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In this paper, it is shown that certain Theta functions are asymptotically optimal for the periodic time
frequency uncertainty principle described by Breitenberger in [3]. These extremal functions give rise to a
periodic multiresolution analysis where the corresponding wavelets also show similar localization properties.
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1. Introduction

A fundamental result on time and frequency localization of square-integrable
functions on the real line is given by the Heisenberg uncertainty principle, and it is well
known that the Gaussian functions serve as extremal functions for this inequality. On
the other hand, uncertainty relations for periodic functions have not been studied as
thoroughly as the original inequality on the real axis. In this paper, we want to focus
on a concept discussed by Breitenberger in [3], where uncertainty of a periodic square-
integrable function is described in terms of the product of frequency and angular
variances. For more detailed information concerning this particular periodic
uncertainty principle, we refer the interested reader to Breitenberger's paper [3] and the
references therein. Further related topics in time-frequency localization in connection
to multiresolution are treated in Benedetto, Heil and Walnut [1], Chui-Wang [4-6],
Daubechies [8] and Cohen [7].

A unified approach to the theory of general periodic multiresolution analysis is
investigated by Plonka and Tasche [13], Koh, Lee and Tan [9], Narcowich and Ward
[10]. The time frequency localization of periodic scaling functions and wavelets
according to the aforementioned uncertainty relation is studied intensively by
Narcowich and Ward. The periodic basis functions in [10] possess an uncertainty
product of O(y/n) for increasing dimension n of the corresponding spaces. Uniformly
bounded uncertainty products are computed by Selig [16] for trigonometric
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fundamental Lagrange interpolants based on de la Vallee Poussin means and for
trigonometric Hermite interpolants based on Fejer kernels in [14].

The question of extremal functions to attain equality in Breitenberger's periodic
uncertainty principle is not addressed in these papers. As it turns out that there is no
function satisfying the equality, our goal is to construct asymptotically optimal
functions. Not surprisingly, this leads to periodized Gaussian functions, i.e., special
cases of Theta functions (see Section 2). Additionally, the wavelet functions in the
corresponding multiresolution analysis also show a similar asymptotic behaviour (see
Section 3). In Section 4, the localization properties of the orthogonalized functions are
considered.

Finally, let us remark that recently, Narcowich and Ward [11, 12] also studied
wavelets and localization properties on higher dimensional spheres, while
asymptotically optimal results for compactly supported scaling functions and wavelets
on the real line can be found in the papers by Chui and Wang [4-6]. Note also that an
approach to optimal functions of an uncertainty principle for ultraspherical expansions
has been studied recently by Rosier and Voit [15].

2. Time frequency uncertainty

Let L\n denote the space of complex-valued square-integrable 27t-periodic functions
with inner product {f,g)=±tff(x)lj(x)dx and norm ||/||2 = ( £ £ " \f(x)\2dx)1/2. To
state an uncertainty principle for functions in L\n, the necessary notions of variance for
periodic functions need to be introduced. We refer to Breitenberger [3] for a discussion
of the physics background and Narcowich and Ward [10] for applications to periodic
basis functions in a multiresolution analysis.

Definition 2.1. For a function / e L^, represented by its Fourier series, i.e.,
f(x) = X!~-oo cse"x> tiie first trigonometric moment is defined as

2nJ0
f(xM2dx - V cc—

5=—00

Then, the angle variance for/ e L2^ is defined by

II/II2 - £"_„ lc,
Z-^Cs^Ti

2

- 1 .

and the frequency variance for/ e L ^ a s

varF(/) :=
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Note that the variances attain the value oo iff T(/) = 0 or / ' does not exist in L\,,
respectively.

In the following theorem, an uncertainty relation for L|, is formulated, which only
excludes single frequency functions of the form celkx, c e C, k eZ. In this case,
varF = 0 and var̂  = co. Nevertheless, inequality (2.1) below actually holds for all
functions in L^. In order to investigate the existence of optimal or asymptotically
optimal functions for this uncertainty inequality, and for the sake of completeness, we
give a detailed proof here.

