
Genet. Res., Camb. (2001), 78, pp. 59–77. With 3 figures. # 2001 Cambridge University Press
DOI: 10.1017}S001667230100502x Printed in the United Kingdom

59

A Bayesian approach to the identification of panmictic

populations and the assignment of individuals

KEVIN J. DAWSON",#*  KHALID BELKHIR"

"Laboratoire GeUnome, Populations et Interactions, CNRS UMR 5000, Uni�ersiteU de Montpellier II, Place Euge[ ne Bataillon,
34095 Montpellier Cedex 5, France
# IACR, Long Ashton Research Station, Department of Agricultural Science, Uni�ersity of Bristol, Bristol BS41 9AF, UK

(Recei�ed 11 September 2000 and in re�ised form 22 December 2000)

Summary

We present likelihood-based methods for assigning the individuals in a sample to source

populations, on the basis of their genotypes at co-dominant marker loci. The source populations

are assumed to be at Hardy–Weinberg and linkage equilibrium, but the allelic composition of these

source populations and even the number of source populations represented in the sample are

treated as uncertain. The parameter of interest is the partition of the set of sampled individuals,

induced by the assignment of individuals to source populations. We present a maximum likelihood

method, and then a more powerful Bayesian approach for estimating this sample partition. In

general, it will not be feasible to evaluate the evidence supporting each possible partition of the

sample. Furthermore, when the number of individuals in the sample is large, it may not even be

feasible to evaluate the evidence supporting, individually, each of the most plausible partitions

because there may be many individuals which are difficult to assign. To overcome these problems,

we use low-dimensional marginals (the ‘co-assignment probabilities ’) of the posterior distribution

of the sample partition as measures of ‘similarity ’, and then apply a hierarchical clustering

algorithm to identify clusters of individuals whose assignment together is well supported by the

posterior distribution. A binary tree provides a visual representation of how well the posterior

distribution supports each cluster in the hierarchy. These methods are applicable to other problems

where the parameter of interest is a partition of a set. Because the co-assignment probabilities are

independent of the arbitrary labelling of source populations, we avoid the label-switching problem

of previous Bayesian methods.

1. Introduction

The population genetic analysis of an outcrossing wild

species often has to begin with an attempt to identify

populations – ‘evolutionary units ’ through which ad-

vantageous alleles can spread in response to selection.

The problem is to identify complete or partial barriers

to gene flow. These may be geographic barriers, or

they may result from differences in habitat preferences

within the same geographic range. Barriers to gene

flow may also be maintained by assortative mating, or

selection against hybrid genotypes (Barton, 1979;

Barton & Hewitt, 1989). It is very difficult to deduce
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population structure by direct observation of mi-

gration or mating behaviour.

Identification of panmictic populations can provide

a preliminary indication of the relevant evolutionary

units. A population is said to be panmictic if mating

is at random, in the sense that mating pairs are formed

as if by choosing the male parent and the female

parent at random from the population. Clearly, this is

an idealization, which is at best a useful approximation

to the behaviour of an outcrossing natural population.

Under random mating, a large population reaches

Hardy–Weinberg equilibrium in a single generation

and approaches linkage equilibrium at a geometric

rate. So, in the absence of recent immigration, it is

reasonable to assume that unlinked, and loosely

linked, loci will be close to linkage equilibrium. The

genotypes of sampled individuals, at polymorphic co-
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dominant loci (such as microsatellites), can be used to

identify population units which are close to Hardy–

Weinberg and linkage equilibrium.

The inference problem is to assign each of the

individuals in the sample to a panmictic source

population. These source populations are not defined

a priori. We will typically have some prior information

about the number of source populations (for example,

from the locations of known breeding grounds). Our

prior information about the allele frequencies in these

source populations may be more limited. The as-

signment of individuals to source populations induces

a partition of the set of sampled individuals into non-

empty disjoint subsets. This partition of the sample is

the parameter of interest and, ideally, we would like to

evaluate the evidence supporting each possible par-

tition of the sample. In the Bayesian formulation of

this inference problem, the evidence in favour of each

possible sample partition is represented by the

posterior distribution of this parameter.

Here, we present a Markov chain Monte Carlo

method, based on the Metropolis–Hastings algorithm,

for generating this posterior distribution. The output

from the Markov chain is a large sample of these

sample partitions, generated under the posterior

distribution.

Pritchard et al. (2000) have already introduced a

similar Bayesian formulation of the assignment

problem. They generate the posterior distribution

using a Markov chain Monte Carlo method based on

Gibbs sampling. Our Bayesian analysis differs more

fundamentally from that of Pritchard et al. (2000) in

how we treat the output from the Markov chain.

Pritchard et al. assign individuals to discrete clusters

using the posterior probability that a particular

individual is assigned to a population associated with

some particular label. This makes sense only when we

have reference samples, or some other information

which characterizes specific source populations a

priori, because in the absence of such information, the

labels attributed to populations do not refer to any

fixed entity. The posterior probability that a particular

individual is assigned to a population associated with

some particular label should be a constant which (by

symmetry) is the same for all individuals and for all

population labels. Indeed, Pritchard et al. freely admit

that the only reason they can use such a procedure to

assign individuals to discrete clusters is that their

Markov chain fails to mix properly. According to

Pritchard et al., their Markov chain samples in the

vicinity of a single mode of the posterior distribution.

This should still give some idea of the uncertainty

associated with the assignment of each individual.

Other Bayesian, or partially Bayesian, formulations

of the assignment problem have also appeared recently

(Rannala & Mountain, 1997; Cornuet et al., 1999).

The fact that the parameter of interest is a partition,

presents particular difficulties. When the sample is

large, it will not be feasible to evaluate the evidence

supporting every possible partition of the sample.

When many individuals are difficult to assign there

will be many plausible partitions, each one having an

individually low posterior probability. Given these

problems, we believe that the most promising ap-

proach to the problem of making inferences about an

unobserved partition of a large sample is a synthesis

between Bayesian computations (based on explicit

models) and clustering algorithms, which can identify

clusters of individuals whose assignment together is

well supported by the posterior distribution. We use

low-dimensional marginals (‘co-assignment prob-

abilities ’) of the posterior distribution of the sample

partition as measures of ‘similarity ’, and then apply

the ‘furthest neighbour’ (complete linkage) hierarchi-

cal clustering algorithm or its generalizations.

When the source populations are sufficiently distinct

that individuals can be easily assigned, a point estimate

of the sample partition is useful. The maximum

likelihood estimation procedure, described below,

provides a point estimate of the sample partition, for

a chosen number of source populations.

2. The model

The point of departure for the present Bayesian

analysis (like that of Pritchard et al., 2000) is a

reformulation of the underlying model. In the tra-

ditional formulation (Milner et al., 1985; Smouse et

al., 1990), the sample is assumed to be from a mixed

population, composed of unknown proportions,

π
"
, π

#
,…, from an unknown, or partially known, set of

panmictic source populations, 1, 2,…, respectively.

The proportions, π
"
, π

#
,…, are treated as parameters

of the model, which have to be inferred. Here,

however, it is the assignment of individuals to source

populations (and thus the partition which this induces

on the set of sampled individuals) that is the parameter

of interest. When the model is formulated in this way,

the proportions, π
"
, π

#
,…, no longer enter into the

likelihood function.

A sample of n diploid individuals, labelled 1, 2,…, n,

have been genotyped at a set of m marker loci. These

n diploid genotypes constitute the data X. An

assignment of the individuals in the sample to source

populations induces a partition of the set

S¯²1, 2,…, n´ into non-empty disjoint subsets. Let

τ¯²S
"
, S

#
,…, Sκ´ denote the partition of S which

corresponds to the true assignment of individuals to

source populations, and let κ denote the number of

subsets in the partition τ.

The distinct allele types represented in the sample

from source population i at locus a are labelled

1, 2,…, r
i,a

. Additional alleles …, r
i,a

1, r
i,a

2,…,

may be present in the population. The set of distinct
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diploid m-locus genotypes represented in the sample is

denoted by R(X )¯²G, G«, G§,…´.
In addition to the partition τ of S into κ parts, the

only other parameters are the allele frequencies in

each of the source populations at each of the marker

loci. Let p
i,a

(s) denote the frequency in source

population i of allele type s, at locus a. Let p
i,a

¯
(p

i,a
(1),…, p

i,a
(r

i,a
),…), p

i
¯ (p

i,"
,…, p

i,m
) and p¯

(p
"
,…, pκ).

