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Convex Bodies of Minimal Volume,
Surface Area and Mean Width
with Respect to Thin Shells

Károly Böröczky, Károly J. Böröczky, Carsten Schütt, and Gergely
Wintsche

Abstract. Given r > 1, we consider convex bodies in E
n which contain a fixed unit ball, and whose

extreme points are of distance at least r from the centre of the unit ball, and we investigate how well

these convex bodies approximate the unit ball in terms of volume, surface area and mean width. As

r tends to one, we prove asymptotic formulae for the error of the approximation, and provide good

estimates on the involved constants depending on the dimension.

1 Notation

Let us introduce the notation used throughout the paper. For any notions related to
convexity in this paper, consult R. Schneider [19]. We write o to denote the origin
in E

n, 〈 · , · 〉 to denote the scalar product, and ‖ · ‖ to denote the corresponding Eu-
clidean norm. Moreover for non-collinear points u, v,w, the angle of the half lines

vu and vw is denoted by ∠uvw. Given a set X ⊂ E
n, the affine hull, the convex hull

and the interior of X are denoted by aff X, conv X and int X, respectively. In addition
if X is convex, then the relative boundary and the relative interior of X with respect
to aff X are denoted by ∂X and relint X, respectively. We write Bn to denote the unit

ball centred at o, and Sn−1 to denote ∂Bn.
The k-dimensional Hausdorff measure is denoted by H

k (see [8, 16] for defini-
tion and main properties). We normalize it in a way such that it coincides with the
Lebesgue measure in E

k. If M is a bounded measurable subset of E
n, then we call

H
n(M) the volume V (M) of M. As usual, we call a compact convex set in E

n with
non-empty interior a convex body, and a two-dimensional compact convex set a con-
vex disc. For a convex body C , we write S(C) = Hn−1(∂C) to denote its surface area.
When integrating on ∂C , we always do it with respect to Hn−1. The two-dimensional

Hausdorff measure of a two-dimensional convex compact set, or of a measurable sub-
set X of the boundary of some convex body in E

3, is also called the area A(X) of X.
We recall that x is an extreme point of a convex compact set C if x does not lie

in the relative interior of any segment contained in C . We write extC to denote the

family of extreme points, and note that extC forms the minimal set whose convex
hull is C .
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Given a compact convex set C in E
n, its support function hC (u), u ∈ E

n, is defined
by hC (u) = maxx∈C〈x, u〉. In particular, for any u ∈ Sn−1, the width of C in the

direction u is hC (u) + hC (−u). Therefore the mean width of C is

M(C) =
2

S(Bn)

∫

Sn−1

hC (u) du.

In particular M(Bn) = 2, and if C is a convex disc, then M(C) =
1
π S(C) according

to the Cauchy formula (see [19]). We note that the volume, surface area, and the
mean width of a compact convex set C in E

n can be expressed as the mixed volumes
(quermassintegrals or normalized intrinsic volumes),

(1.1)

V (C) = V (C, . . . ,C), S(C) = n V (C, . . . ,C,Bn),

M(C) =
2

V (Bn)
, V (C,Bn, . . . ,Bn).

2 Introduction

Let us define the main objects of study in this paper.

Definition Given r > 1, we write F
n
r to denote the family of convex bodies in E

n

which contain Bn, and whose extreme points are of distance at least r from o. More-
over let Pn

r , Qn
r and W n

r be elements of Fn
r with minimal volume, surface area, and

mean width, respectively.

The minima do exist according to the Blaschke selection theorem, and all extreme
points of Pn

r , Qn
r and W n

r lie on rSn−1 by the monotonicity of the volume, surface area
and the mean width. Unfortunately, we do not know whether the extremal convex
bodies are polytopes. For example, if r is reasonably large, then it is conjectured

that all extremal convex bodies are right cylinders whose bases are unit (n − 1)-balls.
Answering a question of J. Molnár [15], K. Böröczky and K. Böröczky, Jr. [3] proved
that P3

r and Q3
r are regular octahedra when r =

√
3, and are regular icosahedra when

r =

√
15 − 6

√
5. As discussed in [3], no regular polytope is extremal in its class if

n ≥ 8. Therefore in this paper we consider the case when r tends to 1 and there is no
restriction on the dimension. Given real functions f (r) and g(r) of r > 1, we write

f (r) ∼ g(r) if limr→1
f (r)
g(r)

= 1. In addition we write g(r) = O( f (r)) if |g(r)| ≤ c f (r)

for some constant c depending only on n.

Theorem 2.1 If n ≥ 2 and r > 1 tends to 1, then

V (Pn
r \Bn) ∼ θV (n) · (r − 1),

S(Qn
r ) − S(Bn) ∼ θS(n) · (r − 1),

M(W n
r ) − M(Bn) ∼ θM(n) · (r − 1),

where θV (n), θS(n), and θM(n) are positive constants depending only on n.
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Convex Bodies of Minimal Volume, Surface Area and Mean Width 5

Since all V (rBn)−V (Bn), S(rBn)− S(Bn), and M(rBn)−M(Bn) are of order r − 1
if r is close to 1, it is not surprising that we have the factor r − 1 in Theorem 2.1.

We note that Theorem 2.1 is proved in [4] if n ≤ 3. Additionally, it was determined
in [4] that

θV (2) =
2π

3
, θS(2) =

4

3
, θM(2) =

4π

3

in the planar case, and

θV (3) = π, θS(3) = 3π, θM(3) =
7

6

in the three-dimensional case. Moreover [4] proved that if r is close to 1, then the
typical faces of P3

r , Q3
r , and W 3

r are asymptotically regular triangles.

For large n, combining Theorem 2.1 and Lemma 5.1 yields that there exist positive
absolute constants c1 and c2 satisfying

c1

n
· S(Bn) < θV (n) <

c2 ln n

n
· S(Bn),(2.1)

c1 · S(Bn) < θS(n) < c2 ln n · S(Bn),(2.2)

c1

n
< θM(n) <

c2 ln n

n
,(2.3)

where

S(Bn) =
nπ

n
2

Γ( n
2

+ 1)

(see [19]). Next we state a theorem that is essential in proving (2.1), (2.2), and (2.3).

Theorem 2.2 If ρ > 0 and C is a convex body in E
n with ‖x‖ ≥ ρ for all x ∈ extC,

then ∫

C

‖x‖2 dx ≥ ρ2

9n
·V (C).

Remark Theorem 2.2 is optimal up to an absolute constant factor, as is shown by
the example of regular simplices inscribed into ρBn.

A field closely related to our paper is polytopal approximation where a given
smooth convex body C in E

n is approximated by polytopes of restricted number of

vertices and facets. A typical problem is to consider the inscribed polytopes Pk,V and
Pk,M with at most k vertices of maximal volume and of maximal mean width, respec-
tively. As k tends to infinity, asymptotic formulae expressing V (C) − V (Pk,V ) and
M(C) − M(Pk,M) are known. In addition, the inscribed polytope Pk,H with at most

k vertices and minimizing the so-called Hausdorff distance from C (see (3.1)) is well
investigated. It is also known that if C is a ball in E

3, then the typical faces of the
extremal polytopes are asymptotically regular triangles. For references, see the nice
surveys by P. M. Gruber [12–14], and the recent manuscript by K. J. Böröczky, P. Tick,
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and G. Wintsche [6]. Various methods in this paper come from the field of polytopal
approximation, in which small parts of Sn−1 are approximated by paraboloids.

The paper is structured in the following way: Section 3 discusses polytopal ap-
proximation from our point of view, and Section 4 proves Theorem 2.2. Section 5
presents the basic statements and main idea of the proof for Theorem 2.1, and it
proves the approximate version Lemma 5.1. The proof of Theorem 2.1 in the cases of

volume and surface area in Section 9 is based on the properties of convex hypersur-
faces discussed in Sections 6 and 7, and on Lemma 8.1 in Section 8 which describes
how to transfer polytopal approximation into integration in E

n−1. Theorem 2.1 in
the case of the mean width is proved in Sections 10 and 11. We note that the case of

mean width is substantially easier than the cases of volume or surface area.

3 Hausdorff Distance and Polytopal Approximation

We will frequently approximate convex bodies by polytopes (see [11–13] for general
surveys). A natural measure of closeness between compact sets is the so-called Haus-

dorff distance. For a x ∈ E
n and a compact X ⊂ E

n, we write d(x,X) to denote the
minimal distance between x and the points of X. If K and C are compact sets in E

n,

then their Hausdorff distance is

(3.1) δH(K,C) = max
{

max
x∈K

d(x,C),max
y∈C

d(y,K)
}
.

In the case when C and K are convex, the maximum of d(x,C) among x ∈ K is

attained at some extreme point of K. We always consider the space of compact sets
as the metric space induced by the Hausdorff distance that is readily a metric. In
particular we say that a sequence {Km} of compact sets tends to a compact set C if
limm→∞ δH(Km,C) = 0, and clearly C is convex if every Km is convex. For the main

properties of the Hausdorff distance, see [19]. For example, the Blaschke selection
theorem says that if {Km} is a sequence of compact convex sets that are contained in a
fixed ball, then {Km} has a subsequence {Km ′} that tends to some compact convex set
C . In addition the volume, surface area and the mean width are continuous functions

of convex bodies. This latter property follows from the following fact: if the convex
bodies K and C contain Bn, then

[1 + δH(K,C)]−1K ⊂ C ⊂ [1 + δH(K,C)] · K.

Let F̃
n
r denote the family of all C ∈ F

n
r satisfying extC ⊂ rSn−1. Then

Pn
r ,Q

n
r ,W

n
r ∈ F̃

n
r .

Lemma 3.1 Let 1 < r < 2 and let 0 < µ < 1
4

√
r − 1. If C ∈ F̃n

r , then there exists a

polytope M ∈ F̃n
r such that the distance between any two vertices of M is at least µ, and

M satisfies δH(M,C) ≤ 4µ
√

r − 1.

Proof Let x1, . . . , xk be a maximal system of points of rSn−1such that d(xi, x j) ≥ µ
for i 6= j. Now the vertices of M are the xi ’s whose distance from some extreme point
of C is at most 2µ.
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First we show that M contains Bn. Let H+ be any closed half space that avoids∫
Bn, and whose bounding hyperplane touches Bn. Then H+ contains some extreme

point y of C , hence there exists a z ∈ rSn−1 of distance at most µ from y satisfying
that rSn−1 ∩ (z + µBn) ⊂ H+. Since z + µBn contains some xi that is then of distance
at most 2µ from y, we conclude Bn ⊂ M.