Theorem 2.1. (Uncertainty Principle for periodic functions) ([3, 10]). For functions
f e L\x which are not of the form celkx, c e C, k e Z, it holds that

Proof. The goal is to establish the inequality

K/WII2 < 2̂ 11/115 - |T(/)lVll/'ll2ll/ll2 + (f'.f)2. (2.1)

Without loss of generality one can assume ||/||2 = 1, which reduces (2.1) to

KOI < 2x/l-|T(/)lVl|/| |^ + (/,/>2. (2.2)

Setting for notional convenience T = x{f) e C, and \i = —i(f',f) e E, it holds that

1 - |T|2 = ||(e- - T)/||2 (2.3)

and

ll/'l|2-^2 = H-i/'-/i/ll2. (2.4)

One directly verifies the identity

e'Jix) = -![(/ - T)/]'(X) - {ff - T)[-i/rW

and, consequently,

(ef - T ) ( - 0 / '

https://doi.org/10.1017/S0013091500020216 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020216
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Taking inner products with/ yields

T = <-<[(*' - T)/r - HW - T ) / . / ) - <(*' - r)(

Using integration by parts Ax produces

Ax = <(e" - T)/, -if) - (nie1 - x)f,f) = ((/ - x)f, -»/'

and thus by the Cauchy-Schwarz inequality

For A2, one obtains

A2 = -(-if - ^ ( e - '

and, once again by the Cauchy-Schwarz inequality,

1̂ 21 < i i - ' • / ' -

Taking into account that ||(e"' - f)/ | |2 = ||(e' - T)/ | | 2 , inequality (2.2) follows from
equations (2.3) and (2.4). •

Now, we investigate the problem of optimal periodic time-frequency localization,
i.e., whether it is possible to achieve equality in the uncertainty principle, which in turn
implies equality in (2.1). Examining the proof, in the Cauchy-Schwarz inequality actual
equality only occurs iff for Ax

- a.c,

and for A2

c2(e-ix - t)/(x) = -if'ix) - nf(x) a.e.,

with complex constants c,, c2.
Apart from the functions cetkx mentioned above, where —if - / i / s O , this would

only be possible if on a set of positive measure and for a constant c e C, we have

e* - z = c[e~ix - f),

i.e.,

e1* — ce~ix = T - cf,
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which cannot happen as the left hand side is not constant. Hence, there is no function
/ of optimal time-frequency localization. However, one can try to obtain the best
possible constant 0.5 in the limit which will be the goal for the rest of this section.

Let us consider the Theta functions

0(z, ?) = £ « • ' * • (z e C\{0}, \q\ < 1).
s=—oo

With the transformation z = elx, q = e~\ we write

<pk(x) = BV*. e-h) = £ e-^e**. (2.5)

Note that q>h is an even positive 2rc-periodic and smooth function.
Before we prove the essential theorems, we need some auxiliary results and estimates

which are summarized in the following lemma.

Lemma 2.1. For all h > 0, and shifts a e R, the following identity holds

(i) £ e^'-*? = M f^ cos 2nsx e"*.
5=—OO ^ 5=—OO

Consequently, the following estimates hold for the function

independently of a.,

and more precisely for u(h) := u(h, 0),

Proof. The Poisson summation formula (see also [2, Chap. 3]) can be used to
establish (i) immediately. The sum 5Z"-oo e~ c a n be easily estimated as a geometric

series
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yielding (iii).
Estimating X^.^, cos 27tsa e"Tr from below by 2~Yl7=-ooe > o n e finally obtains

the lower bound in (ii). D

It is now possible to give an estimate for the uncertainty product of the Theta
functions cph.

Theorem 2.2. For all 0 < h < 1, it holds that

7. T. < ~

Proof. Using the Fourier coefficients c,h — e of <ph, we write

~—OO 5=—00

and

\j=-00

Hence we obtain

(
\j=-00 I=-0O

Now it follows by Lemma 2.1

n(\ -
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Then

Taylor's formula and the monotonicity of h2(e& — 3) for 0 < h < 1 give the estimate

h + l.53h2.

