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Abstract. Let n � 2 be a fixed positive integer, q � 3 and c, � be integers with
(nc, q) = 1 and �|n. Suppose A and B consist of consecutive integers which are coprime
to q. We define the cardinality of a set:

N(A,B, c, n, �; q) = #{(a, b) ∈ A × B|ab ≡ c(mod q), (a + b, n) = �}.

The main purpose of this paper is to use the estimates of Gauss sums and Kloosterman
sums to study the asymptotic properties of N(A,B, c, n, �; q), and to give an interesting
asymptotic formula for it.
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1. Introduction. Let q � 3 be an integer. For each integer a with 1 � a <

q, (a, q) = 1, there is a unique integer b with 1 � b < q such that ab ≡ 1(mod q).
Let N(q) denote the number of solutions of the congruence equation ab ≡ 1(mod q)
with 1 � a, b < q, 2 � a + b. That is

N(q) = #{(a, b) ∈ [1, q] × [1, q]|ab ≡ 1(mod q), 2 � a + b},

where #S denotes the cardinality of the set S. Thus, N(q) denotes the number of
integers a, 1 � a < q, (a, q) = 1, such that a and its inverse b (mod q) are of opposite
parity.

For an odd prime p, D. H. Lehmer posed the problem to find N(p) or at least to
say something nontrivial about it (see Problem F12 of [2], p. 381). Wenpeng Zhang [8]
has given an asymptotic estimate:

N(p) = 1
2

p + O
(
p1/2 log2 p

)
. (1)
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Later, Wenpeng Zhang [9, 10] also proved that for every odd integer q � 3,

N(q) = 1
2
ϕ(q) + O

(
q1/2τ 2(q) log2 q

)
, (2)

where ϕ(q) is the Euler function and τ (q) is the divisor function.
The classical problem has been generalized by many scholars (see [5–7], et al.).

Recently, Yaming Lu and Yuan Yi [3] studied a generalization of the D. H. Lehmer
problem over short intervals. Let n � 2 be a fixed positive integer, q � 3 and c be
integers with (nc, q) = 1. We define

rn(θ1, θ2, c; q) = #{(a, b) ∈ [1, θ1q] × [1, θ2q]|ab ≡ c(mod q), n � a + b},

where 0 < θ1, θ2 � 1. In [3], it is obtained that

rn(θ1, θ2, c; q) =
(

1 − 1
n

)
θ1θ2ϕ(q) + O

(
q1/2τ 6(q) log2 q

)
, (3)

where the O-constant depends only on n.
In this paper, we consider a more extensive generalization of the D. H. Lehmer

problem over short intervals, which may be of great arithmetical interest.
Suppose A and B consist of consecutive integers which are coprime to q, that is,

A = {n ∈ Q : M < n � M + A}, (4)

B = {n ∈ Q : N < n � N + B}, (5)

where M, N, A > 0, B > 0 are integers, Q is a reduced residue system modulo q. Let
n � 2 be a fixed positive integer, q � 3 and c, � be integers with (nc, q) = 1 and �|n, and
define

N(A,B, c, n, �; q) = #{(a, b) ∈ A × B|ab ≡ c(mod q), (a + b, n) = �}.

The main purpose of this paper is to use the estimates of Gauss sums and
Kloosterman sums to study the asymptotic properties of N(A,B, c, n, �; q), and to
give an interesting asymptotic formula for it. In fact, we have the following.

THEOREM 1. Let n � 2 be a fixed positive integer, q � 3 and c, � be integers with
(nc, q) = 1 and �|n, the sets A and B are defined by (4) and (5). Then, as q → +∞, we
have the asymptotic formula

N(A,B, c, n, �; q) = #A#B
n

ϕ
(n

�

)
ϕ−1(q) + O

(√
#A#B

q
τ 3(q) · n2ω(n/�)

)

+ O
(
q1/2τ 3(q) log2 q · 2ω(n/�)),

where ϕ(n) is the Euler function, τ (q) is the divisor function, ω(q) denotes the number of
distinct prime factors of q, #A denotes the cardinality of A and two O-constants are both
absolute.

We can see that the estimate is nontrivial when #A#B � q3/2+ε, where the implied
constant depends at most on n and ε.

https://doi.org/10.1017/S0017089510000704 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000704


GENERALIZED D. H. LEHMER PROBLEM OVER SHORT INTERVALS 295

2. Lemmas. In order to prove Theorem 1, we require the following lemmas. First,
for integers m, n, q, we introduce the classical Kloosterman sum:

S(m, n; q) =
∑

a mod q
(a,q)=1

e
(

ma + na
q

)
,

where e(x) = e2π ix, aa ≡ 1(mod q).
LEMMA 1. Let m, n, q be integers, q � 3, then we have the upper bound

|S(m, n; q)| � q1/2(m, n, q)1/2τ (q).

Proof. See [1]. �
Denote by χ a Dirichlet character mod q, by χ0 the principal one, and by m an

integer. The well known Gauss sum is defined by

G(m, χ ) =
∑

h mod q

χ (h)e
(

mh
q

)
.