Next we estimate the Hausdorff distance. If y is an extreme point of C , then its
distance from some vertex xi of M is at most 2µ, hence

d(y,M) ≤ d(y, conv{xi,B
n}) ≤ 2µ ·

√
r2 − 1

r
.

The analogous argument for d(xi,C) where xi is any vertex of M completes the proof
of Lemma 3.1.

Let us remark that a result of R. Schneider [18] about approximation of smooth
convex bodies by inscribed polytopes of restricted number of vertices with respect to
the Hausdorff distance yields the following statement. If N(r) is the minimal number

of vertices of polytopes in F̃n
r , then N(r) ∼ c(n) · (r−1)−

n−1
2 where c(n) is an explicit

constant depending on n.

4 Proof of Theorem 2.2

The proof of Theorem 2.2 will use Lemma 4.3, whose proof in turn is prepared by
verifying Proposition 4.1.

Proposition 4.1 Let z1, . . . , zn+1 be the vertices of a regular simplex in E
n with

‖zi‖ = 1, i = 1, . . . , n + 1, let e1, . . . , en be an orthonormal basis in E
n, and let

a1, . . . , an ∈ R. Then there exists i0 such that

n∑

j=1

a2
j〈zi0

, e j〉2 ≤ 1

n

n∑

j=1

a2
j .

Proof We think that E
n is embedded into E

n+1 as a linear subspace, and let y be one
of the unit normals to E

n in E
n+1. In particular,

yi =

√
n

n + 1
zi +

√
1

n + 1
y, i = 1, . . . , n + 1,

form an orthonormal basis of E
n+1. For any e j , we have 〈e j , yi〉 =

√
n

n+1
〈e j , zi〉 for

i = 1, . . . , n + 1, hence

1 = ‖e j‖ =

n+1∑

i=1

〈yi , e j〉2
=

n

n + 1

n+1∑

i=1

〈zi, e j〉2.
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It follows that

n+1∑

i=1

n∑

j=1

a2
j〈zi, e j〉2

=

n∑

j=1

a2
j

n+1∑

i=1

〈zi , e j〉2
=

n + 1

n

n∑

j=1

a2
j ,

which in turn yields the existence of zi0
.

For a linear map A, we recall a general fact that follows easily from the principal

axis theorem applied to At A:

Fact 4.2 (Polar decomposition) Let A : E
n → E

n be a linear map. Then there are
orthogonal maps U ,V : E

n → E
n and a diagonal map D : E

n → E
n with diagonal

elements a1 ≥ a2 ≥ · · · ≥ an ≥ 0 such that A = U DV . The diagonal elements of D

are unique and called the singular numbers of A.

We recall that the centroid of a bounded measurable set M in E
n is the point

c =
1

V (M)

∫

M

x dx,

and for any y ∈ E
n, we have

(4.1)

∫

M

〈x − c, y〉 dx = 0.

We note that if S = conv{x1, . . . , xn+1} and T = conv{z1, . . . , zn+1} are simplices

in E
n whose centroids are the origin o, then

∑n+1
i=1 xi = o =

∑n+1
i=1 zi , hence there

exists a unique linear map A with A(zi) = xi , i = 1, . . . , n + 1.

Lemma 4.3 For r > 0, let S = conv{x1, . . . , xn+1} be a simplex in E
n with ‖xi‖ ≥ r,

i = 1, . . . , n + 1 and with its centroid at the origin o, and let T = conv{z1, . . . , zn+1}
be a regular simplex in E

n with ‖zi‖ = 1, i = 1, . . . , n + 1. If A is the linear map with

A(zi) = xi , i = 1, . . . , n + 1, and a1, . . . , an are the singular numbers of A, then

n∑

j=1

a2
j ≥ nr2.

Proof Applying orthogonal transformations to S and T changes neither the condi-

tions on S and T nor the singular numbers of A, hence we may assume that A = D

where D is the diagonal matrix with diagonal elements a1, . . . , an.
Let e1, . . . , en be the corresponding orthonormal basis in E

n. By Proposition 4.1

there exists i0 such that

1

n

n∑

j=1

a2
j ≥

n∑

j=1

a2
j〈zi0

, e j〉2
=

n∑

j=1

〈Dzi0
, e j〉2

= ‖Dzi0
‖2

= ‖xi0
‖2 ≥ r2.
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Let T be a regular simplex whose centroid is the origin. Since the positive definite
quadratic form qT(u) =

∫
T
〈x, u〉2 dx is invariant under the symmetries of T, we

deduce that qT(u) = λ〈u, u〉 for suitable λ > 0 depending on T, namely, T is in
isotropic position (see [10]). In particular if e1, . . . , en form an orthonormal basis of
E

n, then
∫

T
〈x, ei〉2dx =

∫
M
〈x, e j〉2 dx for i 6= j, therefore

(4.2)

∫

T

〈x, ei〉2 dx =
1

n

∫

T

‖x‖2 dx, i = 1, . . . , n.

Proof of Theorem 2.2 We may assume that ρ = 1, and by approximation also that
C is a polytope. Subdividing C into simplices shows that it is sufficient to prove The-
orem 2.2 for an n-simplex S = conv{x1, . . . , xn+1} with ‖xi‖ ≥ 1, i = 1, . . . , n + 1.
We write c to denote the centroid of S, and we have

∫

S

‖x‖2 dx =

∫

S−c

‖x + c‖2 dx =

∫

S−c

‖x‖2 dx + 2

∫

S−c

〈x, c〉 dx +

∫

S−c

‖c‖2 dx.

Since o is the centroid of S − c, (4.1) yields
∫

S−c
〈x, c〉 dx = 0, hence

∫

S

‖x‖2 dx =

∫

S−c

‖x‖2 dx +

∫

S−c

‖c‖2 dx ≥ ‖c‖2V (S).

Now if ‖c‖2 ≥ 1
4n

, then Theorem 2.2 readily follows. Therefore to prove Theorem 2.2,
it is sufficient to verify that if ‖c‖2 ≤ 1

4n
, then

(4.3)

∫

S−c

‖x‖2 dx ≥ 1

9n
·V (S).

It follows by the triangle inequality that the vertices xi − c, i = 1, . . . , n + 1 of S− c

satisfy

‖xi − c‖ ≥ 1 − 1

2
√

n
.

Let T = conv{z1, . . . , zn+1} be a regular simplex with ‖zi‖ = 1 and let A be the
linear map defined by A(zi) = xi − c. We fix an orthonormal basis e1, . . . , en of
E

n. Possibly after applying an orthogonal transformation to T, we may assume that
the polar decomposition of A is of the form A = U D, where U is an orthogonal

transformation, and D is a diagonal map whose diagonal elements are the singular
numbers a1, . . . , an of A. After substituting x = U y, we obtain

∫

S−c

‖x‖2 dx =

∫

DT

‖y‖2 dy =

n∑

i=1

∫

DT

〈y, ei〉2 dy.

Next the substitution y = Dw leads to

∫

S−c

‖x‖2 dx =

n∑

i=1

∫

T

〈Dw, ei〉2 det(D) dw = det(D)

n∑

i=1

a2
i

∫

T

〈w, ei〉2 dw.
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Since T is in isotropic position (see (4.2)), we deduce by
(

1 − 1
2
√

n

) 2
> 1

4
and by

Lemma 4.3 that

∫

S−c

‖x‖2 dx =
det(D)

n
·
∫

T

‖w‖2 dw ·
n∑

i=1

a2
i ≥

det(D)

4
·
∫

T

‖w‖2 dw.

In order to estimate
∫

T
‖w‖2 dw from below, we recall the Stirling formula in the

form (see [1])
tt

et

√
2π t < Γ(t + 1) <

tt

et

√
2π(t + 1),

which in turn yields

V (T) =

√
n + 1

Γ(n + 1)

( n + 1

n

) n/2

>
3

2
· en

nn
· 1√

2π
;

V (Bn) =
πn/2

Γ( n
2

+ 1)
<

1√
2
· en/2πn/2

nn/2
· 1√

2π
.

It follows by considering the part of T outside
√

e
πn

Bn that

∫

T

‖w‖2 dw ≥
(

1 − 2

3
√

2

) e

πn
·V (T) >

4

9n
V (T).

Therefore we conclude (4.3) by

∫

S−c

‖x‖2 dx ≥ det D

9n
·V (T) =

1

9n
V (S),

which in turn completes the proof of Theorem 2.2.

5 Some Preliminary Observations Concerning Theorem 2.1

We assume the dimension satisfies n ≥ 3 for the whole section. The aim of the section
is first to outline the basic idea of the proof of Theorem 2.1, and then to provide a
“raw” form (see Lemma 5.1). Finally we will prove Lemma 5.2, which helps to find a
suitable congruent copy of a given patch on Sn−1.

When determining the asymptotics of the volume, surface, and mean width dif-

ference, we will replace the optimal convex bodies in F
n
r by polytopes with the help

of Lemma 3.1. After fixing a small ε > 0, we need estimates up to a factor 1 + O(ε)
for any r > 1 very close to 1. Since any facet of the extremal bodies is of diameter

at most 2
√

r2 − 1, we will consider patches of size
√

r−1
ε . A very useful property of

configurations in E
n−1 is that they can be dilated, hence we transfer the integrals over

Sn−1 to integrals over E
n−1. In addition, in the cases of volume and surface area, we

substitute the patches on Sn−1 by patches on paraboloids because paraboloids better
suit dilation in E

n−1.
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In this section we prove two auxiliary statements, Lemma 5.1, which is a raw form
of Theorem 2.1, and Lemma 5.2, which allows choosing suitable patches on Sn−1. Let

r ∈ (1, 2). We write πSn−1 to denote the radial projection into Sn−1, hence if F ⊂ rBn

is a compact convex set with aff F ∩ int Bn
= ∅, then for any x, y ∈ F,

‖πSn−1 (x) − πSn−1 (y)‖ ≤ ‖x − y‖ ≤ r2 · ‖πSn−1 (x) − πSn−1 (y)‖.

Given a polytope P ∈ F̃
n
r , let F1, . . . , Fk be the facets of P. For i = 1, . . . , k, we write

xi ∈ Sn−1 to denote the unit exterior normal to Fi , and νi to denote the distance of
aff Fi and Bn, moreover we define zi = (1 + νi)xi ∈ aff Fi . If y ∈ Fi and x = πSn−1 (y),
then ‖y − x‖ =

1+νi

〈x,xi〉 − 1, therefore the formula (6.3) proved by J. R. Sangwine-

Yager [17] with X = Sn−1 and Y = ∂P yields

V (P) −V (Bn) =
1

n

k∑

i=1

∫

πSn−1 (Fi )

(1 + νi)
n

〈x, xi〉n
− 1 dx

=

k∑

i=1

∫

Fi

( 1

2
‖x − zi‖2 + νi

)
dx + O((r − 1)2).