Let n
i

denote the number of individuals in the

sample that are assigned to source population i. Let

d
i,a

(s) denote the count (the number of copies) of the

allele type s, at locus a among the individuals assigned

to source population i. Let d
i
¯ (d

i,"
,…, d

i,m
) and d¯

(d
"
,…, dκ). Let D

i
(G ) denote the count of the diploid

m-locus genotype G, among the individuals assigned

to source population i. Let D
i
¯ (D

i
(G ), D

i
(G« ),

D
i
(G§),…) and D¯ (D

"
,…, Dκ).

It is assumed that, at every marker locus, the allele

compositions of the separate source populations are

mutually independent. So, the likelihood function

P(X r τ, p) is of the form

P(X r τ, p)¯ 0
κ

i="

P(D
i
r p

i
). (1)

The probabilities P(D
i
r p

i
) can be factorized by a

standard argument, to yield

P(D
i
r p

i
)¯P(D

i
r d

i
)P(d

i
r p

i
)

¯P(D
i
r d

i
)

E

F

0
m

a="

P(d
i,a

r p
i,a

)
G

H

, (2)

where

P(d
i,a

r p
i,a

)¯
(2n

i
)!

0
ri,a

s="

d
i,a

(s)!
0
ri,a

s="

p
i,a

(s)di,a(s) (3)

is a multinomial distribution for sampling alleles at

locus a, and

P(D
i
r d

i
)¯ 2hi

n
i
!

0
G`R(X)

D
i
(G )!

E

F

0
m

a="

E

F

0
ri,a

s="

d
i,a

(s)!

(2n
i
)!

G

H

G

H

(4)

is the distribution of genotypes in a sample when

alleles are permuted at random among individuals

within the sample. Here h
i
denotes the total number of

heterozygous loci, among those individuals assigned

to source population i.

3. Maximum likelihood estimation of the sample

partition

Smouse et al. (1990) used maximum likelihood

estimation to infer the proportions, π
"
, π

#
,…, of

different panmictic source populations, present in a

mixed population, together with the allele frequencies

in these source populations. Here, we use maximum

likelihood estimation to infer the sample partition τ,

together with the allele frequencies in the source

populations. This is closely related to the approach of

Belkhir & Bonhomme (2001).

For any given partition τ, the likelihood function

P(X r τ, p) is at a maximum when the allele frequencies,

in each population, are equated to their observed

values under the sample partition τ, here denoted by

pW (τ). So, given the number of source populations κ,

the problem of finding the point (τ# κ, p# ) where the

likelihood function P(X r τ, p) is at its global maxi-

mum, reduces to the problem of finding the sample

partition τ# κ, where P(X r τ, p# (τ)) is maximum. (τ#
"
is the

trivial sample partition where all individuals are

assigned to a single population.) The maximum

likelihood estimate τ# κ can be found using a simulated

annealing algorithm (Kirkpatrick et al., 1983), in

which the Metropolis–Hastings algorithm is used to

simulate the Boltzmann distribution, at different

‘ temperatures ’ for a system whose ‘state ’ is the

sample partition τ, and whose ‘energy’ is proportional

to the natural logarithm of the likelihood function

P(X r τ, p# (τ)). To begin with, the Boltzmann distri-

bution at a high temperature is simulated, then the

temperature is lowered in a series of steps. This is

referred to as the ‘cooling schedule ’. The Metropolis–

Hastings algorithm used here is similar to that

described in Section 5 and the Appendix, but has only

two types of proposals (similar to the exchange and

transfer proposals described in the Appendix). We

found that a simple exponential cooling schedule

performs well.

We now turn to the problem of choosing between

the different maximum likelihood estimates

τ#
"
, τ#

#
, τ#

$
,… Each time another source population is

added to the model, the number of parameters

increases. (We must specify the allele frequencies in

the new source population.) The model having more

parameters will never have a lower likelihood maxi-

mum than the model having fewer parameters. So,

likelihood maximization is in conflict with ‘Occam’s

razor’. Likelihood ratio tests are supposed to com-

pensate for the fact that likelihood maximization

intrinsically favours models with more parameters,

because we accept a model with more parameters only

if the increase in likelihood is ‘unusually high’.

(Unusually high, under what is often an extremely

questionable null hypothesis.) Other procedures have

been proposed for achieving the same result (see, for

example, Burman & Nolan, 1995).

The relative simplicity or complexity of a hypothesis

is at least to some extent a matter of subjective

judgement. Can this be reduced to a matter of

counting parameters or degrees of freedom? In the

Bayesian approach our preference for simpler models

can be incorporated into the prior probability dis-
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tribution. The Bayesian methodology is a very flexible

approach for extracting statistical inferences from the

likelihood function.

One possible measure of the evidence supporting a

particular maximum likelihood estimate, say τ#
#
, over

another, say τ#
"
, is the posterior odds ratio

π(τ#
#
rX )}π(τ#

"
rX ). If we want to reduce dependence on

the prior, we may prefer to use the corresponding

Bayes factor (π(τ#
#
rX )}π(τ#

"
rX )) (π

T
(τ#

"
)}π

T
(τ#

#
)). This

is independent of the prior distribution π
T
(τ), on the

sample partition, but does depend on the prior

distribution of the allele frequencies. However, it is

only possible to obtain a reliable estimate of this

Bayes factor when both τ#
"
and τ#

#
have sufficiently high

posterior probabilities to be estimated by sampling

the posterior distribution. Alternatively, we could

infer κ from the posterior distribution, before seeking

the corresponding maximum likelihood estimate τ# κ. In
the next two sections, the Bayesian calculation for our

model is described.

4. The choice of prior

The prior distribution on the partition τ of S is

assumed to be of the form

π
T
(τ)¯π

T rK
(τ r κ)π

K
(κ). (5)

The number of source populations κ, represented in

the sample, can have any value from 1, up to a chosen

maximum ν% n. The prior distribution of the number

of source populations κ is of the form

π
K
(κ)¯Auκ, (6)

for κ¯1, 2,…, ν. The parameter u can be chosen to lie

anywhere in the interval 0! u%1. For u¯1, the

prior on κ is uniform. All possible partitions of the

sample into a given number of parts κ, are assumed to

have equal probability. Therefore

π
T rK

(τ r κ)¯
1

S(κ)
n

, (7)

where S(κ)
n

is a Stirling number of the second kind,

which is equal to the number of distinct ways of

partitioning a set of n distinct elements into κ non-

empty disjoint (and unlabelled) subsets (Berge, 1971,

pp. 40–41).

The likelihood function, P(X r τ, p), is the same

regardless of whether or not allele s at locus a in

population i is really the same allele as allele s at locus

a in some other population j. The allele labels carry no

information whatsoever about the nature of these

alleles. We further assume prior independence across

loci, and across populations, so that

πP(p)¯ 0
κ

i="

0
m

a="

π
P
(p

i,a
). (8)

The search for an appropriate prior distribution for

the composition of a population has provoked much

controversy in the Bayesian literature. (See for

example Walley, 1996, and the discussion which

follows that paper.) A popular choice is the symmetric

Dirichlet distribution. In its most general form, the

Dirichlet distribution has r parameters α
"
, α

#
,…, α

r
,

and density function

Γ(α
"
α

#
Iα

r
)

Γ(α
"
)Γ(α

#
)IΓ(α

r
)
pα

"
−"

"
pα

#
−"

#
… pα

r−"
r

(9)

over the simplex where 0% p
s
and p

"
p

#
Ip

r
¯

1. If we take the limit where α
"
α

#
Iα

r
! θ as

r!¢, while max²α
"
,α

#
,…,α

r
´! 0, then the marginal

distribution of the s highest allele frequencies always

converges to a non-degenerate limit, and the joint

distribution of ordered allele frequencies is the

Poisson–Dirichlet distribution with parameter θ (see

Kingman, 1975; Watterson, 1976; Kingman, 1980,

pp. 40–42.)