Now we have to deal with varf (cph). Differentiation of the Poisson summation formula
with respect to h yields

where the last equality follows again from Lemma 2.1.
Putting together the corresponding estimates we obtain

(h + \.53h2)u(h) l

from which the assertion of Theorem 2.1 follows. •

Note that h — 0 yields a distribution, but not an L2^-function. As an alternative,
one can investigate the limit case h = 0 for the partial sum YlH=-m e~ e"* °f <Ph> i-e>
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One obtains

II&.II2 V 2 m + 1

4m2(2m + 1)3

12m

Hence,

•v/vary4(0Jvarf(#M)

\\<t>J2

For similar results, see [10, 14, 16]. However, in [14], it is proved that a certain
smoothing procedure, namely a Fejer mean of the partial sum polynomial <f>m, i.e.,

t=0

yields

J = h f
V1° V

20m

2(8

2 +1 \
l)(4m2-iy'

which in the limit m -»• oo tends to V o 3 = 0.5477...
At this point let us mention that the functions <pk of the type (2.5) are clearly not

the only ones which yield asymptotically optimal uncertainty products. As other
important examples we refer to trigonometric polynomials where the Fourier
coefficients are values of B-splines. In connection with the central limit theorem it is
shown in [17, Theorem 1] that certain scaled versions of B-splines converge pointwise
and in L"-norms, with p > 2, to the Gaussian (or its scaled version). So one obtains
trigonometric polynomials which have an uncertainty product less than (1 + e)/2 for an
appropriate scaling and a big enough order d of the spline. Our functions <f>m and am

are related to the order d = 0 and d = 1.
To illustrate these results, see Figure 1 for Theta functions with two different step

sizes, and Figure 2 for a Dirichlet and a Fejer kernel.
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FIGURE 1: <p01 (left) and <p001 (right).
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FIGURE 2: <t>l0 (left) and aw (right).

3. Multiresolution analysis

Now, the goal is to construct nested spaces spanned by translates of the Theta
functions investigated in Section 2. For fixed h, we set

- - ^ ) . * = 0 n-lj.

Trivially, it holds that

K C Kto.

Furthermore, as all the Fourier coefficients of the function <ph are positive, we have

= dosj\jv2l).
\;=o /

dim Vn = n and

See, for example, Lemma 2.4 (i) and Theorem 3.1 in [13].
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Hence, it makes sense to consider wavelet spaces Wn, namely the relative orthogonal
complements of Vn with respect to V^, such that

While the scaling functions are just translates of one single function, independent
of the level n, the corresponding wavelets turn out to be dependent on n. As the major
concern here, however, is the dependence on the term h, we will suppress the
dependence on n in our notation by writing

/
[ 1 -

One now obtains

T h e o r e m 3 . 1 . It holds for n e N that

- ^ , * = 0 n - l j .

Proof. The fact that \j/h is indeed an element of V^ follows immediately from the
2«-periodicity in s of the quotient

where d3h are the Fourier coefficients of ij/h, see Lemma 2.1 of [13]. The orthogonality
assertion is equivalent to

Hence we have to prove

Y°° e

Setting s = ni + t yields

https://doi.org/10.1017/S0013091500020216 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020216


OPTIMAL FUNCTIONS FOR A PERIODIC UNCERTAINTY PRINCIPLE 235

n- l oo

5=—OO t = 0 l=— OO

and we obtain for the right hand side

1=0

which equals the left hand side. •

Additionally, one can also state the two-scale relations for the basis functions of Vn

and Wn with respect to V^. We have

Corollary 3.1. For fixed neN, and k = 0 n — 1, the two-scale relations are

2kn\ S=i / ln\

where for m = 0 , . . . , n — 1,

and, trivially, akt = 5^.

Proof. The values of the f!k/s are obtained by applying discrete Fourier transforms
to the corresponding two-scale equation, see also [13]. •

Now, the question of time-frequency localization of the wavelet will be addressed.