(5.1)

Concerning the mean width, let v1, . . . , vl ∈ Sn−1 be the points such that rv1, . . . , rvl

are the vertices of P. We write Q to denote the polytope determined by the tangent
hyperplanes at v1, . . . , vl ∈ Sn−1, and G j to denote the facet of Q containing v j for

j = 1, . . . , l. Thus

M(P) − M(Bn) =
2

S(Bn)

l∑

j=1

∫

π
Sn−1 (G j )

〈x, rv j〉 − 1 dx

= 2(r − 1) − 1

S(Bn)

l∑

j=1

∫

π
Sn−1 (G j )

‖x − v j‖2 dx

+ O((r − 1)2).

(5.2)

Let us show that the orders of V (Pn
r )−V (Bn), S(Qn

r )−S(Bn), and M(W n
r )−M(Bn)

are all r − 1.

Lemma 5.1 If 1 < r < r0, then

c1

n
· S(Bn)(r − 1) < V (Pn

r ) −V (Bn) <
c2 ln n

n
· S(Bn)(r − 1),

c1 · S(Bn)(r − 1) < S(Qn
r ) − S(Bn) < c2 ln n · S(Bn)(r − 1),

c1

n
· (r − 1) < M(W n

r ) − M(Bn) <
c2 ln n

n
· (r − 1),

where c1, c2 > 0 are absolute constants, and r0 > 1 depends on n.
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Proof To prove the upper bounds, we start with the mean width. Since M(W n
r ) ≤

M(rBn) = M(Bn) + 2(r − 1), we may assume that n is large. For v ∈ Sn−1 and ϕ ∈
(0, π/2), we define B(v, ϕ) = {x ∈ Sn−1 : 〈v, x〉 ≥ cosϕ}. Projecting orthogonally
to the tangent hyperplane at v shows that

(5.3) H
n−1(Bn−1) sinn−1 ϕ < H

n−1(B(v, ϕ)) < H
n−1(Bn−1)

sinn−1 ϕ

cosϕ
.

Let ψ = arccos 1/r. According to K. Böröczky, Jr. and G. Wintsche [7], there exists a
covering of Sn−1 by spherical balls B(v1, ψ), . . . ,B(vl, ψ) such that

(5.4)

l∑

j=1

H
n−1(B(v j , ψ)) < 400n ln n · S(Bn) < n2 · S(Bn).

Let P be the convex hull of rv1, . . . , rvl. Since for any x ∈ Sn−1 there exists v j with
〈rv j , x〉 ≥ 1, we deduce that Bn ⊂ P, hence P ∈ Fn

r . In the following we use the
notation of (5.2), and define

Ω =

⋃

j=1,...,l

B
(

v j ,
(

1 − 4 ln n

n

)
ψ

)
.

Since (1 − 4 ln n
n

)n−1 < 2/n4 for large n, we deduce by (5.3) and (5.4) that if r is close
to 1, then

(5.5) H
n−1(Ω) <

3

n2
· S(Bn).

We have ψ ∼
√

2(r − 1). Therefore if r is close to 1, then

1 − cos
[

(1 −
( 4 ln n

n

)
ψ

]
≥

(
1 − 4 ln n

n

)
· 1

2

[(
1 − 4 ln n

n

)
ψ

] 2

≥
(

1 − 4 ln n

n

) 4

(r − 1).

In particular if x ∈ πSn−1 (G j)\Ω, then

‖x − v j‖2 ≥ 2 ·
(

1 − 4 ln n

n

) 4

(r − 1) ≥
(

2 − 32 ln n

n

)
· (r − 1).

Therefore we conclude by (5.2) and (5.5) that if r is close to 1, then

M(P) − M(Bn) < 2(r − 1) −
(

1 − 3

n2

)(
2 − 32 ln n

n

)
(r − 1) + 1

n
(r − 1).

In particular, if n is large enough and r ∈ (1, r0) for suitable r0 > 1 depending on n,
then

M(P) − M(Bn) <
33 ln n

n
· (r − 1).
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This settles the case of the mean width. In addition, the upper bounds of Lemma 5.1
in the cases of surface area and volume follow from the consequences

S(P)

S(Bn)
≤

( M(P)

M(Bn)

) n−1

and
V (P)

V (Bn)
≤

( M(P)

M(Bn)

) n

of the Alexander–Fenchel inequality for mixed volumes (see (1.1) and [19]).
To prove the lower bounds, we first consider the case of the volume. According to

Lemma 3.1, it is sufficient to prove the lower bound for any polytope P ∈ Fn
r with

ext P ⊂ rSn−1 where we use the notation of (5.1) for P. It is enough to show that for
each Fi ,

(5.6)

∫

Fi

(
1
2
‖x − zi‖2 + νi

)
dx >

c̃

n
· Hn−1(πSn−1 (Fi)) · (r − 1)

where c̃ is a positive absolute constant. If νi ≥ r−1
n

, then (5.6) readily holds. Oth-

erwise aff Fi intersects Bn in an (n − 1)-ball Bi of radius larger than
√

r − 1. Since

the vertices of Fi lie on ∂Bi , Theorem 2.2 completes the proof of (5.6), and in turn of
the lower bound in Lemma 5.1 in the case of the volume. Finally the cases of surface
area and the mean width follow from the Alexander–Fenchel inequality for mixed

volumes (see (1.1) and [19]) in the form

S(Qn
r )

S(Bn)
≥

( V (Qn
r )

V (Bn)

) n−1
n

and
M(W n

r )

M(Bn)
≥

( V (W n
r )

V (Bn)

) 1
n

,

and the inequalities V (Qn
r ) ≥ V (Pn

r ) and V (W n
r ) ≥ V (Pn

r ).

An essential step of the arguments for all the three quermassintegrals is to find the

right copy of a given patch on Sn−1. Let us recall that SO(n) denotes the group of
orientation preserving orthogonal transformations of E

n (see [19]).

Lemma 5.2 If f is a bounded measurable function on Sn−1 and X ⊂ Sn−1 is measur-

able with H
n−1(X) > 0, then there exist g1, g2 ∈ SO(n) such that

∫

g1X

f (x) dx ≤ Hn−1(X)

S(Bn)
·
∫

Sn−1

f (x) dx ≤
∫

g2X

f (x) dx.

Proof We write µn to denote the (invariant) Haar measure on SO(n) normalized
in a way such that µ1(SO(1)) = 2π, and for any measurable Z ⊂ Sn−1 and x ∈ Sn−1,

µn{g ∈ SO(n) : g−1x ∈ Z} = µn−1(SO(n − 1)) · Hn−1(Z).

In addition we write χZ to denote the characteristic function of a set Z ⊂ Sn−1. For

g ∈ SO(n), we define h(g) =
∫

gX
f (x) dx =

∫
Sn−1 χX(g−1x) · f (x) dx. It follows by

the Fubini theorem that
∫

SO(n)

h(g) dµn(g) =

∫

Sn−1

∫

SO(n)

χX(g−1x) · f (x) dµn(g)dx

= µn−1(SO(n − 1)) · Hn−1(X) ·
∫

Sn−1

f (x) dx.
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Therefore there exist g1, g2 ∈ SO(n) satisfying

h(g1) ≤ Hn−1(X)

Hn−1(Sn−1)
·
∫

Sn−1

f (x) dx ≤ h(g2).

6 Convex Hyper Surfaces

We will consider patches on the boundary of convex bodies. We say that an X ⊂ E
n

is a convex hypersurface if conv X is closed with non-empty interior and contains X in
its boundary, and X is the closure of its relative interior with respect to the boundary
of conv X. Moreover, the relative boundary relbd X of X is of (n − 1)-measure zero.

We write relint X to denote the relative interior of X, and uX(x) to denote some

exterior unit normal at x ∈ relint X. We note that uX(x) is unique for all x ∈ relint X

but of a set of (n − 1)-measure zero. When integrating over X, we always do it with
respect to Hn−1( · ). If the closest point x of conv X to some y lies in X, then we write
πX(y) = x. We note that if πX(y) and πX(y ′) are well defined, then

(6.1) ‖πX(y) − πX(y ′)‖ ≤ ‖y − y ′‖.
If the convex hypersurface Y ⊂ E

n is the union of F1, . . . , Fk such that each Fi is

a Jordan measurable subset of some hyperplane and has positive (n − 1)-measure,
and aff F1, . . . , aff Fk are pairwise different, then we say that a Y is a convex piecewise

linear hypersurface, and call F1, . . . , Fk the facets of Y .
For certain calculations it is useful to consider patches as graphs of functions. We

think E
n as E

n−1 × R where x = (y, t) is the point of E
n corresponding to y ∈ E

n−1

and t ∈ R, and define Bn−1
= Bn ∩ E

n−1. If Ψ ⊂ E
n−1 has non-empty interior in

E
n−1, and θ : Ψ → R is any function, then the graph of θ is

Γ(θ) = {(y, θ(y)) : y ∈ Ψ} ⊂ E
n.

In particular if Ψ and θ are convex, then Γ(θ) is a convex hypersurface.
We say that a convex hypersurface X is C2 if any point of X has a relatively open

neighbourhood on X that is congruent to the graph of some C2 function. In order
to define the principle curvatures at x0 ∈ relint X, we may assume that E

n−1 is the

tangent hyperplane to X at x0 = (y0, 0), and a neighbourhood X0 ⊂ X of x0 is
the graph of a C2 function θ on an open convex Ψ ⊂ E

n−1. Then the principle

curvatures κ1(x0), . . . , κn−1(x0) of X at x0 are the eigenvalues of the symmetric matrix
corresponding to the quadratic form representing the second derivative of θ at y0. For

x ∈ X, we defineσ0(x) = 1, and writeσ j(x) to denote the j-th symmetric polynomial
of the principal curvatures for j = 1, . . . , n − 1; namely,

σ j(x) =

∑

1≤i1<···<i j≤n−1

κi1
(x) · · ·κi j

(x).