We have chosen the prior distribution of the allele

frequencies in each population i, at each locus a, to be

a Poisson–Dirichlet distribution, with parameter θ
i,a

.

The values of the parameters θ
i,a

may be fixed; or

alternatively, they may have a prior distribution

πΘ(θi,a
), in which case

π
P
(p

i,a
)¯&

θ
i,a

π
P rΘ(pi,a

r θ)πΘ(θi,a
) dθ

i,a
. (10)

Let θ
i
¯ (θ

i,"
,…, θ

i,m
) and θ¯ (θ

"
,…, θκ). We can now

write the joint posterior distribution in the form

π(τ, p, θ rX )¯C−"P(X r τ, θ)

¬
E

F

0
κ

i="

0
m

a="

π
P rΘ(pi,a

r θ)πΘ(θi,a
)

G

H

π
T
(τ). (11)

The Poisson–Dirichlet prior has the convenient conse-

quence that the allele frequencies can be integrated

out analytically (see Appendix for details), leaving a

posterior distribution of the form

π(τ, θ rX )¯C−"P(X r τ, θ)π(τ, θ), (12)

where P(X r τ, θ) is the likelihood function for the

model parameterized by θ (see equation A4 of the

Appendix); and the joint prior is of the form

π(τ, θ)¯
E

F

0
κ

i="

0
m

a="

πΘ(θi,a
)

G

H

π
T
(τ), (13)

where πΘ(θi,a
) may be degenerate.

5. The Markov chain Monte Carlo computation

In the previous section, we derived an explicit

expression (12) for the posterior distribution

π(τ, θ rX ), up to an unknown normalizing constant.

However, what we are really interested in is the
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marginal posterior distribution of τ. Formally, this

marginal is given by integrating over θ in (12). Even if

we choose to fix the value of the parameter θ (the prior

πΘ(θi,a
) is degenerate), so that the integration over the

parameter θ does not need to be performed, we still

need a method for collapsing the posterior distribution

π(τ rX ), down to marginals of much lower dimension.

Rather than trying to compute the posterior

distribution (by first computing the likelihood func-

tion), we can generate a large sample of observations

from the posterior distribution. This is a very

convenient form in which to store information about

the joint distribution of many random variables,

because we can easily extract any low-dimensional

marginal of this joint distribution, simply by taking

each observation in the sequence, and discarding

everything except the component which is of interest.

The resulting sequence of low-dimensional obser-

vations can then be represented graphically (for

example, as a low-dimensional histogram, or other

density estimate).

The Metropolis–Hastings algorithm (Hastings,

1970; see also Besag et al., 1995; Gilks et al., 1996) can

be used to generate a sample of observations of any

random variable whose probability distribution is

known up to a normalizing constant. This algorithm

simulates a time-reversible Markov chain whose

equilibrium distribution is the required ‘target ’ dis-

tribution. The transition process of this Markov

process consists of two steps: a proposal step, and an

acceptance}rejection step.

If we propose a change in some, or all, of the

variables from (τ, θ) to new values (τ«, θ«), with

proposal probability q((τ, θ)! (τ«, θ«)), then, at the

acceptance}rejection step, we have to compute the

ratio

R((τ, θ)!(τ«, θ«))

¯
π(τ«, θ« rX )q((τ«, θ«)! (τ, θ))

π(τ, θ rX )q((τ, θ)! (τ«, θ«))

¯
P(X r τ«, θ«)π(τ«, θ«)q((τ«, θ«)! (τ, θ))

P(X r τ, θ)π(τ,θ)q((τ, θ)! (τ«, θ«))
. (14)

We draw a random variable, Z, from a uniform

distribution on the interval [0, 1]. If Z is less than the

ratio R((τ, θ)! (τ«, θ«)), then we accept the proposal,

and the state of the Markov chain is updated to

(τ«, θ«). Otherwise, the state of the Markov chain

remains as (τ, θ).

We are free to choose any proposal process,

provided it is compatible with the requirement that

the resulting Markov chain is ‘ irreducible ’ (every

state can be reached from every other state, in a finite

number of steps). If we use a number of separate,

carefully chosen, proposal processes, each of which is

more restricted in the changes that it can make, then

‘massive cancellations’ may occur in this probability

ratio, which can speed up the calculation. We have

made use of two highly constrained proposal

processes, exchange and transfer, which allow massive

cancellations in the probability ratio, and thus speed

up the Bayesian computation. An additional proposal

process, change κ, can change the number of subsets

into which the sample is partitioned, either by splitting

an existing subset in two, or by fusing two subsets

together. For details of these proposal processes, see

the Appendix.

6. Processing the output from the Bayesian

computation

The immediate output from a run of the Markov

chain is a sequence of partitions, τ
"
, τ

#
,…, which

should resemble a random sample from the marginal

posterior distribution π
T
(τ rX ). We can easily collapse

the posterior distribution π
T
(τ rX ), to obtain the

marginal posterior distribution π
K
(κ rX ) of the number

of source populations, κ, represented in the sample.

Pritchard et al. (2000) noted that the presence of

hybrid individuals in the sample could lead to the

identification of spurious ‘source’ populations. In

such cases, the posterior distribution of κ will be

misleading. In any case, the real parameter of interest

is the partition of the sample induced by the

assignment of individuals to source populations. When

faced with complex patterns of hybridization, perhaps

the best that can be done is to identify ‘clusters ’ of

individuals, whose assignment together is well

supported by the posterior distribution. In such cases,

the number of clusters, or populations, which are well

supported by the posterior distribution, is of much

more interest than the posterior distribution of the

parameter κ.

Even in the absence of hybridization, the assignment

problem is difficult simply because the parameter of

interest is a partition. The number of distinct ways of

partitioning a set of n distinct elements into κ non-

empty disjoint (and unlabelled) subsets, is given by the

Stirling number of the second kind S(κ)
n

. These numbers

grow very rapidly with n. If there are many individuals

that are difficult to assign, then there will be many

plausible partitions, each one having an individually

low posterior probability. However, even in such

situations, it should be possible to identify ‘clusters ’

of individuals, whose assignment together is well

supported by the posterior distribution. We use a

‘hierarchical agglomerative clustering’ approach, be-

cause this corresponds to scepticism towards lumping

clusters together. In contrast, ‘hierarchical divisive

clustering’ approaches (recommended by Gue!noche

et al., 1991) would correspond to scepticism towards

splitting clusters apart.

Let π(U rX ) denote the posterior probability that

the subset of individuals UZS, all belong to the same
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source population, and that these are the only

individuals in the sample which belong to that

particular source population. That is

π(U rX )¯ 3
τ :U ` τ

π
T
(τ rX ). (15)

We also define the corresponding cumulati�e prob-

ability, as follows. Let Π(U rX ) denote the posterior

probability that the subset of individuals UZS all

belong to the same source population. That is

Π(U rX )¯ 3
V :UZVZS

π(V rX ). (16)

A descriptive name for this probability would be the

probability of co-assignment for the individuals be-

longing to the subset UZS. These co-assignment

probabilities are exactly what we need for our

hierarchical clustering approach. We can also use

the corresponding conditional co-assignment prob-

abilities Π(U r κ¯k, X ), and Π(U r κ&k, X ).

Estimates of the co-assignment probabilities

Π(U rX ), and the corresponding conditional co-

assignment probabilities Π(U r κ¯k, X ), and

Π(U r κ&k, X ), are provided by the relative frequency

of the corresponding events in the output of the

Metropolis–Hastings Markov chain.

Let Π
d
(X ) denote the array of co-assignment

probabilities Π(U rX ), for all subsets UZS, of size

rU r ¯ d. Let Π
d
(κ¯k, X ) and Π

d
(κ&k, X ) denote

the corresponding arrays of conditional co-assignment

probabilities,Π(U r κ¯k, X ) andΠ(U r κ&k, X ). The

clustering algorithm can be applied to any of the

arrays Π
d
(X ), Π

d
(κ¯k, X ), Π

d
(κ&k, X ), for d¯

2, 3, 4.