Theorem 3.2. Let n e N be fixed. Then, for all 0 < h < ̂ , we have

1
2
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Proof. As the variance measures of Definition 2.1 are invariant under translation
of the function, we consider ij/h = ̂ h(- + s) with Fourier coefficients

, . . . ( ,

First, we obtain

Eoo -2A(n,-5)2

Hence, by Lemma 2.1, with y = ^ ,

2Vl-e-' \-e->) 1 -

2 1 - e-y 1 - 3e"

Consequently,

Eoo
a=-cx>

and

In the following, we will use that

and

- 2.02e~

/I + 2.02e"yy
Vl - 2.02e-7

+ 4 l

l+17.2e-y < 1 + 1.98/iV.

(3.1)
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According to Section 2, we consider

and obtain as an upper bound for the first squareroot term

R, = ./-l+(i + o f Y J r

and for the second one

y<h

Using the corresponding estimates in the proof of Theorem 2.2, we obtain the desired
result. •

Let us note here that the above proof also shows that the additional term I.ln2-/h
is best possible up to the constant.

It remains an open question whether there is a translation invariant basis of Wn

which is asymptotically optimal independent of the level n. More generally, we do not
know any orthogonal decomposition of L\n in wavelet spaces where every wavelet has
an asymptotically optimal uncertainty product. However, an example of an orthogonal
basis with uniformly bounded uncertainty product can be found in [16].

Figure 3 illustrates the influence of different values for the parameter h and the level
n. For n = 1 there is only one scaling function cph (dashed line) and one wavelet )j/h

(thick line). For n = 4 and n = 8, we show two scaling functions q>h, q>h{- - ^) and the
wavelet iftk.

4. Orthogonalization

Finally, we will consider time-frequency localization for orthogonal scaling functions
and wavelets.

Lemma 4.1. For fixed h, let

KM ==

with
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h = 0.1 and n = 1 h = 0.01 and n = 1

h = 0.1 and n = 4 h — 0.01 and n = 4

w \

h - 0.1 and n - 8 = 0.01 and n = 8

FIGURE 3
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/ CO \"i

and

with

-(•E

^ ( • - ^ E ) , k = 0,...,n-l, and ^ti'-2^)- k = O,...,n-l, constitute
orthonormal bases for Vn and Wn, respectively.

Proof. We have to prove cpj; e Vn, \jt^ e Wn and the orthonormality of correspond-
ing translates. This can be done in exactly the same manner as in the proof of Theorem
3.1 (see also [13]). •

Now we can show that for fixed n, these orthonormalized scaling functions and
wavelets are again optimally time-frequency localized.

Theorem 4.1. Let n be fixed. Then, for all 0 < h < -^, we have

i) <- + n2Vh

and

) < 1<^+l.lnV£.

Proof. Because of the similarity to the proof of Theorem 3.2, we can be very brief
here. Note that

2h\
- )

With Lemma 2.1 and /? = ^ j > 2n2, we estimate
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(„(„„>,£))-«'-,
\ \ n// \ n ) (4.1)

< maxt 1 —

which is similar to (3.1). Analogously,

Here we estimate with y = -f-j > -̂
onn *

(4.2)

With (4.1) and (4.2), we complete the estimates as in the proof of Theorem 3.2. •

5. Conclusion

For Breitenberger's periodic uncertainty principle of Theorem 2.1, we have shown
that the lower bound 0.5 cannot be attained. On the other hand, the bound is optimal
as we have constructed functions q>h, whose uncertainty products, according to
Theorem 2.2, are arbitrarily close to 0.5. Using equally spaced translates, these
functions q>h give rise to a multiresolution analysis. In Theorem 3.1 we construct
corresponding wavelet functions which are again asymptotically optimal with respect
to h. However, the localization of the wavelet is estimated only in dependence on the
level n. This means that for fixed h the localization is lost for large values of n.
Nevertheless, for fixed n and small h, the shape of the wavelets approaches the shape
of the Theta functions. Analogous results are stated in Section 4 for orthogonalized
bases. It remains an open question whether there is an orthogonal basis of L\n, which
is asymptotically optimal independent from the level n.
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