For the rest of the section, let X be a convex C2 hypersurface, and let Y be a convex
hypersurface such that πX is defined on Y and is injective with X = πX(Y ). Moreover,
there exists η > 0 such that

(6.2) 〈uX(πX(y)), uY (y)〉 ≥ η for any y ∈ relint Y .
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It follows by (6.1) that πX(Y ) is also a convex hypersurface with Hn−1(πX(Y )) ≤
Hn−1(Y ). In addition if Z ⊂ relintπX(Y ) is a convex hypersurface, then the subset

Z ′ of Y satisfying πX(Z ′) = Z is a convex hypersurface by (6.2).
If πX(y) = x for y ∈ relint Y , then we write y = xY and define rX,Y (x) = ‖y − x‖.

We define Ω(X,Y ) to be the union of all segments conv{y, πX(y)} for y ∈ Y , which
satisfies

(6.3) V (Ω(X,Y )) =

n∑

j=1

1

j

∫

X

rX,Y (x) j · σ j−1(x) dx

according to J. R. Sangwine-Yager [17]. In addition the method of K. Böröczky, Jr.
and M. Reitzner [5] yields the following formula for the difference of the (n − 1)-
measure of patches.

Lemma 6.1 Using the notation as above,

H
n−1(Y ) − H

n−1(X) =

∫

X

( 1

〈uX(x), uY (xY )〉 − 1
)

dx

+

n−1∑

j=1

∫

X

rX,Y (x) j σ j(x)

〈uX(x), uY (xY )〉 dx.

Proof For small µ > 0, we write Ωµ to denote the family of points z ∈ E
n such

that the closest point of conv Y to z lies in relint Y , and ‖πY (z) − z‖ ≤ µ. Next let
Xµ be the family of points x ∈ X with d(x, relbd X) ≥ 2µ, and let Yµ ⊂ Y satisfy
πX(Yµ) = Xµ. For any x ∈ Xµ, there exists a unique boundary point z ∈ Ωµ with
d(z,Y ) = µ and πX(z) = x, and we write Zµ to denote the family of all such z as

x runs through Xµ. Now relbd Xµ might be positive for some but only a countable
family {µi} of µ > 0. Therefore Xµ and Zµ are convex hypersurfaces for µ > 0,
µ 6∈ {µi}, with πX(Zµ) = Xµ. In addition if xY ∈ Y is a smooth point of Y for
x ∈ Xµ, then rXµ,Zµ(x) ≤ rX,Y (x) + µ

η (cf. (6.2)), and

rXµ,Zµ(x) = rX,Y (x) +
µ

〈x, xY 〉
+ o(µ) as µ tends to zero.

Since the πX image of singular points of Y are of (n − 1)-measure zero, we deduce by
(6.3) and as X and Y are Jordan measurable that

H
n−1(Y ) = lim

µ→0
µ6∈{µi}

V (Ωµ)

µ
= lim

µ→0
µ6∈{µi}

V (Ω(Xµ,Zµ)) −V (Ω(Xµ,Yµ))

µ

=

n∑

j=1

∫

X

rX,Y (x) j−1 · σ j−1(x)

〈x, xY 〉
dx.

In turn we conclude Lemma 6.1.
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7 Near Spherical Convex Hyper Surfaces

For ε ∈ (0, 1
16

), let ρ ∈ (0, ε2), and let Ψ ⊂ √
εBn−1 be an (n−1)-dimensional convex

body with o ∈ relint Ψ. In addition let θ be a non-negative C2 function defined on
Ψ such that writing ly to denote the linear form representing the derivative of θ, and

qy to denote the quadratic form representing the second derivative of θ at y ∈ Ψ,
we have θ(o) = 0, lo(z) = 0, and ‖z‖2 ≤ qy(z) ≤ (1 + ε) · ‖z‖2 for z ∈ E

n−1. We
define X ′

= Γ(θ), and write κ1(x), . . . , κn−1(x) to denote the principle curvatures at
x ∈ relint X ′. We note that if y ∈ Ψ and x = (y, θ(y)), then

(7.1) uX ′(x) = (1 + ‖ly‖2)−1/2 · (ly ,−1).

We deduce, by the Taylor formula for y, z ∈ Ψ, x = (y, θ(y)),

θ(z) − θ(y) − ly(z − y) =
1
2
qy+t(z−y)(z − y) for t ∈ (0, 1),(7.2)

=
1
2
‖z − y‖2 + O(ε)‖y − z‖2,

‖lz − ly‖ = ‖z − y‖ + O(ε)‖z − y‖,
κi(x) = 1 + O(ε), i = 1, . . . , n − 1.(7.3)

Now for any x ∈ X ′, X ′ can be thought as the graph of a suitable C2 function defined
on the tangent hyperplane at x, hence the discussion above and (7.1) show that if

x, x ′ ∈ relint X ′, then

(7.4) 〈uX ′(x), uX ′(x ′)〉 = 1 − 1
2
‖x − x ′‖2 + O(ε)‖x − x ′‖2.

Next let X ⊂ X ′ be a convex hypersurface such that

d(x, relbd X ′) ≥ 4
√
ρ for x ∈ X.

In addition let Y be a convex hypersurface such that πX ′ is defined on Y and is injec-
tive with X = πX ′(Y ), and infy∈relint Y 〈uX(πX(y)), uY (y)〉 > 0. Therefore we may use
the notation of Section 6. In particular we assume that

(7.5) rX,Y (x) ≤ 2ρ for x ∈ relint X.

Naturally (6.3) and Lemma 6.1 are very general, and we provide three types of
estimates based on them which will be useful in the later part of the paper. We write
ξ = (o,−1) to denote the downwards unit normal to E

n−1. Since all eigenvalues of

qy are at most 2 for any y ∈ Ψ, there is a ball of radius 1/2 touching X from inside at
any x ∈ X such that the ball intersects X only in x. It follows by (7.5) that

(7.6) 〈uX(x), uY (xY )〉−1 ≤ 1 + 4ρ,

which in turn yields

(7.7) 〈ξ, uX ′(x)〉 = 1 + O(ε) for x ∈ relint X ′.
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The first type of estimate is a rather rough one; namely, (7.3), (7.5) and (7.6) imply

V (Ω(X,Y )) = O(ρ) · Hn−1(X),(7.8)

H
n−1(Y ) − H

n−1(X) = O(ρ) · Hn−1(X).(7.9)

The second type of estimate is needed when Y is a convex piecewise linear hyper-
surface. We write F1, . . . , Fk to denote the facets of Y , and v1, . . . , vk to denote the
corresponding exterior unit normals. We assume that for i = 1, . . . , k, vi = uX ′(xi)
for some xi ∈ X ′, and xi + νivi ∈ aff Fi for some νi ≥ 0. Since there exists a ball

of radius 2 that touches X at xi and contains X if x ∈ πX(Fi), then the condition
rX,Y (x) ≤ 2ρ yields that ‖x − xi‖ ≤ 4

√
ρ, hence

rX,Y (x) = νi + 1
2
‖x − xi‖2 + O(ερ)

〈uX(x), uY (xY )〉−1
= 〈uX(x), uX ′(xi)〉−1

= 1 +
1

2
‖x − xi‖2 + O(ερ).

We conclude by (6.3) and Lemma 6.1 that

V (Ω(X,Y )) =

k∑

i=1

∫

πX (Fi )

(
νi +

1

2
‖x − xi‖2

)
dx

+ O(ερ)Hn−1(X),

H
n−1(Y ) − H

n−1(X) =

k∑

i=1

∫

πX (Fi )

(
(n − 1)νi +

n

2
‖x − xi‖2

)
dx(7.10)

+ O(ερ) H
n−1(X).

Finally Lemma 7.2 provides the third type of estimate, which allows us to shift be-
tween patches on spheres and on paraboloids. Its proof uses the following statement.

Proposition 7.1 Let z1, z2 ∈ E
n−1 such that ‖z2 − z1‖ ≤ τ for some τ > 0, and let Y

be the graph of a convex positive function on z1 + 2τBn−1 such that 〈uY (y), ξ〉 ≥
√

3/2
for y ∈ Y where ξ = (o,−1) as above. If y1, y2 ∈ Y satisfy that 〈 zi−yi

‖zi−yi‖ , ξ〉 ≥
√

3/2

for i = 1, 2 then

‖y1 − y2‖ ≤ 2 · [‖z1 − z2‖ + ‖z1 − y1‖ · ∠(z1 − y1, o, z2 − y2)].

Proof We define y ′
1 ∈ Y by the property that the vectors z1 − y ′

1 and z2 − y2 are
parallel, and prove

(7.11) ‖y1 − y ′
1‖ ≤ 2 ‖z1 − y1‖ · sin ∠(y1, z1, y ′

1).

Let σ be the arc that is the intersection of the triangle y1z1 y ′
1 and Y , and let y be the

point of σ farthest from the segment y1 y ′
1. Then the tangent line to σ at y is parallel

to the line y1 y ′
1, hence 〈uY (y), ξ〉 ≥

√
3/2 yields that the angle of y ′

1 − y1 and ξ is
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between π
3

and 2π
3

. Thus the angle of the triangle z1 y1 y ′
1 at y ′

1 is between π
6

and 5π
6

,
therefore the law of sines implies (7.11).

Now an argument as above shows that ‖y2 − y ′
1‖ ≤ 2 ‖z2 − z1‖, which in turn

yields Proposition 7.1 by (7.11).

Lemma 7.2 Given ε ∈ (0, ε0) and ρ ∈ (0, ε8) where ε0 ∈ (0, 1
16

) depends only on

n, let the convex functions h, f1, f2 on
(20

√
ρ)

ε Bn−1 satisfy that f2(o) = 0, f ′
2 (o) = 0, f1

and f2 are C2, and if y ∈ (3
√
ρ)

ε Bn−1. Then on the one hand,

h(y) ≤ f1(y) ≤ f2(y) ≤ h(y) + 2ρ and f1(y) ≥ 0,

and on the other hand, writing qi,y to denote the quadratic form representing the second

derivative of fi at y for i = 1, 2, we have

‖z‖2 ≤ qi,y(z) ≤ (1 + ε8) · ‖z‖2 for z ∈ E
n−1.