Next, we construct a binary tree. Every individual

in the sample is associated with a terminal node. Every

internal node in a binary tree has two descendant

nodes. A descendent may be either a terminal node or

an internal node. If there are n terminal nodes, then

there will be n®1 internal nodes when the tree is

completed. The internal nodes are labelled t¯
1, 2,…, n®1, where t is the generation at which the

node was created. At any generation t, a node is said

to be open if it has not yet become the descendent of

another node, and is said to be closed if it has become

a descendent. Every internal node defines a set of

terminal nodes (the terminal nodes that can be reached

by descending the tree, starting from that node), and

hence a set, or ‘cluster ’, of individuals C(t).

Each internal node t is associated with a probability

le�el, p
t
, which tells us about the ‘worst ’ aspect of the

cluster of individuals which is defined by that node.

This probability level is also the height of the node.

(Terminal nodes are defined to have unit height.) We

could base the probability level p
t
on any of the low-

dimensional marginals: Π
#
(X ), Π

$
(X ) or Π

%
(X ). To

construct a binary tree, and the associated hierarchy

of clusters, using the array of co-assignment prob-

abilities Π
d
(X ), of dimension d& 2, we must make use

of all the arrays Π
#
(X ), Π

$
(X ),…, Π

d
(X ), up to the

chosen dimension d.

The algorithm for constructing the binary tree is as

follows. In the first generation, we identify the pair of

individuals (I
!
, I

"
) for which the probability

π
#
(I

!
, I

"
rX ) is maximum, and thus construct the first

internal node. At every subsequent generation t, we

take every possible pair of open nodes, and we

propose joining the pair to form a new internal node.

For each of these proposed nodes, we calculate the

probability level. Whichever proposed node has the

maximum probability level is then accepted and added

to the tree.

The probability level, p
t
, associated with an internal

node, and cluster C, is defined to be the lowest

posterior co-assignment probability Π(C« rX ), of any

subset C«ZC, of size rC«r¯ d, which can be formed

from the individuals belonging to cluster C. It can be

computed as follows. If rCr% d, then the probability

level associated with the proposed internal node is

defined to be Π(C rX ). Otherwise, when d! rC r , we

must enumerate every possible subset of C, which

contains exactly d individuals. We then identify the

subset C«ZC, rC«r¯ d, for which Π(C« rX ) has the

lowest value. The probability level associated with the

proposed internal node is then equated to Π(C« rX ).

Notice that it is only necessary to consider subsets

C«ZC, rC«r¯ d, which are not subsets of the clusters

defined by either descendant node.

So, in this algorithm, clusters are constructed so as

to maximize the minimum co-assignment probability

(the ‘similarity ’ measure) within clusters. An ad-

vantage of this max–min, or furthest neighbour,

method in this Bayesian context is that each node (and

the cluster which it defines) is associated with a

Bayesian measure of the ‘worst ’ aspect of the

aggregation (assignment) of individuals which is under

that node. Thus, a cluster is recognized on the basis of

its internal cohesiveness, or ‘homogeneity’. In the

case d¯ 2, our clustering algorithm reduces to the

classical ‘ furthest neighbour’ (or complete linkage)

algorithm (Defays, 1977). At the other extreme is the

‘nearest neighbour’ (or single linkage) method of

hierarchical clustering (for a historical survey, see

Graham & Hell, 1985; for some more recent advances

see Olson, 1995), in which a cluster is recognized on

the basis of its separation or isolation from all

external individuals. The resulting clusters may be

distinctly non-homogeneous. Other clustering

methods based on centroids or average distances,

introduce distance measures which can have no direct

Bayesian interpretation.

We would expect higher values of d to result in

systematically lower probability levels. Nevertheless,

using an array of higher dimension should have the
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Table 1. The posterior distribution of the number of source populations κ,

and Bayes factor B
"
. In each case the prior has parameter ν¯ 4, while u

and θ ha�e the �alues indicated in the table

Data
set u θ

κ

B
"

1 2 3 4

1 1 1 0±3492 0±6045 0±0427 0±0036 1±61

2 1 1 0±9759 0±0179 0±0059 0±0003 121±44
3 1 1 0±0001 0±0039 0±0544 0±9416 0±0003
3 0±75 1 0±0003 0±0026 0±0523 0±9448 0±0005
3 1 10 0±0002 0±0183 0±2632 0±7183 0±0007
4 1 1 0±0016 0±0037 0±0303 0±9644 0±005
5 1 1 0±0059 0±0039 0±0299 0±9603 0±02
5 0±75 1 0±0140 0±0021 0±0301 0±9538 0±02
5 1 10 0±3676 0±3836 0±0824 0±1663 1±74

advantage of being more sensitive to the creation of

any poorly supported clusters. Ideally, we would like

to set the dimension at its maximum value of d¯ rS r .
This would ensure that the probability level associated

with each cluster C is the cumulative probability

Π(C rX ), given by (16).

Once the tree has been constructed, we can easily

identify subsets of individuals whose assignment

together is well supported by the marginal posterior

distribution π
T
(τ rX ). Each node defines a set of

individuals. The set of internal nodes which are open

at generation t (including the node which is created at

generation t) defines a set λ
t
(X ) of clusters of

individuals. λ
t
(X ) is a partition of a set of individuals

Λ
t
(X )ZS. We refer to the set of individuals Λ

t
(X ) as

a ‘core ’ of the sample, and the partition λ
t
(X ) of

Λ
t
(X ) as a ‘core partition’.

It is important to recognize that the probability

level p
t
associated with the core partition λ

t
(X ) has no

frequentist interpretation. It is a posterior probability,

which depends both on the observed data and on the

choice of prior. So it is a subjective probability. This

raises an important question: How low should we

allow p
t

to fall, before we stop accepting further

agglomeration? More experience with the method will

be needed to resolve this. Provisionally, we recommend

using the graph of p
t

against t as a guide, paying

particular attention to any values of t where the

probability level falls more sharply than usual.

Once we are reasonably confident of the number of

well-supported clusters in our sample, we could then

seek a more accurate assignment of individuals, again

using the furthest neighbour algorithm, but this time

based on the array of conditional co-assignment

probabilities Π
d
(κ¯k, X ). However, because of the

residual uncertainty about the existence of additional

source populations, it might still be preferable to

assign individuals on the basis of the less restrictive

conditional co-assignment probabilities Π
d
(κ&k, X ).

7. Accuracy of Bayesian inferences

In order to test the performance of the Bayesian

inference procedures described above, we applied

these procedures to artificial data sets, generated using

coalescent simulations (Hudson, 1991), of the fol-

lowing simple di�ergence model. Two isolated popu-

lations, with (haploid) effective population sizes N
"
,

N
#
, respectively, separated t generations before the

present. The common ancestral population was

perturbed away from mutation–drift equilibrium a

further t
!
generations before this split, by a change in

population size from N
e
to N

!
. The mutation process

follows the infinite-allelesmodel (IAM), with mutation

rate U. The diversity of the common ancestral

population at mutation–drift equilibrium is deter-

mined by the parameter Θ¯ 2N
e
U. The divergence of

the two populations from their common ancestral

populations is determined principally by the para-

meters τ
"
¯ t}N

"
, τ

#
¯ t}N

#
, respectively.

Throughout, the parameter values in the divergence

model where: U¯ 5¬10−& and N
e
¯10%, so that

Θ¯1 ; N
!
¯ 2¬10% and t

!
¯ 2500, so that τ

!
¯ 0±125;

and N
"
¯N

#
¯10%. However, the parameter t varied.

In the strong di�ergence model, t¯ 2500, so that τ
"
¯

τ
#
¯ 0±25. In the weak di�ergence model, t¯ 625, so

that τ
"
¯ τ

#
¯ 0±0625. Finally, in the single population

model, two divergent populations (of equal size) are

generated with t¯ 5000 (so that τ
"
¯ τ

#
¯ 0±5) and

then pooled, and brought to Hardy–Weinberg and

linkage equilibrium. In practice, this was achieved by

random assignment of alleles to individuals in the

pooled sample. The motivation for this was to increase

the difficulty of the inference problem, by creating

substantial departures from Ewens’ sampling dis-

tribution (which is favoured by the prior on the allele

frequencies).

