inferred (red dashed line) and true
(black line) constitutive law.

4.2. Utilising the free-surface velocity
For unsteady three-dimensional flows, a different inversion method is required. In this
section, we show how the free-surface velocity can be written in terms of the rheology
of the fluid. This formulation provides a basis for an inversion method that uses the
free-surface elevation and velocity to determine the fluid rheology. Such a method is ideal
for exploiting experimental particle image velocimetry (PIV) data.

We write the magnitude of the free-surface velocity in the form

|u(z = E + h)| =
∫ E+h

E

∣∣∣∣∂u
∂z

∣∣∣∣ dz, (4.3)

where the magnitude is taken through the integral because the direction of the integrand
is independent of z (see § 2). We apply the change of variables −|G|dz = dτ to obtain the
following relationship between the free-surface velocity and the fluid rheology:

|u(z = E + h)| = |G|−1Φ(|G|h), Φ(τ0) =
∫ τ0

0
φ(τ) dτ. (4.4a,b)

A similar formulation can be applied to obtain the velocity at each height within the
layer. The inversion method is similar to that of previous sections. We constrain Φ(τ) by
comparing the observed free-surface velocity of the flow, |u(z = E + h)|, with the pressure
gradient, |G|, and basal stress, |G|h at various locations and times. The constitutive law is
simply recovered from φ(τ) = dΦ/dτ .

By way of an example, we apply this inverse approach to the data of Al-Behadili et al.
(2019). Their figures 5 and 6 show the flow thickness and free-surface velocity at three
times for a dam break of an Ellis fluid calculated from a full Navier–Stokes simulation.
First, we calculate the basal stress and pressure gradient at 2 times and 35 spatial points
from the flow thickness and its gradient. The data for the basal stress, |G|h, are plotted
against the observed free-surface velocity multiplied by the magnitude of the pressure
gradient, |G|, at each point to obtain a prediction for Φ(τ), shown as scattered squares and
circles in figure 5(a). The true form of Φ(τ) is shown as a solid black line. A fourth-order
polynomial (red dashed line in figure 5a) is fitted to the scattered data with the condition
that its derivative vanishes at the origin, which ensures that φ(0) = 0. This polynomial is
differentiated to obtain a prediction for the constitutive law (red dashed line in figure 5b),
which shows reasonable agreement with the constitutive law used in the simulations of
Al-Behadili et al. (2019). The simulations included relatively small amounts of inertia and
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surface tension, which are not accounted for in our inversion method, although the latter
could be included in the pressure gradient. Despite this, our simple direct inversion method
reproduces the rheology to within a 15 % error over most shear rates.

5. Conclusion

This contribution has presented direct inversion methods for determining the constitutive
law for a fluid from observations of its free surface. For steady flows, the flux along
streamlines is compared with the pressure gradient and flow thickness to constrain a
function, F, that encapsulates the rheology. We have also presented a technique for
inferring the constitutive law from the free-surface velocity. The methods could be
extended to incorporate an undetermined sliding law at the bed as is relevant to the
migration of ice sheets. In other settings, the flow may be compressible or inertia may
be important. In these cases, the relationship between |Q|, F and φ may be nonlinear,
which would lead to a more complicated inversion method. Further work could also study
optimum methods for taking the derivative of F from noisy data.
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Appendix A. Numerical methods

In this appendix, the numerical methods for the forward problems are described. The
flow thickness for two-dimensional steady flow over topography (figure 1) is calculated
numerically using (2.8). The flux is set to a constant value, which furnishes a first-order
ordinary differential equation for h. This is integrated numerically in the upstream
direction using a fixed value of the flow thickness far downstream; a numerical instability
arises from integration in the downstream direction (see Hinton et al. 2019). The
steady three-dimensional flow around a cylinder (figure 2) is solved numerically using
MATLAB’s Partial Differential Equation (PDE) Toolbox

TM
. The method is given in

section III of Hinton et al. (2020) with the function inside the divergence operator adjusted
to account for the general rheology. For this flow, h > 0 and |G| > 0 and no regularisation
is required.

For transient flows (figures 3 and 4), the forward problem (2.9) is solved using the
toolbox’s transient solver. In the case that the fluid has a yield stress, a regularisation of
the constitutive law is required. If the constitutive law without a yield stress is γ̇ = φ(τ)

then for a fluid with yield stress, τY , we use the following regularisation:

γ̇ = φ

{[
τ − τY +

√
(τ − τY)2 + ε2τ 2

Y

]
/2

}
, (A1)

where ε = 10−5. We also replace |G| with
√

|G|2 + (δρg)2 where δ = 10−8. Checks
confirm that volume is conserved. The inversion methods provide an additional check on
the forward computations.
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