We define Y = Γ(h) and Xi = Γ( fi), i = 1, 2 (see Figure 1). For a compact convex

C ⊂ E
n−1 satisfying

√
ρ

4ε Bn−1 ⊂ C ⊂ 2
√
ρ

ε Bn−1 and for i = 1, 2, we write X̃i = πXi
(C)

and Yi to denote the subset of Y satisfying X̃i = πXi
(Yi). Then

H
n−1(X̃i) = H

n−1(C) + O(ε) · Hn−1(C) for i = 1, 2,(7.12)

H
n−1(Y1) − H

n−1(X̃1) = H
n−1(Y2) − H

n−1(X̃2) + O(ερ)Hn−1(C),(7.13)

V (Ω(X̃1,Y1)) = V (Ω(X̃2,Y2)) + O(ερ) · Hn−1(C).(7.14)

Y

X1

X2

X̃1

X̃2

CE
n−1

Figure 1

https://doi.org/10.4153/CJM-2008-001-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-001-x


Convex Bodies of Minimal Volume, Surface Area and Mean Width 19

Proof It follows by (7.7) that if ε0 is sufficiently small, then 〈uXi
(x), ξ〉 ≥

√
3

2
for any

x ∈ relint Xi . In addition if y = (z, h(z)) for z ∈ C and u is an exterior unit normal
to Y at y, then d(y,X1) ≤ ρ and (7.2) yield that there exists x ∈ X1 ∩ (y + 4

√
ωρBd)

with u = uX1
(x), hence 〈u, ξ〉 ≥

√
3

2
, as well. In addition the conditions on h, f1, f2

and applying (7.2) to f1, f2 yield that

h(z) > 0 if z ∈ C\( 1
2

C),(7.15)

f2(z) ≤ 4ρ

ε2
if z ∈ C,(7.16)

f2(z) − f1(z) ≤ 4ε6ρ if z ∈ C.(7.17)

Therefore combining (7.9), (7.16), and ρ/ε2 < ε leads to (7.12). Moreover, writing

γ ′
1(z) = X1 ∩ conv{z, πX2

(z)} for z ∈ C , we deduce by (7.9) and (7.17) that if ε0 is
small enough, then

(7.18) H
n−1(γ ′

1(C)) − H
n−1(X̃2) = O(ερ) · Hn−1(C).

Next we prove

(7.19) H
n−1(Y1) − H

n−1(Y2) = O(ερ) · Hn−1(C).

Let z ∈ ∂C . For i = 1, 2, γi(z) = Y ∩ conv{z, πXi
(z)} exists by (7.15), hence the

relative boundary of Yi is γi(∂C). It follows by (7.16) that ‖z − γi(z)‖ ≤ 4ρ
ε2 , and the

discussion above shows that

〈 z − γi(z)

‖z − γi(z)‖ , ξ
〉

≥
√

3

2
.

Next we define xi = πXi
(z). Since d(γ ′

1(z),X2) ≤ 4ε6ρ by (7.17), and there exists a
ball of radius 1

2
touching X2 from inside at x2, we deduce that the angle α2 of uX2

(x2)
and uX1

(γ ′
1(z)) is at most 12ε3√ρ. It follows that ‖γ ′

1(z) − x1‖ = O(ε3√ρ)‖γ ′
1(z) −

z‖ = O(ερ
3
2 ), hence the angle α1 of uX1

(x1) and uX1
(γ ′

1(z)) is O(ερ
3
2 ) according to

(7.4). Therefore choosing ε0 small enough, we have

∠(z − γ1(z), o, z − γ2(z)) ≤ α1 + α2 = O(ε3√ρ) < 1
8
ε2√ρ.

In particular, it follows by Proposition 7.1 and ‖γ1(z) − z‖ ≤ 4ρ
ε2 that

(7.20) ‖γ2(z) − γ1(z)‖ ≤ ρ3/2,

hence (7.19) is a consequence of

(7.21) H
n−1

[
Y ∩

(
γ1(relbd C) + ρ

3
2 Bn

)]
= O(ερ) · Hn−1(C).

To prove (7.21), let τ =

√
ρ

4ε , and let z1, . . . , zk ∈ ∂C be a maximal family of points

with the property that ‖zi − z j‖ ≥ 3ρ
3
2 for i 6= j. Since zi + ρ

3
2 Bn−1 are pairwise
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disjoint for i = 1, . . . , k, and each is contained in the difference of (1 + ρ3/2

τ )C and

(1 − ρ3/2

τ )C , we deduce that

(7.22) k = O
( ρ3/2

τ

)
· Hn−1(C) · (ρ3/2)−(n−1)

= O(ερ) · Hn−1(C) · (ρ3/2)−(n−1).

Now let y ∈ Y satisfy ‖y − γ1(z)‖ ≤ ρ3/2 for some z ∈ ∂C . There exists some zi

such that ‖zi − z‖ ≤ 3ρ3/2, hence ‖πX1
(zi) − πX1

(z)‖ ≤ 3ρ3/2. In particular (7.4)
implies that the angle between zi − γ1(zi) and z − γ1(z), which is the angle between
uX1

(πX1
(zi)) and uX1

(πX1
(z)), is at most 4ρ3/2 (after choosing ε0 small enough). Thus

Proposition 7.1 yields that ‖γ1(zi)−γ1(z)‖ ≤ 7ρ3/2, hence ‖γ1(zi)− y‖ ≤ 8ρ3/2. We
deduce by (7.22) that

H
n−1

[
Y ∩

(
γ1(∂C) + ρ

3
2 Bn

)]
≤

k∑

i=1

H
n−1

[
Y ∩

(
γ1(zi) + 8ρ

3
2 Bn

)]

≤ k · S(8ρ
3
2 Bn) = O(ερ) · Hn−1(C).

We conclude (7.21), and in turn (7.19).

Next applying the argument above to X1 as Y , γ ′
1 as γ2 and πX1

as γ1, we deduce
first the analogue of (7.20), namely,

(7.23) ‖γ ′
1(z) − πX1

(z)‖ ≤ ρ
3
2 ,

and secondly the analogue of (7.19), namely,

(7.24) H
n−1(γ ′

1(C)) − H
n−1(X̃1) = O(ερ) · Hn−1(C).

Therefore combining (7.18), (7.19) and (7.24) yields (7.13).
For (7.14), we observe that X1 cuts Ω(X̃2,Y2) into Ω

′
= Ω(X̃2, γ

′
1(C)) and the

closure Ω
′ ′ of Ω(X̃2,Y2)\Ω ′. It follows by (7.8) and (7.17) that

(7.25) V (Ω ′) = O(ερ) · Hn−1(X̃2) = O(ερ) · Hn−1(C).

We deduce by (7.23) and f1(y) − h(y) ≤ 2ρ that

[Ω(X̃1,Y1)\Ω ′ ′] ∪ [Ω ′ ′\Ω(X̃1,Y1)] ⊂ πX1
(∂C) + 5ρBn.

Let z̃1, . . . , z̃k̃ ∈ ∂C be a maximal system of points in ∂C such that ‖z̃i − z̃ j‖ ≥ 3ρ
for i 6= j. We deduce using an argument as above

k̃ = O
( ρ
τ

)
· Hn−1(C) · ρ−(n−1)

= O(ερ3/2) · Hn−1(C) · ρ−n.

Let x ∈ E
n satisfy ‖x − πX1

(z)‖ ≤ 5ρ for z ∈ ∂C . Now there exists z̃i ∈ ∂C such that
‖z̃i − z‖ ≤ 3ρ, hence ‖x − πX1

(z̃i)‖ ≤ 8ρ. It follows that

∣∣V (Ω(X̃1,Y1)) −V (Ω ′ ′)
∣∣ ≤

k̃∑

i=1

V (πX1
(z̃i) + 8ρBn)

≤ k̃ ·V (8ρBn) = O(ερ) · Hn−1(C).

(7.26)

Since V (Ω(X̃2,Y2)) = V (Ω ′) + V (Ω ′′), combining (7.25) and (7.26) completes the
proof of Lemma 7.2.
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8 Transfer Lemma for Paraboloids for the Cases of Surface Area and
Volume

We will transfer integrals between patches on paraboloids and in E
n−1 using

Lemma 8.1 below. For given ω ∈ [1, 2], we consider the paraboloid that is the graph
of ϕω(y) =

ω
2
‖y‖2 on E

n−1. The derivative satisfies

(8.1) ‖∂ϕω(y)‖ = ω‖y‖ ≤ 2‖y‖,
hence if x ′

= (y ′, ϕω(y ′)) and x ′ ′
= (y ′ ′, ϕω(y ′ ′)) satisfy y ′, y ′′ ∈ tBn−1 for t > 0,

then

(8.2) ‖y ′ − y ′ ′‖ ≤ ‖x ′ − x ′ ′‖ ≤ (1 + 2t2) · ‖y ′ − y ′ ′‖.
Next let y1, . . . , yk ∈ E

n−1 and let ν1, . . . , νk ≥ 0. We observe that li(z) =

〈∂ϕω(yi), z − yi〉 + ϕω(yi) is the linear function whose graph is the tangent hyper-
plane to Γ(ϕω) at xi = (yi , ϕω(yi)), and define ψi(z) = li(z) − νi . In particular for
any z ∈ E

n−1, the Taylor formula (see (7.2)) for ϕω yields

(8.3) ϕω(z) − ψi(z) =
ω
2

(z − yi)
2 + νi .

Let Π1, . . . ,Πk be a family of pairwise non-overlapping convex polytopes in E
n−1,

which cover a convex body C ⊂ E
n−1 in a way such that each Πi ∩C has non-empty

interior, and satisfy

ω
2
‖z − yi‖2 + νi ≤ ω

2
‖z − y j‖2 + ν j for z ∈ Πi and j = 1, . . . , k.

We define ψ :
⋃k

i=1 Πi → R by ψ(z) = ψi(z) for z ∈ Πi , and observe that Y = Γ(ψ)
is a convex piecewise linear hypersurface. Let Fi be the graph of ψ above Πi , hence

F1, . . . , Fk are the facets of Y . We define X = πΓ(ϕω)(C), and assume that i = 1, . . . , k ′

are the indices satisfying that πΓ(ϕω)(Fi) intersects X in a set of positive measure for
some k ′ ≤ k. Let ν ′

i denote the distance of xi from aff Fi for i ≤ k ′.

Lemma 8.1 We use the notation as above. Let ε ∈ (0, ε0), and let ρ ∈ (0, ε2n2

)

where ε0 ∈ (0, 1
16

) depends only on n. We assume
√
ρ

4ε Bn−1 ⊂ C ⊂ 2
√
ρ

ε Bn−1 and

ω ∈ [1, 1 + ε]. Moreover,

(8.4) ω
2
‖z − yi‖2 + νi ≤ 2ρ if i = 1, . . . , k and z ∈ Πi .