Each artificial data set contained 10 loci, unless

stated otherwise. For each Bayesian computation, the
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Fig. 2. Tree plot for data set 2, with dimension d¯ 2. All individuals 1–200 were drawn from a single population 1. The
tree offers no evidence of population subdivision, and is consistent with the existence of a single source population.

choice of prior, and the parameters of the Markov

chain sampler, were as follows, except where explicitly

stated otherwise. The prior π
K
(κ), on the number of

source populations κ, was flat (u¯1), with ν¯ 4. The

prior πΘ(θ) was degenerate, with a fixed value of

θ¯1. The Markov chain sampler was run for 100000

iterations, to generate 10000 observations with a

period of 10. After inspecting the sample path of the

number of populations κ, and the log likelihood, we

concluded that it was sufficient to exclude the first

1000 observations (10000 iterations) as burn-in.

Binary trees were constructed using the algorithm

described in Section 6, with dimension d¯ 2, unless

stated otherwise. The height of each node corresponds

to the probability level of the cluster defined by that

node. All terminal nodes are defined to have height

p¯1. The trees were viewed using the software

package TreeView (Page, 1996). For larger samples,

the software package NJplot (Perriere & Gouy, 1996)

is particularly useful.

Data set 1 was generated under the weak di�ergence

model, with sample sizes of n
"
¯ n

#
¯100 diploid

individuals from each of the two source populations.

The posterior distribution of the number of source

populations κ (Table 1) clearly favours the true value

of κ¯ 2. The tree (Fig. 1a) also indicates a well-

supported bi-partition of the sample. The Bayesian

Fig. 1. (a) Tree plot for data set 1, using dimension d¯ 2. Individuals 1–100 were drawn from population 1, and
individuals 101–200 were drawn from population 2. The bi-partition identified by the tree assigns individual 152 to
population 1, and individuals 5, 40, 70 and 95 to population 2. This bi-partition coincides exactly with the maximum
likelihood partition for κ¯ 2. (b) Plot of the probability level p

t
against the generation t, for data set 1, with d¯ 2.

(c) Plot of the number of clusters rλ
t
(X )r in the core partition λ

t
(X ) against the generation t, for data set 1, with d¯ 2.

probability level plot (Fig. 1b) shows a gradual

decline, until the lumping of the two remaining

clusters into a single cluster precipitates a dramatic

fall in probability level, indicating that this last

agglomeration is not supported by the data. For

comparison, we provide the plot of the number of

clusters (defined by open internal nodes) against the

generation t (Fig. 1c).

So, the Bayesian analysis reveals a clear bi-partition

of the sample. But is this the ‘ true’ bi-partition? For

the bi-partition of the sample specified by the model,

F
ST

¯ 0±0699 and F
IS

¯ 0±0008 (using Weir &

Cockerham’s (1984) multi-locus estimators). The bi-

partition identified by the tree reassigns 5 individuals.

This bi-partition coincides exactly with the maximum

likelihood partition for κ¯ 2, obtained by the

simulated annealing procedure described in Section 3.

For this partition, F
ST

¯ 0±0716 and F
IS

¯®0±0001,

suggesting that this bi-partition provides a better fit to

this particular data set than the bi-partition specified

by the underlying model. We also applied the program

Structure, of Pritchard et al. (2000) to this data set. It

did not yield a consistent result. In some runs, it

identified bi-partitions that were very close to the

maximum likelihood bi-partition. In another run, it

identified a tri-partition.

Data set 2 was generated under the single population
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model, with a sample size of n¯ 200 diploid indi-

viduals. The posterior distribution of κ (Table 1)

clearly favours the true value of κ¯1. The tree (Fig.

2) strongly suggests the existence of a single source

population. The probability level plot shows a slight,

and very gradual, decline, down to the final ag-

glomeration of all individuals into a single cluster.

Smaller samples pose more difficult inference

problems. As the data provide less information, the

choice of prior has a greater influence on the posterior

distribution. Data set 3 was generated under the

strong di�ergence model, with sample sizes of n
"
¯

n
#
¯ 40 diploid individuals from each of the two source

populations. Data set 4 was generated under the weak

di�ergence model, with the same sample sizes. Data set

5 was generated under the single population model,

with a sample size of n¯ 80 diploid individuals.

Despite the relatively strong population subdivision

in data set 3 (F
ST

¯ 0±215), the posterior distribution

of κ (Table 1) is concentrated at the maximum value

of ν¯ 4. This is a poor inference for κ, with a greatly

exaggerated impression of our confidence in this

inference. However, the tree (Fig. 3a), together with

the probability level plot, did suggest a bi-partition, or

possibly a tri-partition, of the sample. There was an

unusually large fall in probability level when the

number of clusters was reduced from three to two,

and an even greater fall when the two remaining

clusters were lumped into one (Fig. 3b). Individuals

1–40 were drawn from population 1, and individuals

41–80 were drawn from population 2. The bi-partition

identified by the tree coincides exactly with this, as

does the maximum likelihood bi-partition.

For data set 4, the posterior distribution of κ (Table

1) is again concentrated at the maximum value of

ν¯ 4. In this case, the tree, and the probability level

plot, did not offer clear evidence in support of a bi-

partition. However, the bi-partition induced by the

tree coincided with that specified by the model

(1–40:41–80), except that individual 56 was assigned

to population 1. The maximum likelihood bi-partition

returns individual 56 to population 2, and assigns

individual 23 to population 2.

Despite the absence of appreciable subdivision in

data set 5, the posterior distribution of κ (Table 1) is

again concentrated at the maximum value of ν¯ 4.

The tree, and the probability level plot, offered no

evidence of subdivision. The probability level declined

gradually all the way down to the final agglomeration

of all individuals. For this data set, we also constructed

Fig. 3. (a) Tree plot for data set 3, with dimension d¯ 2. Individuals 1–40 were drawn from population 1, and
individuals 41–80 were drawn from population 2. The bi-partition identified by the tree coincides exactly with this, as
does the maximum likelihood bi-partition. (b) Plot of the probability level p

t
against the generation t, for data set 3, with

d¯ 2. (c) Plot of the number of clusters rλ
t
(X ) r in the core partition λ

t
(X ) against the generation t, for data set 3, with

d¯ 2.

a tree using the clustering algorithm with dimension

d¯ 3. Again, the tree, and the probability level plot,

offered no evidence of subdivision.

The strong tendency for the posterior distribution

of κ to be concentrated at its maximum value ν

whenever the sample is small is a serious concern. We

believe that the reason for this is that the prior on the

allele composition used in these examples is too

restrictive, and that this prior becomes very influential

when the sample size is small. This issue is explored in

more detail in the next section. Even when the sample

size is small, the tree, together with the probability

level plot, provides robust inferences about the source

populations present in the sample.

8. Sensitivity analysis

In order to understand the strong upward bias in the

posterior distribution of κ, when the sample is small,

we investigated the sensitivity of the posterior dis-

tribution to the choice of prior.

To see the influence of the parameter ν, of the prior

on κ, we reanalysed data set 3, with u¯1 and ν¯ 8.

Again, the posterior distribution of κ was concentrated

at its maximum value, now ν¯ 8. The tree provided

less evidence of a bi-partition than before. But despite

this, the bi-partition defined by the tree remained the

same as before.

In view of this extreme dependence of π
K
(κ rX ) on

ν, when the sample size is 80, we also reanalysed data

set 1 (sample size 200) with the same prior. However,

in this case the change of prior had almost no effect on

π
K
(κ rX ). The tree revealed the same bi-partition, and

showed much similarity on a finer scale.

The other parameter of the prior on κ is u. We

reanalysed data sets 3 and 5, with u¯ 0±75 and ν¯ 4.

Surprisingly, this had almost no effect on the posterior

distribution of κ (Table 1). The new tree for data set

3 provided stronger evidence for the maximum

likelihood bi-partition. The new tree for data set 5

again offered no evidence of population subdivision.