We also require some properties of Gauss sums, which are stated as the following
two lemmas.

LEMMA 2. For any positive integers q and m, we have

G(m, χ0) = μ

(
q

(m, q)

)
ϕ(q)ϕ−1

(
q

(m, q)

)
,

where μ(n) is the Möbius function.

Proof. See [4], Section 1.2, Lemma 2. �

LEMMA 3. Let q and c be two integers with q � 3, (c, q) = 1. Then for any integers
a and b, we have∑

χ �=χ0

χ (c)G(a, χ )G(b, χ ) 	 ϕ(q)q1/2(a, q)1/2(b, q)1/2τ (q),

where the O-constant is absolute.

Proof. By using Lemma 1, we can easily deduce that

∑
χmod q

χ (c)G(a, χ )G(b, χ ) =
∑

χmod q

χ (c)
q∑

s=1

χ (s)e
(

as
q

) q∑
t=1

χ (t)e
(

bt
q

)

=
q∑

s=1

q∑
t=1

e
(

as + bt
q

) ∑
χ mod q

χ (stc)

= ϕ(q)
q∑

s=1

q∑
t=1

st≡c(mod q)

e
(

as + bt
q

)

= ϕ(q)S(a, bc; q)

	 ϕ(q)q1/2(a, b, q)1/2τ (q). (6)
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On the other hand, Lemma 2 indicates that

G(a, χ0)G(b, χ0) = μ

(
q

(a, q)

)
μ

(
q

(b, q)

)
ϕ2(q)ϕ−1

(
q

(a, q)

)
ϕ−1

(
q

(b, q)

)

	 ϕ2(q)
(a, q)(b, q)

q2
τ

(
q

(a, q)

)
τ

(
q

(b, q)

)

	 ϕ2(q)
(a, q)(b, q)

q2

q√
(a, q)(b, q)

	 ϕ(q)(a, q)1/2(b, q)1/2. (7)

Then Lemma 3 follows from (6) and (7) immediately. �
Note: A slight weaker estimate than Lemma 3 can be found in [3].

The following two lemmas focus on the estimation for exponential sums.

LEMMA 4. Let N be a positive integer, α be a real number. Then we have∣∣∣∣∣∣
∑
n�N

e(αn)

∣∣∣∣∣∣ � min
(

N,
1

2‖α‖
)

,

where ‖x‖ = minn∈� |x − n|.
Proof. The estimate is well known, the proof can be found in [4], Section 5.1. �
LEMMA 5. Assume that U is a positive real number, K0 an integer, K a positive

integer, α and β two arbitrary real numbers. If α can be written in the form

α = h
q

+ θ

q2
(q, h) = 1, q � 1, |θ | � 1,

we have

K0+K∑
k=K0+1

min
(

U,
1

‖αk + β‖
)

	
(

K
q

+ 1
)

(U + q log q),

where the implied constant is absolute.

Proof. See reference [4], Section 5.1, Lemma 3. �

3. Proof of Theorem 1. In this section, we shall complete the proof of Theorem
1. From the orthogonality relation for Dirichlet characters modulo q, one can obtain
that

N(A,B, c, n, �; q) = 1
ϕ(q)

∑
χ mod q

∑
a∈A

∑
b∈B

(a+b,n)=�

χ (ab)χ(c)

= 1
ϕ(q)

∑
a∈A

∑
b∈B

(a+b,n)=�

1 + 1
ϕ(q)

∑
χ �=χ0

∑
a∈A

∑
b∈B

(a+b,n)=�

χ (ab)χ(c)

:= I1 + I2. (8)
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We shall estimate I1 and I2 respectively. Firstly,

I1 = 1
ϕ(q)

∑
a∈A

∑
b∈B

(a+b,n)=�

1 = 1
ϕ(q)

∑
a∈A

∑
b∈B

�|a+b

∑
r|( a+b

�
, n

� )

μ(r)

= 1
ϕ(q)

∑
a∈A

∑
r| n

�

μ(r)
∑
b∈B

b≡−a(mod r�)

1

= 1
ϕ(q)

∑
a∈A

∑
r| n

�

μ(r)
(

#B
r�

+ O(1)
)

= #B
ϕ(q)�

∑
a∈A

∑
r| n

�

μ(r)
r

+ O(2ω(n/�))

= #A#B
n

ϕ
(n

�

)
ϕ−1(q) + O(2ω(n/�)). (9)

Secondly,

I2 = 1
ϕ(q)

∑
χ �=χ0

χ (c)
∑
a∈A

∑
b∈B

(a+b,n)=�

χ (ab) = 1
ϕ(q)

∑
χ �=χ0

χ(c)
∑
r| n

�

μ(r)
∑
a∈A

∑
b∈B

r| a+b
�

χ (ab)