If in addition the family V of the vertices of all Πi satisfies ‖y − z‖ ≥ 1
8
ε
√
ρ for y 6=

z ∈ V, then for η ∈ [0, 1] we have

k ′∑

i=1

∫

X∩πΓ(ϕω )(Fi )

ην ′
i + 1

2
‖x − xi‖2 dx =

k∑

i=1

∫

Πi∩C

ηνi + 1
2
‖z − yi‖2 dz

+ O(ερ) · Hn−1(C).

Moreover, Hn−1(C) = (1 + O(ε))Hn−1(X), and for z ∈ Πi and v = (z, ψi(z)),

i = 1, . . . , k we have

(8.5) (1 + ε)−1 · d(v,Γ(ϕω)) < νi + 1
2
‖z − yi‖2 < (1 + ε) · d(v,Γ(ϕω)).
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Proof We write πEn−1 ( · ) to denote the orthogonal projection into E
n−1. We observe

that ξ = (o,−1) is the exterior unit vector to Γ(ϕω) at the origin, and

πEn−1 (X) ⊂ C.

Let z ∈ Πi , i = 1, . . . , k, let v = (z, ψi(z)), and let x = πΓ(ϕω)(v). Combining (8.1),

(8.3) and (8.4) yields that ∠(uX(x), o, ξ) = O(
√
ρ

ε ) and ‖πEn−1 (x) − z‖ = O(
ρ
√
ρ

ε ).
Since ρ/ε2 < ε2, we deduce Hn−1(C) = (1 + O(ε))Hn−1(X) and (8.5) for small ε0.
Writing Ci to denote the orthogonal projection of πΓ(ϕω)(Fi)∩X into E

n−1 for i ≤ k ′,
it also follows that Ci ⊂ C , and

δH(Ci ,Πi ∩C) ≤ γ0 ·
ρ
√
ρ

ε

where γ0 > 0 depends only on n. In addition (8.2) and (8.3), ρ/ε2 < ε and ν ′
i =

[1 + O(ρ/ε2)] · νi imply that

k ′∑

i=1

∫

π(Fi )∩X

ην ′
i + 1

2
‖x − xi‖2 dx =

k ′∑

i=1

∫

Ci

ηνi + 1
2
‖z − yi‖2 dz + O(ερ) · Hn−1(C).

In particular Lemma 8.1 follows from the inequalities

H
n−1

(
C\

( k ′⋃
i=1

Ci

))
= O(ε) · Hn−1(C),

k ′∑

i=1

[
H

n−1(Πi\Ci) + H
n−1(Ci\Πi)

]
= O(ε) · Hn−1(C).

Since d(x,Γ(ϕω)) = O(ρ/ε2) for x ∈ C according to (8.1) and (8.3), we deduce

C\
( k ′⋃

i=1

Ci

)
⊂ ∂C + γ1

ρ
√
ρ

ε3
Bn−1 ⊂ ∂C + γ1

√
ρBn−1

for some positive constant γ1 ≥ 4 depending only on n. In addition, the diameter
of any Πi is at most 4

√
ρ ≤ γ1

√
ρ. Therefore to prove Lemma 8.1, it is sufficient to

verify the pair of inequalities

H
n−1

(
∂C + γ1

√
ρBn−1

)
= O(ε)Hn−1(C),(8.6)

∑

Πi⊂relint C

H
n−1

(
Πi ∩

(
∂Πi + γ0

ρ
√
ρ

ε
Bn−1

))
= O(ε)Hn−1(C).(8.7)

Here (8.6) readily holds by
√
ρ

4ε Bn−1 ⊂ C . We observe that if x ∈ relint Πi and

d(x, ∂Πi) = ω, then there exists an (n − 2)-face F such that x + ωBn−1 touches aff F

in a point of F. As
√
ρ

4ε Bn−1 ⊂ C , (8.7) follows from the estimate

∑

Πi⊂relint C

∑

F⊂Πi

(n−2)-face

H
n−2(F) · ρ

√
ρ

ε
= O(ε) ·

( √
ρ

ε

) n−1

.
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We write S to denote the set of (n−2)-faces of any Πi that lies in relint C , and observe
that any F ∈ S is the (n − 2)-face of exactly two Πi . Since each F ∈ S is of diameter

at most 4
√
ρ, we have H

n−2(F) < O(
√
ρn−2). Therefore writing #S to denote the

cardinality of S, (8.7) follows if

(8.8) ρ · #S = O(ε−(n−3)).

The condition on the family V of the vertices of Π
′s yields that #V = O(ε−2(n−1)).

We choose n − 1 vertices for each F ∈ S in such a way that the n − 1 vertices do
not lie in any affine (n − 3)-plane. Thus #S is the number of such (n − 1)-tuples,

which is O(ε−2(n−1)2

). Therefore (8.8), and in turn Lemma 8.1 are the consequences

of ρ < ε2n2

.

When comparing patches on paraboloids and on the sphere, we need to know how
closely paraboloids approximate the sphere. The part of Sn−1 below E

n−1 is the graph
of the function ϕ̃(y) = −

√
1 − ‖y‖2 defined on Bn−1, and if y ∈ 1

2
Bn, then

−1 + 1
2
‖y‖2 ≤ ϕ̃(y) ≤ −1 + 1

2
‖y‖2 + ‖y‖4.

It follows that if y ∈ 1
2
Bn, then

(8.9) −1 + ϕ1(y) ≤ ϕ̃(y) ≤ −1 + ϕ1+2 ‖y‖2 (y).

In addition writing qy to denote the quadratic form representing the second deriva-
tive of ϕ̃ at y, if y ∈ 1

3
Bn and z ∈ E

n−1, then

‖z‖2 ≤ qy(z) ≤ (1 + 2‖y‖2) · ‖z‖2.

9 Proof of Theorem 2.1 in the Cases of Volume and Surface Area

We assume that n ≥ 4, because if n ≤ 3, then Theorem 2.1 is covered [4] in the cases

of surface area and volume. The proofs of Theorem 2.1 in the cases of volume and
surface area follow the very same pattern. We present the argument only in the case
of the surface area, because it is the more involved case.

According to Lemma 5.1,

lim inf
r→1+

S(Qn
r ) − S(Bn)

r − 1
= θS(n)

is finite and positive. Therefore Theorem 2.1 in the case of the surface area follows if,
for any ε ∈ (0, ε̃) and r ∈ (1, r̃) where ε̃ > 0 depends on n and r̃ > 1 depends on n

and ε, there exists Qr,ε ∈ F
n
r such that

(9.1) S(Qr,ε) − S(Bn) ≤ θS(n) · (r − 1) + O(ε(r − 1)).

Here ε̃ is at most the ε0’s of Lemma 7.2 and Lemma 8.1. First we define r̃. Namely, it

follows by the definition of θS(n) that there exists r̃ ∈ (1, 1 + ε2n2

) such that

S(Qn
r̃ ) − S(Bn) ≤ θS(n) · (r̃ − 1) + O(ε(r̃ − 1)).
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Let r ∈ (1, r̃) which we fix for the rest of the proof of Theorem 2.1. We define
now an auxiliary circumscribed polytope that will determine patches on Sn−1 of size√

r − 1/ε. We choose a maximal family s1, . . . , sm ∈ Sn−1 with the property that
‖si − s j‖ ≥

√
r − 1/ε for i 6= j, and we write G1, . . . ,Gm to denote the facets of the

circumscribed polytope whose facets touch Bn at s1, . . . , sm. Writing Bn−1
j to denote

the unit (n−1)-ball of centre o contained in the linear (n−1)-space parallel to aff G j ,

we have

(9.2) s j +
(1 + ε)

√
r − 1

4ε
Bn−1

j ⊂ G j ⊂ s j +

√
r − 1

ε
Bn−1

j .

The Qr,ε in (9.1) will be defined as the convex hull of Γ1, . . . ,Γm constructed in
Proposition 9.1 (see (9.16)).

Proposition 9.1 Let j = 1, . . . ,m. Using the notation as above, there exists a convex

piecewise linear surface Γ j satisfying the following properties: Γ j intersects G j and the

orthogonal projection of Γ j into aff G j covers G j . In addition if F is a facet of Γ j , then

aff F does not intersect int Bn, the orthogonal projection of F into aff G j intersects G j , F

is an (n − 1)-polytope, and if v is a vertex of F, then

(9.3) r − 1 ≤ d(v,Bn) ≤ 2(r − 1).

Moreover, if X j = πSn−1 (G j) and Y j ⊂ Γ j satisfies X j = πSn−1 (Y j), then

H
n−1(Y j) − H

n−1(X j) ≤
H

n−1(X j)

S(Bn)
· θS(n) (r − 1) + O(ε) (r − 1) · Hn−1(X j).

Proof We recall that F̃n
r denotes the family of all C ∈ Fn

r satisfying ext C ⊂ rSn−1,

and that Qn
r ∈ F̃n

r . Lemma 3.1 provides a polytope Q̃ε ∈ F̃n
r̃ such that the distance

between any two vertices of Q̃ε is at least ε
√

r̃ − 1, and

(9.4) S(Q̃ε) − S(Bn) ≤ θS(n) · (r̃ − 1) + O(ε(r̃ − 1)).

We write F̃1, . . . , F̃l̃ to denote the facets of Q̃ε. In addition we write w̃i to denote

the exterior unit normal to F̃i , and define ρ̃i = d(w̃i, aff F̃i). Let f be a bounded
measurable function on Sn−1 such that

f (x) =
(1 + ρ̃i)

n−1

〈x, w̃i〉n
− 1

for i = 1, . . . , l̃ and x ∈ πSn−1 (relint F̃i). Since

‖y − x‖ =
1 + ρ̃i

〈x, w̃i〉
− 1

for any y ∈ F̃i and x = πSn−1 (y), if Y ⊂ ∂Q̃ε is a convex hypersurface and X =

πSn−1 (Y ) then Lemma 6.1 yields

(9.5) H
n−1(Y ) − H

n−1(X) =

∫

X

f (x) dx.
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We define

G̃ j = s j + λ · (G j − s j) for λ =

√
r̃ − 1

(1 + ε)
√

r − 1
,

and let X̃ j = πSn−1 (G̃ j). Then Lemma 5.2 yields the existence of g ∈ SO(n) such that

(9.6)

∫

g eX j

f (x) dx ≤ Hn−1(X̃ j)

S(Bn)
·
∫

Sn−1

f (x) dx.

We may assume that πSn−1 (F̃i) intersects gX̃ j in a set of positive (n − 1)-measure if

and only if i ≤ k̃ ′ for k̃ ′ ≤ l̃. Let Ỹ j ⊂ ∂Q̃ε satisfy that πSn−1 (Ỹ j) = gX̃ j . We deduce
by (9.4), (9.5), and (9.6) that

(9.7) H
n−1(Ỹ j) − H

n−1(gX̃ j) ≤
H

n−1(X̃ j)

S(Bn)
· θS(n) · (r̃ − 1)

+ O(ε) · (r̃ − 1) · Hn−1(G̃ j).