The prior distribution of the allele composition

influences the posterior distribution of κ. In all the

above examples, we have used a Poisson–Dirichlet

distribution, with θ¯1. In this case, the prior (or

hyper-prior) on θ is degenerate. We suspect that this

choice has favoured the identification of many source

populations with lower allelic diversity, over the

alternative of fewer source populations with higher
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allelic diversity. To test this idea, we reanalysed data

sets 3 and 5, with θ¯10. Increasing θ leads to a

substantial shift in the posterior distribution of κ,

away from its maximum value (Table 1). The new tree

for data set 3 provided stronger evidence for the

maximum likelihood bi-partition. The new tree for

data set 5 provided stronger evidence for a single

source population.

These preliminary results suggest that the solution

to the small-sample bias in the posterior distribution

of κ, may be to choose a suitable diffuse prior on the

parameter θ, so that the data can influence the joint

posterior distribution of θ and κ. We hope to resolve

this question in the near future, by experimenting with

different diffuse priors on θ. Progress is impeded by

the long run time for the Bayesian computation.

For a sample of 80 individuals, genotyped at 10

marker loci, a run of 100000 iterations (10000

observations, with a period of 10) takes about 8 hours

on a Pentium 300 processor. For a sample of 200

individuals, genotyped at 10 marker loci, 100000

iterations takes about 24 hours. The run time of the

clustering algorithm grows rapidly with the sample

size. For a sample of 80 individuals, it takes about

10 minutes to construct a tree, using dimension 2, and

40 minutes using dimension 3. For a sample of 200

individuals, it takes about 3 hours using dimension 2.

9. The general problem of making inferences about

partitions

The problem of assigning the individuals in a sample

to panmictic source populations is formulated here as

a problem of inferring the partition of the sample

induced by the assignment of individuals to source

populations. This is in contrast to the alternative

formulation, as a problem of inferring the proportions

of the different source populations in a mixture.

The data in the assignment problem can be

presented in the form of a multi-dimensional con-

tingency table, where the factors are the loci. We are

looking for the evidence of populations within which

there are no statistical associations among factors

(linkage disequilibrium). Mixture models, assignment

problems and multi-dimensional contingency tables

are all amenable to a similar Bayesian analysis.

Pritchard et al. (2000) also introduced a Bayesian

method for assigning individual allele copies to source

populations, where the source populations are again

assumed to be panmictic, but are not identified a

priori. The objective of this analysis is to reveal

patterns of hybridization and introgression. Here, the

parameter of interest is the proportion of each

individual’s genome which is derived from a particular

source population. This is a very challenging inference

problem, and it appears that useful inferences can

only be made when there is strong prior information

about the number of source populations, or the

distribution of the hybrid index, or preferably strong

prior information about both of these.

The problem of assigning allele copies to source

populations is really an alternative formulation of the

problem of inferring the distribution of the hybrid

index (or, in the case of multiple source populations,

its multivariate generalization). Barton (2000) has

recently addressed this problem. The ultimate ob-

jective of his analysis was to estimate measures of

linkage disequilibrium within a single spatially

localized population. This was achieved by first

estimating the distribution of the hybrid index, jointly

with the allele frequencies and their divergence

between source populations. Barton’s analysis

incorporates stronger prior information in that it

assumes that all linkage disequilibrium was ultimately

generated by admixture of two source populations,

each of which was at linkage equilibrium. The

additional assumption that the geographically

localized population has reached a migration–

recombination balance (a quasi-equilibrium) is not

strictly necessary. Barton used a maximum likelihood

approach, but the same model could usefully be

analysed from a Bayesian point of view.

When the work presented above was near com-

pletion, our attention was drawn to a number of

important recent references, in addition to Pritchard

et al. (2000). Green (1995) developed a Markov chain

Monte Carlo sampler for performing Bayesian compu-

tations in situations where one of the parameters of

the model is a partition of a set. Our change κ

proposal process, with ‘unify ’ and ‘divide’ proposals,

is essentially identical to the ‘birth’ and ‘death’

proposal processes of Green (1995; re-named ‘split ’

and ‘combine’ in Richardson & Green, 1997). Green

(1995) also chose a flat prior on the number of subsets

(κ in our notation).

Assignment problems and mixture problems are

examples of model choice problems where the alterna-

tive models have different numbers of parameters. In

such problems, the posterior distribution is neither a

discrete distribution nor a joint probability density.

For this reason, Green (1995) presented the underlying

Markov chain Monte Carlo algorithm as a new

generalization of the Metropolis–Hastings algorithm,

which is now commonly referred to as the ‘reversible

jump sampler ’, or sometimes the ‘Metropolis–

Hastings–Green algorithm’. However, any Markov

chain which is simulated on a computer is necessarily

a discrete Markov chain, where all probability

densities are replaced by discrete approximations.

From this point of view, we are still using the

Metropolis–Hastings algorithm.

Green (1995) focused on the problem of evaluating

the evidence in support of a particular preconceived

partition of the sample, and did not confront the

https://doi.org/10.1017/S001667230100502X Published online by Cambridge University Press

https://doi.org/10.1017/S001667230100502X


Bayesian assignment to panmictic populations 71

general problems associated with inferring an un-

known partition of a set. Richardson & Green (1997)

tackled this more challenging problem, and recognized

the problems associated with the arbitrary labelling of

the subsets in the partition (or equivalently, the

components of the mixture distribution), and the

consequent ‘ label switching’ in the output from the

Markov chain sampler. The solution which they

recommended was processing of the output to rank

the components of each observation in a consistent

order. In his contribution to the published discussion

of that paper, Stephens (1997) pointed out the

shortcomings of this approach. These points are

developed further in Stephens (2000b), where an

alternative type of post-processing is recommended.

The solution proposed by Stephens (2000b) is to apply

a k-means type clustering algorithm to the set of

observations from the Markov chain sampler. Here,

the problem is presented as one of assigning the

observations from the Markov chain sampler to the

distinct symmetric modes of an exchangeable posterior

distribution. We avoided this label-switching problem

by basing our Bayesian inferences about the sample

partition on the posterior co-assignment probabilities.

These are entirely independent of any labelling of the

source populations.

Besides the technical problem of label-switching,

there is a more fundamental problem of what to do

when the mode of the posterior distribution of

partitions π
T
(τ rX ) is rather flat. To put it another

way, there may be many individuals which are difficult

to assign to source populations. This problem has

already been discussed in some detail above. Our

solution is to identify clusters of individuals whose

assignment together is well supported by the posterior

distribution. This is achieved by applying simple

hierarchical clustering algorithms to the arrays of

posterior co-assignment probabilities.

Similar considerations apply to any inference

problem where the partition of a set (or the com-

position of a finite mixture) is the parameter of

interest. This is not the case when mixture models are

used for density estimation (Richardson & Green,

1997; Stephens, 2000a, b), where the ordinates of the

density, together with credibility intervals, are of

principal interest.

An important generalization of the assignment

problem treated above is the assignment of individuals

to source populations, where reference samples are

available from certain source populations. The in-

clusion of reference samples in the data changes

substantially the nature of the inference problem.

When we have reference samples from particular

source populations, these populations can be

associated with fixed labels, so that we can use the

posterior probability that an individual is assigned to

such a population as an assignment criterion. How-

ever, if there are individuals which have a low

probability of being assigned to the reference popu-

lations, then we will also need to be able to assign

these individuals to alternative clusters, using methods

like those introduced above. We will treat this problem

in a forthcoming paper.

10. Prospects for Bayesian analysis of

Hardy–Weinberg and linkage disequilibrium

In many situations, the first question of interest is: do

we have a (random, or non-stratified) sample from a

single panmictic population (at, or at least close to,

Hardy–Weinberg and linkage equilibrium), or do we

have something more complicated? One possible

measure of the evidence in support of a single

panmictic population is the Bayes factor for κ¯1

against the alternative of κ"1, which is given by

B
"
¯

E

F

π(κ¯1 rX )

1®π(κ¯1 rX )

G

H

E

F

1®π
K
(κ¯1)

π
K
(κ¯1)

G

H

.

This is independent of the prior distribution π
K
(κ), on

the number of source populations κ. However, it does

still depend on the prior distribution π
T rK

(τ r κ), of

sample partitions conditional upon κ. It also depends

on the prior distribution on the allele frequencies.