= 1
ϕ(q)�

∑
χ �=χ0

χ (c)
∑
r| n

�

μ(r)
r

∑
m�r�

∑
a∈A

∑
b∈B

e
(

m(a + b)
r�

)
χ (ab)

= 1
ϕ(q)�

∑
χ �=χ0

χ (c)
∑
r| n

�

μ(r)
r

∑
m�r�

∑
a∈A

χ (a)e
(ma

r�

) ∑
b∈B

χ (b)e
(

mb
r�

)
. (10)

Note that for any non-principal character χ mod q,

χ (a) = 1
q

∑
s�q

G(s, χ )e
(

−as
q

)
;

thus, ∑
a∈A

χ (a)e
(ma

r�

)
= 1

q

∑
s�q

G(s, χ )
∑
a∈A

e
((

m
r�

− s
q

)
a
)

. (11)

Combining (10) and (11), and making use of Lemma 3 and 4, we have

I2 = 1
q2ϕ(q)�

∑
r| n

�

μ(r)
r

∑
m�r�

∑
s�q

∑
t�q

∑
a∈A

∑
b∈B

e
((

m
r�

− s
q

)
a
)

e
((

m
r�

− t
q

)
b
)

×
∑
χ �=χ0

χ (c)G(s, χ )G(t, χ )

	 τ (q)
q3/2�

∑
r| n

�

μ2(r)
r

∑
m�r�

∑
s�q

∑
t�q

(s, q)1/2(t, q)1/2

× min

(
#A,

∥∥∥∥ s
q

− m
r�

∥∥∥∥
−1

)
· min

(
#B,

∥∥∥∥ t
q

− m
r�

∥∥∥∥
−1

)
.
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By Möbius transform, we have

∑
s�q

(s, q)1/2 min

(
#A,

∥∥∥∥ s
q

− m
r�

∥∥∥∥
−1

)
= q1/2

∑
d|q

d−1/2
∑
s�d

(s,d)=1

min
(

#A,

∥∥∥ s
d

− m
r�

∥∥∥−1
)

.

(12)
Observe that (n, q) = 1; thus, for �|n and d|q, we have

∥∥∥ s
d

− m
r�

∥∥∥ � 1
dr�

,

from which and Lemma 5, the left-hand side of (12) is bounded by

q1/2
∑
d|q

d−1/2
∑
s�d

(s,d)=1

min
(

#A, dr�,
∥∥∥ s

d
− m

r�

∥∥∥−1
)

	 q1/2
∑
d|q

d−1/2(min(#A, dr�) + d log d)

= #Aq1/2
∑
d|q

d>#A/r�

d−1/2 + r�q1/2
∑
d|q

d�#A/r�

d1/2 + q1/2
∑
d|q

d1/2 log d

	 (r�)1/2(#A)1/2q1/2τ (q) + qτ (q) log q,

and similarly

∑
t�q

(t, q)1/2 min

(
#B,

∥∥∥∥ t
q

− m
r�

∥∥∥∥
−1

)
	 (r�)1/2(#B)1/2q1/2τ (q) + qτ (q) log q.

Thus,

I2 	
√

#A#B
q

τ 3(q) · n2ω(n/�) + q1/2τ 3(q) log2 q · 2ω(n/�), (13)

where ω(n) denotes the number of distinct prime factors of n.
Combining (8), (9) and (13), we can deduce the theorem immediately.

4. Remarks. Recalling that Q is a reduced residue system modulo q, and taking
q = p as a prime number, A = B = Q, n = 2, � = 1 in Theorem 1, we can obtain

N(p) = 1
2

p + O(p1/2 log2 p),

which is just the same as (1). Similarly, Theorem 1 yields (2) with a slightly weaker
error term.

Taking A = {n ∈ Q : 1 � n � θ1q}, B = {n ∈ Q : 1 � n � θ2q},

rn(θ1, θ2, c; q) =
∑
�|n

N(A,B, c, n, �; q) − N(A,B, c, n, n; q),
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and hence

rn(θ1, θ2, c; q) =
∑
�|n

θ1θ2

n
ϕ

(n
�

)
ϕ(q) − θ1θ2

n
ϕ(q) + (

q1/2τ 3(q)nτ 2(n) log2 q
)

=
(

1 − 1
n

)
θ1θ2ϕ(q) + O

(
q1/2τ 3(q)nτ 2(n) log2 q

)
,

which is slightly better than (3).
Observing that the condition 2 � a + b is equivalent to a + b ≡ 1(mod 2), thus we

can consider another generalization of the D. H. Lehmer problem over short intervals.
Let q � 3, � � 1 be fixed integers, n and c be integers with (nc, q) = 1. We define

T(A,B, c, �; q, n) = #{(a, b) ∈ A × B|ab ≡ c(mod q), a + b ≡ �(mod n)},
where A,B are defined as before. Using the same method above, we can also prove that

T(A,B, c, �; q, n) = #A#B
n

ϕ−1(q) + O(q1/2τ 3(q) log2 q),

which also yields (1), (2) and (3).
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