We may assume that s j = ξ = (o,−1) and g is the identity, hence aff G̃ j is parallel

to E
n−1. We write C̃ j to denote the orthogonal projection of G̃ j into E

n−1, which

satisfies (see (9.2)),
r̃ − 1

4ε
Bn−1 ⊂ C̃ j ⊂

r̃ − 1

ε
Bn−1.

Let us recall that ϕ̃(y) = −
√

1 − ‖y‖2 and ϕω(y) =
ω
2
‖y‖2 for y ∈ Bn−1. It follows

by (8.9) and r̃ < 1 + ε2n2

that if y ∈ 2
√

r−1
ε Bn−1, then

−1 + ϕ1(y) ≤ ϕ̃(y) ≤ −1 + ϕω̃(y) for ω̃ = 1 + ε8.

In particular the graph Γ̃ω̃ of −1 + ϕω̃ above 4
√

r̃−1
ε Bn−1 satisfies Γ̃ω̃ ⊂ Bn. There-

fore we define Z̃ j = πeΓω̃
(G̃ j), and Ỹ ′

j ⊂ ∂Q̃ε by πeΓω̃
(Ỹ ′

j ) = Z̃ j , and we deduce by
Lemma 7.2 and (9.7) that

H
n−1(Ỹ ′

j ) − H
n−1(Z̃ j) = H

n−1(Ỹ j) − H
n−1(X̃ j) + O(ε(r̃ − 1)) · Hn−1(G̃ j)

≤ Hn−1(G̃ j)

S(Bn)
· θS(n) · (r̃ − 1)

+ O(ε) · (r̃ − 1) · Hn−1(G̃ j ).

(9.8)

We may assume that i = 1, . . . , k̄ ′ are the indices satisfying that F̃i intersects Ỹ ′
j in a

set of positive measure for suitable k̄ ′ ≤ l̃. For i ≤ k̄ ′, let x̃i ∈ Z̃ j be the point where

https://doi.org/10.4153/CJM-2008-001-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-001-x
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the tangent hyperplane to Z̃ j is parallel to aff F̃i , and let ν̃ ′
i denote the distance of x̃i

from aff F̃i . We deduce by (7.10) and (9.8) that

(9.9)

k̄ ′∑

i=1

∫

πeZ j
(eFi )

(n − 1)ν̃ ′
i +

n

2
‖x − x̃i‖2 dx ≤ Hn−1(G̃ j)

S(Bn)
· θS(n) (r̃ − 1)

+ O(ε)(r̃ − 1) · Hn−1(G̃ j).

Let Γ̃ j be the union of facets of Q̃ε whose orthogonal projection into aff G̃ j intersects

G̃ j in a set of positive (n − 1)-measure. We assume that F̃1, . . . , F̃k are the facets

contained in Γ̃ j for suitable k, k̃ ′ ≤ k ≤ l̃. For i ≤ k, we write Π̃i and ỹi to denote

the orthogonal projection of F̃i and x̃i , respectively, into E
n−1, and define ν̃i by the

property that (ỹi ,−1 + ϕω̃(ỹi) − ν̃i) ∈ aff F̃i . Writing C̃ j to denote the orthogonal

projection of G̃ j into E
n−1, combining (9.9) and Lemma 8.1, yields that

(9.10)

k∑

i=1

∫

eC j∩eΠi

(n − 1)ν̃i +
n

2
‖z − ỹi‖2 dx ≤ Hn−1(G̃ j)

S(Bn)
· θS(n)(r̃ − 1)

+ O(ε) (r̃ − 1) · Hn−1(G̃ j).

In addition, if z is a vertex of Π̃i for i ≤ k and v is the corresponding vertex of F̃i ,
then

ν̃i + 1
2
‖z − ỹi‖2 ≥ 1

1 + ε
d(v, Γ̃ω̃) ≥ 1

1 + ε
d(v,Bn) =

1

1 + ε
(r̃ − 1),(9.11)

ν̃i + 1
2
‖z − ỹi‖2 ≤ (1 + ε)d(v, Γ̃ω̃) ≤ (1 + ε)2(r̃ − 1).(9.12)

Now we define C j = λ−1C̃ j , hence G j = C j + ξ. Moreover, if i ≤ k, then let

Πi = λ−1
Π̃i , yi = λ−1 ỹi , and νi = λ−2ν̃i . We conclude by (9.10) that

(9.13)

k∑

i=1

∫

C j∩Πi

(n − 1)νi + n
2
‖z − yi‖2 dx ≤ Hn−1(G j)

S(Bn)
· θS(n)(r − 1)

+ O(ε) (r − 1) · Hn−1(G j).

We define ϕ(z) = −1 + ‖z‖2 for z ∈ 4
√

r−1
ε Bn−1, and observe that Γ(ϕ)∩ int Bn

= ∅

according to (8.9). We write li to denote the linear function whose graph is the tan-
gent hyperplane to Γ(ϕ) at xi = (yi , ϕ(yi)), and defineψi(z) = li(z)−νi . In addition,

we define ψ :
⋃k

i=1 Πi → R by ψ(z) = ψi(z) for z ∈ Πi , and observe that Γ j = Γ(ψ)
is a convex piecewise linear hypersurface. Let Fi be the graph of ψ above Πi , hence
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F1, . . . , Fk are the facets of Γ j . If z is a vertex of Πi for i ≤ k and v is the corresponding
vertex of Fi , then we deduce by Lemma 8.1, (9.11), and (9.12) that

d(v,Γ(ϕ)) ≤ (1 + ε)(νi + 1
2
‖z − yi‖2)(9.14)

= λ−2(1 + ε)(ν̃i + 1
2
‖λ−1z − ỹi‖2)

≤ (1 + ε)5(r − 1);

d(v,Γ(ϕ)) ≥ 1
1+ε (νi + 1

2
‖z − yi‖2) =

1
1+ελ

−2(ν̃i + 1
2
‖λ−1z − ỹi‖2)(9.15)

≥ r − 1.

Now combining (9.14) and (9.15) yields (9.3).
We define Z j = πΓ(ϕ)(G j), assume that i = 1, . . . , k ′ are the indices satisfying

that πΓ(ϕ)(Fi) intersects Z j in a set of positive measure for some k ′ ≤ k, and write ν ′
i

to denote the distance of xi from aff Fi for i ≤ k ′. We recall that X j = πSn−1 (G j),

and write Y j and Y ′
j to denote the subset of Γ j satisfying X j = πSn−1 (Y j) and Z j =

πΓ(ϕ)(Y
′
j ), respectively. It follows first by Lemma 7.2, secondly by (7.10), and thirdly

by Lemma 8.1 and (9.13) that

H
n−1(Y j) − H

n−1(X j) = H
n−1(Y ′

j ) − H
n−1(Z j) + O(ε(r − 1)) · Hn−1(G j )

=

k ′∑

i=1

∫

πΓ(ϕ)(Fi )∩Z j

(n − 1)ν ′
i + n

2
‖x − xi‖2 dx

+ O(ε(r − 1)) · Hn−1(G j)

≤ Hn−1(X j)

S(Bn)
· θS(n) (r − 1) + O(ε) (r − 1) · Hn−1(X j).

In turn we conclude Proposition 9.1.

For the rest of the proof, we use the notation of Proposition 9.1. We define

(9.16) Qr,ε = conv{Γ1, . . . ,Γm}.

Then Qr,ε ∈ Fn
r and Qr,ε ⊂ (1 + 2(r − 1))Bn. We define W j to be the part of ∂Qr,ε

satisfying πSn−1 (W j) = X j , and prove that for some γ > 0 depending only on n and
independent of j,

(9.17) H
n−1(W j) − H

n−1(X j) ≤ (1 + γ ε) · Hn−1(X j)

S(Bn)
· θS(n)(r − 1).

Let X0
j = πSn−1 (s j + (1 − 96ε)(G j − s j)), and let Y 0

j be the part of Γ j satisfying

πSn−1 (Y 0
j ) = X0

j . Now if H ⊂ (1 + 2(r − 1))Bn is a compact convex set whose

affine hull avoids int Bn, then diam H ≤ 6
√

r − 1. Therefore if F is a facet of Qr,ε

such that F intersects Γt for some t 6= j and πSn−1 (F) ∩ X j 6= ∅, then πSn−1 (F) ⊂

https://doi.org/10.4153/CJM-2008-001-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-001-x
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relbd X j + 12
√

r − 1 Bn. Since ‖πSn−1 (x)−πSn−1 (x ′)‖ ≥ 1
2
‖x− x ′‖ for x, x ′ ∈ G j and

s j +
√

r−1
4ε Bn−1

j ⊂ G j , we deduce that Y 0
j ⊂ W j and Hn−1(X j\X0

j ) = O(ε)Hn−1(X j).

Therefore (7.9) yields

(9.18) H
n−1(W j\Y 0

j ) − H
n−1(X j\X0

j ) = O(ε) (r − 1) · Hn−1(X j).

In addition, Proposition 9.1 implies that

H
n−1(Y 0

j ) − H
n−1(X0

j ) ≤ H
n−1(Y j) − H

n−1(X j)

≤ (1 + O(ε)) · Hn−1(X j)

S(Bn)
· θS(n)(r − 1),

(9.19)

hence combining (9.18) and (9.19) leads to (9.17). Adding (9.17) for j = 1, . . . ,m
proves (9.1), and in turn Theorem 2.1 in the case of the surface area. As we stated at
the beginning, the proof in the case of the volume is quite analogous, thus we do not
present it.

10 Transfer Lemma in the Case of Mean Width

We will transfer integrals between patches on the sphere and in E
n−1 using Lem-

ma 10.1. We recall that ξ = (o,−1) ∈ E
n, and ϕ̃(y) = −

√
1 − ‖y‖2 parametrizes

the lower hemisphere of Sn−1 on Bn−1.