Reporting this Bayes factors is a possible likelihood-

based alternative to classical tests of Hardy–Weinberg

and linkage equilibrium (such as those of Guo &

Thompson, 1992; Zykin et al., 1995; and Rousset &

Raymond, 1995). However, if inbreeding, or strati-

fication of the sample with respect to kinship, are

among the alternative hypotheses under consideration,

then further likelihood-based comparisons should be

performed (see, for example, Ayres & Balding, 1998;

and Zhivotovsky, 1999). Arguably, this particular

Bayes factor, B
"
, is only relevant when the mode of the

posterior distribution π
K
(κ rX ) is at κ¯1.

This Bayesian approach to evaluating the evidence

supporting Hardy–Weinberg and linkage equilibrium

(against the alternative of population subdivision) is

not without its problems. When samples are small, the

posterior distribution of κ, and hence the Bayes factors

B
"
, can greatly exaggerate the evidence against a single

population at Hardy–Weinberg and linkage equi-

librium. This is a potentially serious problem, since

the number of sampled individuals belonging to each

source population is part of what we are trying to

infer. We hope that this problem can be overcome by

choosing an appropriate diffuse prior on the allele

frequencies.

Both the Bayesian and maximum likelihood pro-

cedures for inferring the sample partition, described

above, have been incorporated into a software

package, Partition, available at http:}}www.univ-

montp2.fr}Cgenetix}partition.htm.
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Appendix

(i) Integrating out the allele frequencies

The posterior distribution π(τ, θ rX ) is obtained from (11) by integrating out the allele frequencies as follows:

π(τ, θ rX )¯&
p

π(τ, p, θ rX ) dp

¯C−"

E

F

0
κ

i="

P(D
i
r d

i
)

G

H

E

F

0
κ

i="

0
m

a="

E

F

&
p
i,a

P(d
i,a

r p
i,a

)π
P rΘ(pi,a

r θ)dp
i,a

G

H

πΘ(θi,a
)

G

H

π
T
(τ). (A1)

From the allele counts d
i,a

¯ (d
i,a

(1),…, d
i,a

(r
i,a

)), we can construct the sample configuration k
i,a

¯
(k

i,a
(1),…, k

i,a
(2n

i,a
)), where k

i,a
(d ) denotes the number of distinct allele types that are represented with an allele

count of exactly d copies in the sample from population i, at locus a. So, k
i,a

is a ‘partition’ of the integer 2n
i
.

Let k
i
¯ (k

i,"
,…, k

i,m
) and k¯ (k

"
,…, kκ). The total number of distinct allele types at locus a represented among

the individuals assigned to source population i is k
i,a

(1)Ik
i,a

(2n
i,a

)¯K
i,a

. If the ordered allele frequencies

in the population have the Poisson–Dirichlet distribution, then the integral

&
p
i,a

P(d
i,a

r p
i,a

)π
P rΘ(pi,a

r θ
i,a

) dp
i,a

¯P(k
i,a

r θ
i,a

) (A2)

is given by the Ewens sampling distribution (Ewens, 1972; Karlin & McGregor, 1972) :

P(k r θ)¯P
r
(k r θ)¯

r!

θ(θ1)I(θr®1)

θK

E

F

0
r

d="

k(d )!dk(d)

G

H

, (A3)

where r is the total number of allele copies, and K is the total number of distinct allele types represented in

the sample. So the factor

P(X r τ, θ)¯ 0
κ

i="

P(D
i
r d

i
)

E

F

0
m

a="

P(k
i,a

r θ
i,a

)
G

H

(A4)

in (12) is the likelihood function for the model, parameterized by θ¯ (θ
"
,…, θκ) (rather than by the allele

frequencies).

The relationship (A2) between the Ewens sampling distribution and the Poisson–Dirichlet distribution was

derived by Watterson (1976), and then more rigorously by Kingman (1977). Hoppe (1987) obtained a more

direct proof using the relationship between the GEM (Griffiths–Engen–McClowskey) distribution (Engen, 1975)

and the Poisson–Dirichlet distribution (established by Patil & Taillie, 1977).

(ii) The proposal processes of the Metropolis–Hastings algorithm

The proposal process exchange can change the composition, but not the size, of the existing subsets of the

sample, while the proposal process transfer can change both the size and the composition of the existing subsets

of the sample. The proposal process change κ can change the number of subsets into which the sample is

partitioned, as well as the composition and size of these subsets. The proposal process jiggle θ simply adjusts the

parameters of the prior on the allele frequencies in the populations (or equivalently, the prior on the allelic

‘configuration’ of the samples from these populations).

Each cycle of the Markov chain begins with a change κ proposal, followed by the sequence of proposal

processes : transfer, exchange ; repeated n times (where n is the number of individuals in the sample) ; and the cycle

ends with the jiggle θ proposal process. In the case where the prior πΘ(θi,a
) is degenerate (so that the values of

the parameters θ
i,a

are all fixed at the same value θ), the proposal process jiggle θ is omitted.

In general, the posterior probability ratio for a proposed change from state (τ, θ) to (τ«, θ«) is

π(τ«, θ« rX )

π(τ, θ rX )
¯

0
κ«

i="

P(D «
i
r d «

i
)

E

F

0
m

a="

P(k«
i,a

r θ«
i,a

)πΘ (θ«
i,a

)
G

H

0
κ

i="

P(D
i
r d

i
)

E

F

0
m

a="

P(k
i,a

r θ
i,a

)πΘ(θi,a
)

G

H

π
T
(τ«)

π
T
(τ)

. (A5)
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Changes in the partition τ or the parameter θ have no effect on the total number of heterozygotes h
",a

Ihκ,a
,

at individual loci, and the total number of heterozygotes h
"
Ihκ. So the factor 2h

"
+I+hκ cancels out of the

likelihood ratio. From (3) and (A3), the factor 0m

a="
(2n

i
)! cancels out of the likelihood for each population,

leaving

P(D
i
r d

i
)

E

F

0
m

a="

P(k
i,a

r θ
i,a

)
G

H

¯ 2hi

n
i
!

0
G`R(X)

D
i
(G )!

E

F

0
m

a="

E

F

0
n

d="

((d®1)!)ki,a(d)

k
i,a

(d )!

G

H

θKi,a

θ
i,a

(θ
i,a

1)I(θ
i,a

2n
i
®1)

G

H

. (A6)

The proposal process jiggle θ was not used in the Bayesian computations presented in Sections 7 and 8. In this

proposal process, we choose a source population i, at random, and change the values of the parameters θ
i,a

, at

every locus a. The proposal distribution is of the form

q(θ
i
! θ«

i
)¯ 0

m

a="

Q(θ«
i,a

r θ
i,a

, δ), (A7)

where Q(θ«³θ, δ) is a distribution which corresponds to the following proposal process. First, we choose

whether to decrease or increase θ
i,j

(θ«! θ or θ! θ«). Both outcomes have probability 1}2. Second, we

choose the value of θ« from a uniform distribution on a certain open interval. If we have chosen to decrease

θ
i,a

(θ«! θ), then θ« is chosen from a uniform distribution on the interval ©θ®δ, θª (when δ! θ), or on the

interval ©0, θª (when 0! θ! δ). If we have chosen to increase θ
i,a

(θ«! θ), then θ« is chosen from a uniform

distribution on the interval ©θ, θδª. Therefore, this proposal process results in a probability density Q(θ« r θ, δ),

which is given by

Q(θ« r θ, δ)¯

1

2
3

4

1

2δ
, δ! θ

1

2θ
, 0! θ! δ

.
(A8)

This proposal process ensures that θ
i,a

remains in the open interval ©0, ¢ª.