Lemma 10.1 Let ε ∈ (0, ε0), and let ρ ∈ (0, ε4) where ε0 is a suitable positive

constant depending only on n. In addition let C be a compact convex set satisfying√
ρ

4ε Bn−1 ⊂ C ⊂ 2
√
ρ

ε Bn−1, and let y1, . . . , yk ∈ E
n−1 such that for any z ∈ C +

2
√
ρBn−1 there exists yi satisfying 1

2
‖z − yi‖2 ≤ 2ρ. Writing X = πSn−1 (C + ξ) and

xi = (yi , ϕ̃(yi)), we have Hn−1(C) = (1 + O(ε))Hn−1(X), d(C ′,X) ≤ √
ρ for the

graph of ϕ̃ above C, and

∫

X

min
i
{1 − 〈x, xi〉} dx =

∫

C

min
i

1
2
‖z − yi‖2 dz + O(ερ) · Hn−1(C).

Moreover, if z ∈ C + 2
√
ρBn−1, then x = (z, ϕ̃(z)) satisfies

(1 + ε)−1 · min
i

1
2
‖z − yi‖2 ≤ min

i
{1 − 〈x, xi〉} ≤ (1 + ε) · min

i

1
2
‖z − yi‖2.

Proof The main observation is the following fact: if z, z ′ ∈ tBn−1 for t ∈ (0, 1
2
),

then x = (z, ϕ̃(z)) and x ′
= (z ′, ϕ̃(z ′)) satisfies

1 − 〈x, x ′〉 = (1 + O(t2)) · 1
2
‖z − z ′‖2, and ‖x − πSn−1 (z)‖ = O(t3).

Since
√
ρ

ε < ε0ε, choosing ε0 small enough, we have the following properties: let
x = (z, ϕ̃(z)) for z ∈ C + 2

√
ρBn−1, and let

min
i

1
2
‖z − yi‖2

=
1
2
‖z − y j‖2 and min

i
{1 − 〈x, xi〉} = 1 − 〈x, xl〉.
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Then first,

(1 + ε)−1 · 1
2
‖z − y j‖2 ≤ (1 + ε)−1 · 1

2
‖z − yl‖2 ≤ 1 − 〈x, xl〉

≤ 1 − 〈x, x j〉 ≤ (1 + ε) · 1
2
‖z − y j‖2.

Secondly, writing X ′ to denote the orthogonal projection of X into E
n−1, we have

Hn−1(X ′) = (1 + O(ε))Hn−1(X) and dH(X ′,C) ≤ 1
2

√
ρ. Finally,

∫

X

min
i
{1 − 〈x, xi〉} dx =

∫

X ′

min
i

1
2
‖z − yi‖2 dz + O(ερ) · Hn−1(X ′).

In turn we conclude Lemma 10.1.

11 Proof of Theorem 2.1 in the Case of Mean Width

We assume that n ≥ 4 because if n ≤ 3, then Theorem 2.1 in the case of the mean
width is covered by [3] for n = 2 (as mean width is proportional with the perimeter
in this case), and by [4] for n = 3.

First we present two formulae related to the difference of the mean width of a ball
and a polytope. If P is a polytope with vertices x1, . . . , xm ∈ Sn−1, then

(11.1) M(Bn) − M(P) =
2

S(Bn)

∫

Sn−1

min
i

(1 − 〈x, xi〉) dx.

In addition if 1
r

Bn ⊂ P and mini(1 − 〈x, xi〉) = 1 − 〈x, xl〉 for x ∈ Sn−1 then

(11.2) ‖x − xl‖ ≤
√

2 ·
√

1 − 1

r
.

In the case of mean width, it will be convenient to consider the family F
n

r of all
convex bodies that contain 1

r
Bn, and whose extreme points lie on Sn−1. In particular

1
r
W n

r ∈ F
n

r . According to Lemma 5.1 and M(rBn) − M(Bn) = 2(r − 1),

lim inf
r→1+

M(W n
r ) − M(Bn)

r − 1
= θM(n)

is positive and at most two. Therefore Theorem 2.1 in the case of the mean width

follows if for any ε ∈ (0, ε0) and r > r̃ where ε0 depends on n and r̃ depends on n

and ε, there exists Wr,ε ∈ F
n

r such that

(11.3) M(Bn) − M(Wr,ε) ≥ (2 − θM(n)) · (r − 1) + O(ε(r − 1)).

Here ε0 is at most the constant of Lemma 10.1. It follows by the definition of θM(n)
that there exists r̃ ∈ (1, 1 + ε4) such that

(11.4) M(Bn) − M(W n
r̃ ) ≥ (2 − θM(n)) · (r̃ − 1) + O(ε(r̃ − 1)).

Now let r > r̃. We choose a maximal family s1, . . . , sm ∈ Sn−1 with the property
that ‖si − s j‖ ≥

√
r − 1/ε for i 6= j, and we write G1, . . . ,Gm to denote the facets

of the circumscribed polytope whose facets touch Bn at s1, . . . , sm. In addition let
X j = πSn−1 G j .
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Proposition 11.1 Let j = 1, . . . ,m. There exists a finite set V j ⊂ Sn−1 such that if

x ∈ X j , then 〈x, v〉 ≥ 1/r for some v ∈ V j , if v ∈ V j , then d(v,X j) ≤ 8
√

r − 1, and

2

S(Bn)

∫

X j

min
v∈V j

{1 − 〈x, v〉} dx ≥ Hn−1(X j)

S(Bn)
· (2 − θM(n))(r − 1)

+ O(ε) (r − 1) · Hn−1(X j).

Proof The estimate (11.4) for W n
r̃ and using polytopal approximation (Lemma 3.1)

provide a polytope W̃ε ∈ F
n

r̃ such that

(11.5) M(Bn) − M(W̃ε) ≥ (2 − θM(n)) · (r̃ − 1) + O(ε(r̃ − 1)).

We write x̃1, . . . , x̃l to denote the vertices of W̃ε.

We define

G̃ j = s j + λ · (G j − s j) for λ =
(1 + ε)2

√
r̃ − 1√

r − 1
,

and X̃ j = πSn−1 (G̃ j ). According to Lemma 5.2, (11.1), and (11.5), there exists a g ∈
SO(n) such that after re-indexing x̃1, . . . , x̃l in a way such that d(x̃i, gX̃ j) ≤ 6

√
r̃ − 1

if and only if i ≤ k for k ≤ l, we have

∫

g eX j

min
i=1,...,k

{1 − 〈x, x̃i〉} dx =

∫

g eX j

min
i=1,...,l

{1 − 〈x, x̃i〉} dx

≥ Hn−1(X̃ j)

S(Bn)
·
∫

Sn−1

min
i=1,...,l

{1 − 〈x, x̃i〉} dx

≥ 2 − θM(n)

2
· Hn−1(X̃ j)(r̃ − 1)

+ O(ε) (r̃ − 1) · Hn−1(X̃ j).

We may assume that s j = ξ = (o,−1) and g is the identity. Then aff G̃ j is parallel

to E
n−1, and we write C̃ j to denote the orthogonal projection of G̃ j into E

n−1. We
write ỹi to denote the orthogonal projection of x̃i into E

n−1 for i ≤ k, and deduce by
Lemma 10.1 that

∫

eC j

min
i=1,...,k

1

2
‖z − ỹi‖2 dz ≥ 2 − θM(n)

2
·Hn−1(C̃ j) (r̃ − 1) + O(ε) (r̃ − 1) ·Hn−1(C̃ j).

Since 1
r̃

Bn ⊂ W̃ε, it also follows by Lemma 10.1 that if z ∈ C̃ j + 3
√

r̃ − 1, then

min
i=1,...,k

1
2
‖z − ỹi‖2 ≤ (1 + ε) · (r̃ − 1).
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We note that d(ỹi , C̃ j) ≤ 6
√

r̃ − 1 for i ≤ k. Now we define C j = λ−1C̃ j and
yi = λ−1 ỹi for i ≤ k, hence G j = C j + ξ. We deduce that d(yi,C j) ≤ 6

√
r − 1 for

i ≤ k,

∫

C j

min
i=1,...,k

1
2
‖z − yi‖2 dz ≥ 2 − θM(n)

2
·Hn−1(C j) (r − 1) + O(ε) (r − 1) ·Hn−1(C j),

and if z ∈ C j + 2
√

r̃ − 1, then

min
i=1,...,k

1
2
‖z − yi‖2 ≤ (1 + ε)−3 · (r − 1) ≤ (1 + ε)−1(1 − 1

r
).

Therefore defining V j = {(y1, ϕ̃(y1)), . . . , (yk, ϕ̃(yk))}, Lemma 10.1 completes the
proof of Proposition 11.1.

We define Wr,ε = conv V for V =
⋃m

j=1 V j , and deduce by Proposition 11.1 that

Wr,ε ∈ F
n

r . Let us observe that if x, x ′ ∈ G j , then ‖πSn−1 (x)−πSn−1 (x ′)‖ ≥ 1
2
‖x−x ′‖,

and s j +
√

r−1
4ε Bn−1

j ⊂ G j where Bn−1
j denotes the unit (n − 1)-ball of centre s j in

aff G j . We deduce for X0
j = πSn−1 (s j + (1− 80ε)(G j − s j)) that if x ∈ X0

j and x ′ ∈ Xt

for t 6= j, then ‖x − x ′‖ ≥ 10
√

r − 1, hence if v ∈ Vt , then ‖x − v‖ ≥ 2
√

r − 1
according to Proposition 11.1. It follows by (11.2) that for any x ∈ X0

j ,

min
v∈V

{1 − 〈x, v〉} = min
v∈V j

{1 − 〈x, v〉}.

Thus Hn−1(X j) − Hn−1(X0
j ) = O(ε) · Hn−1(X j) and Proposition 11.1 yield

2

S(Bn)

∫

X j

min
v∈V

{1 − 〈x, v〉} dx ≥ 2

S(Bn)

∫

X0
j

min
v∈V j

{1 − 〈x, v〉} dx

≥ Hn−1(X j)

S(Bn)
· (2 − θM(n))(r − 1)

+ O(ε) (r − 1) · Hn−1(X j).

(11.6)

Adding (11.6) for j = 1, . . . ,m implies (11.3), and completes the proof of Theo-
rem 2.1.
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annopoulos and Peter M. Gruber for helpful discussions, and the referee for helpful
remarks.

References

[1] E. Artin, The Gamma Function. Holt, Rinehart and Winston, New York, 1964.
[2] K. Mathéné Bognár and K. Böröczky, Regular polyhedra and Hajós polyhedra. Studia Sci. Math.

Hungar. 35(1999), no. 3-4, 415–426.

https://doi.org/10.4153/CJM-2008-001-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-001-x
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[6] K. J. Böröczky, P. Tick, and G. Wintsche, Typical faces of best approximating three-polytopes,
preprint. www.renyi.hu/˜carlos/approxface.pdf
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