In the case of the proposal process jiggle θ, the posterior probability ratio reduces to

π(τ, θ« rX )

π(τ, θ rX )
¯ 0

m

a="

P(k
i,a

r θ«
i,a

)

P(k
i,a

r θ
i,a

)

πΘ(θ
«
i,a

)

πΘ(θi,a
)
. (A9)

For a proposed change in the parameter θ
i,a

, from θ to θ«, the likelihood ratio is

P(k
i,a

r θ«)
P(k

i,a
r θ)

¯
E

F

θ«
θ

G

H

Ki,a θ(θ1)I(θ2n
i
®1)

θ«(θ«1)I(θ«2n
i
®1)

. (A10)

When the prior πΘ(θ), on θ is a gamma distribution

πΘ(θ)¯
1

βαΓ(α)
θα−" exp

E

F

®
θ

β

G

H

, (A11)

the prior probability ratio reduces to

πΘ(θ«)
πΘ(θ)

¯
E

F

θ«
θ

G

H

α−"

exp

E

F

®
(θ«®θ)

β

G

H

. (A12)

In the proposal process exchange, a pair of populations is chosen at random, and an individual is chosen at

random from within each population. These two individuals then exchange their assignments, so that each

individual is reassigned to the population to which the other was previously assigned.

If κ¯1, then the state (τ, θ) of the Markov chain remains unchanged. If κ"1, a pair of distinct populations

i, j, (i1 j) is chosen at random. Each of the (κ

#
) possible pairs have the same probability, (κ

#
)−", of being chosen.

And within each of the two subsets, each individual has the same probability of being chosen. Therefore, the

probability of proposing an exchange between populations i and j is

q
Ex

(τ! τ«)¯
E

F

κ

2

G

H

−" 1

n
i
n
j

. (A13)
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But since an exchange does not change the number of subsets, or the number of individuals in each subset, the

probability of proposing the reverse of this exchange is

q
Ex

(τ«! τ)¯
E

F

κ

2

G

H

−" 1

n«
i
n«
j

¯
E

F

κ

2

G

H

−" 1

n
i
n
j

. (A14)

Hence

q
Ex

(τ«! τ)

q
Ex

(τ! τ«)
¯1. (A15)

In the case of an exchange, the posterior probability ratio reduces to
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π
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. (A16)

Let X(I ) denote the genotype of individual I. For each individual I `S, at each marker locus a, we have a pair

of allele types, X
a,"

(I ), X
a,#

(I ). By convention, the ordering labels, 1, 2, are chosen such that X
a,"

(I )%X
a,#

(I ).

Before the exchange, individual I is assigned to population i, and individual J is assigned to population j. After

the exchange, individual I is assigned to population j, and individual J is assigned to population i. Note the

massive cancellations in the ratio
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(A17)

where 2 is the set of distinct genotypes among: X(I ), X(J ), and ) is the set of all distinct values among:

d
i,a

(X
a,"

(I )), d
i,a

(X
a,#

(I )), d
i,a

(X
a,"

(J )), d
i,a

(X
a,#

(J )), d «
i,a

(X
a,"

(I )), d «
i,a

(X
a,#

(I )), d «
i,a

(X
a,"

(J )), d «
i,a

(X
a,#

(J )), excluding

zero.

In the proposal process transfer, a population is chosen at random and an individual is chosen at random from

within this population, and reassigned to a different population. A transfer is not allowed to empty a subset, or

to create a new subset. So, we must choose a population at random from among those populations for which

the corresponding subset contains more than one individual. Let η(τ) denote the number of subsets of the sample

(elements of the partition τ) which contain more than one individual.

If κ¯1, or κ¯ ν, then the state (τ, θ) of the Markov chain remains unchanged. If 1! κ! ν, first a ‘donor’

population, i, is chosen at random from among the η(τ) populations for which the corresponding subset contains

more than one individual. (The constraint ν! n ensures that η(τ)" 0.) Each of these populations has the same

probability, 1}η(τ), of being chosen. Second, a ‘recipient ’ population, j, is chosen at random from among all the

κ populations excluding population i. (Each of these populations has the same probability, 1}(κ®1), of being

chosen.) Finally, an individual I is chosen at random from the donor population, and reassigned to the recipient

population. (Each individual in the donor population has the same probability, 1}n
i
, of being chosen.) Therefore,

the probability of proposing a transfer from population i to population j is

q
Trans

(τ! τ«)¯
1

η(τ)(κ®1)n
i

. (A18)

The probability of proposing the reverse of this exchange is

q
Trans

(τ«! τ)¯
1

η(τ«)(κ«®1)n«
j

¯
1

η(τ«)(κ®1)(n
j
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. (A19)

Hence

q
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(τ«! τ)

q
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(τ! τ«)
¯

η(τ)n
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η(τ«)n«
j

¯
η(τ)n
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. (A20)
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In the case of a transfer, the posterior probability ratio again reduces to the formula given in (A16). But this time

the massive cancellations leave
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where ) is now the set of all the distinct values among: d
i,a

(X
a,"

(I )), d
i,a

(X
a,#

(I )), d «
j,a

(X
a,"

(I )), d «
j,a

(X
a,#

(I )),

excluding zero.

The proposal process change κ is composed of two subprocesses: ‘unify ’ and ‘divide’. In the process ‘unify ’,

a pair of populations is chosen at random and the corresponding subsets of individuals (assigned to these

populations) are unified to form a single subset of individuals, which is assigned to a new population. The process

‘unify ’ can only be applied when κ"1. A pair of distinct populations i, j (i1j) is chosen at random, and their

members are assigned to a single new population i«(¯min²i, j´). Each of the (κ

#
) possible pairs has the same

probability, (κ

#
)−", of being chosen. Therefore, the probability of proposing a ‘unification’ of populations i and

j is

qy(τ! τ«)¯
E

F

κ

2

G

H

−"

. (A22)

Whenever we create a new population, i«, we also have to specify the values of the parameters θ
i«
¯

(θ
i«,"

,…, θ
i«,m

). These values are chosen using a special proposal distribution:

qy(θi
! θ«
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)¯ 0

m
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E
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2

G

H

, δ
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H

, (A23)

where Q(θ« r θ, δ) is the proposal distribution introduced in the explanation of jiggle θ, above. So, a unification

is in fact a transition from (τ, θ) to (τ«, θ«), which occurs with probability

qy((τ, θ)! (τ«, θ«))¯ qy(τ! τ«)qy(θi
! θ«

i
). (A24)

In the process ‘divide’, a population i is chosen at random and the subset of individuals assigned to that

population is bi-partitioned at random, to create two new non-empty disjoint subsets, i«(¯ i), j«(¯ κ«¯ κ1),

which are assigned respectively to two new populations. The process ‘divide’ can only be applied when κ! ν.

A population, i, is chosen at random from among the η(τ) populations for which the corresponding subset

contains more than one individual. (Each of these populations has the same probability, 1}η(τ), of being chosen.)

A bi-partition of this subset is then chosen at random from among all the possible bi-partitions of this subset

(excluding the trivial ‘bi-partition’ into one part). (Each of the S(#)

ni

¯ 2ni−"®1 non-trivial bi-partitions has the

same probability, 1}(2ni−"®1), of being chosen.) Therefore, the probability of proposing a particular ‘division’

of population i is

q
+
(τ! τ«)¯

1

η(τ)(2ni−"®1)
. (A25)

Since we have created two new populations, i«, j«, we also have to specify the values of the parameters θ
i«
¯

(θ
i«,"

,…, θ
i«,m

), θ
j«
¯ (θ

j«,"
,…, θ

j«,m
). This time, these values are chosen using the proposal distribution q(θ

i
! θ«

i
)

described above in the explanation of jiggle θ. So, a division is a transition from (τ, θ) to (τ«, θ«), which occurs

with probability

q|((τ, θ)! (τ«, θ«))¯ q|(τ! τ«)q(θ
i
! θ«

i
«)q(θ

i
! θ«

j
«). (A26)

If κ¯1, then ‘divide’ is applied. If κ¯ ν, then ‘unify ’ is applied. Otherwise, for 1! κ! ν, with probability 1}2

‘unify ’ is applied, and with probability 1}2 ‘divide’ is applied. So, for 1! κ! ν,

q
Change κ((τ, θ)! (τ«, θ«))¯

1

2
3

4

"

#
qy((τ, θ)!(τ«, θ«)), when τ! τ« is a ‘unification’,

"

#
q|((τ, θ)! (τ«, θ«)), when τ! τ« is a ‘division’.

(A27)
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In the case of a ‘division’, the posterior probability ratio reduces to
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In the case of a ‘unification’, the posterior probability ratio reduces to
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