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Abstract. The understanding of fossil fields origin, topology, and stability is one of the corner
stones of the stellar magnetism theory. On one hand, since they survive on secular time scales,
they may modify the structure and the evolution of their host stars. On the other hand, they
must have a complex stable structure since it has been demonstrated that the simplest purely
poloidal or toroidal fields are unstable on dynamical time scales. In this context, the only stable
stellar configurations found today are those resulting from numerical simulations by Braithwaite
and collaborators who studied the evolution of an initial stochastic magnetic field, which relaxes
with a selective decay of magnetic helicity and energy, on mixed stable configurations (poloidal
and toroidal) that seem to be in equilibrium and then diffuse. In this talk, we report the semi-
analytical investigation of such an equilibrium field in the axisymmetric case. We use variational
methods, which describe selective decay of magnetic helicity and energy during MHD relaxation,
and we identify a supplementary invariant due to the stable stratification of stellar radiation
zones. This leads to states that generalize force-free Taylor’s relaxation states studied in plasma
laboratory experiments that become non force-free in the stellar case. Moreover, astrophysical
applications are presented and the stability of obtained configurations is studied.
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1. Introduction
Magnetic fields are now detected more and more often at the surface of main-sequence

(and pre main-sequence) intermediate mass and massive stars, which have an external
radiative envelope. Indeed, strong fields (300 G to 30 kG) are observed in some fraction
of Herbig stars (Alecian et al. 2008), A stars (the Ap stars, see Aurière et al. 2007), as
well as in B stars and in a handful of O stars (Grunhut et al. 2009). Furthermore, we
cannot dismiss the possibility of a large-scale magnetic field being responsible for the
quasi-uniform rotation of the bulk of the solar radiation zone, as revealed by p-modes
helioseismology (Eff-Darwich et al. 2008). Finally, non convective compact objects display
fields strength of 104 − 109 G for white dwarfs and of 108 − 1015 G for neutron stars.
Magnetic fields in stably stratified non convective stellar regions will thus be able to
deeply modify our vision of stars evolution since their formation (Commerçon et al.
2010) to their late stages, for example for gravitational supernovae. Indeed, they will
modify stellar internal dynamics, for example the transport of angular momentum and
the resulting rotation history, and chemicals mixing (see Mathis & Zahn 2005).

The large-scale, ordered nature (often approximately dipolar) of such magnetic fields
and the scaling of their strengths as a function of their host properties (according to the
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flux conservation scenario) favour a fossil hypothesis, whose origin has to be understood.
One of the fundamental question is thus the understanding of the topology of these large-
scale magnetic fields. To have survived since the star’s formation or the PMS stage, a
field must be stable on a dynamic (Alfvén) timescale. It was suggested by Prendergast
(1956) that a stellar magnetic field in stable axisymmetric equilibrium must contain both
poloidal (meridional) and toroidal (azimuthal) components, since both are unstable on
their own (Tayler 1973; Wright 1973; Braithwaite 2006; Bonanno & Urpin 2008b). This
was confirmed recently by numerical simulations by Braithwaite & Spruit (2004); Braith-
waite & Nordlund (2006); Braithwaite (2008) who showed that initial stochastic helical
fields evolve on an Alfvén timescale into stable configurations: axisymmetric and non-
axisymmetric mixed poloidal-toroidal fields were found. This phenomenon well known in
plasma physics is a MHD turbulent relaxation (i.e. self-organization process involving
magnetic reconnections in resistive MHD). In this short paper, we present our physical
understanding of such mechanism in stellar interiors focusing on the axisymmetric case.
First, we show how to derive such magnetic configurations. Then, stability properties are
studied. Astrophysical consequences and perspectives are finally discussed.

2. The relaxed non force-free configuration
In this work, we deal with axisymmetric, non force-free magnetic configurations (i.e.

with a non-zero Lorentz force) in equilibrium inside stellar radiation zones, which result
from an initial MHD relaxation of the field created by a PMS dynamo or the stellar
formation. We first restrict ourselves to the non-rotating case, but results also apply to
radiation regions in a state where rotation is uniform (Woltjer 1959), that could be the
case if magnetic field is strong enough, and where meridional circulation can be neglected
(i.e. if the star is near an equilibrium where the Lorentz torque vanishes, does not loose
angular momentum, and have a stationary structure: see Mestel, Moss & Tayler 1988;
Busse 1981; Zahn 1992; Decressin et al. 2009). The more general case including differential
rotation (and induced meridional circulation) will be treated in a near future.

Several reasons inclined us to focus on non force-free relaxed equilibria instead of force-
free ones, which are often studied in plasma laboratory experiments. First, Reisenegger
(2009) reminds us that no configuration can be force-free everywhere. Although there
do exist “force-free” configurations, they must be confined by some region or boundary
layer with non-zero or singular Lorentz force. This induces discontinuities such as current
sheets, which are unlikely to appear in nature except in a transient manner. Second,
non force-free equilibria have been identified in plasma physics as the result of MHD
relaxation (see for example Montgomery & Phillips 1988; Shaikh et al. 2008). Third, as
shown by Duez & Mathis (2010), this family of equilibria is a generalization of Taylor
states (force-free relaxed equilibria in plasma laboratory experiments; see Taylor 1974)
in a stellar context, where the stable stratification of the medium plays a crucial role.

2.1. The magnetic field in MHS equilibrium

Let us describe the assumptions made in building the semi-analytical model of relaxed
magnetohydrostatic (MHS) equilibrium described by Duez & Mathis (2010). The ax-
isymmetric magnetic field B (r, θ) is expressed as a function of a poloidal flux Ψ (r, θ), a
toroidal potential F (r, θ), and the potential vector A (r, θ) so that it is divergence-free
by construction:

B =
1

r sin θ
(∇Ψ × êϕ + F êϕ ) = ∇ ×A, (2.1)
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where in spherical coordinates the poloidal component (BP) is in the meridional plane
(êr , êθ ) and the toroidal component (BT) is along the azimuthal direction (êϕ ). The
MHS equation expressing balance between the pressure gradient force, gravity and the
Lorentz force is

0 = −∇ P − ρ ∇ V +
1
µ0

(∇ ×B) ×B, (2.2)

where V is the gravitational potential, which satisfies the Poisson equation: ∇2V = 4πGρ.

2.2. The non force-free relaxed equilibria family
2.2.1. MHD relaxation and variational method

Here, we focus on the minimum energy non force-free MHS equilibrium that a stably
stratified radiation zone can reach. First, given the field strengths in real stars, the ratio
of the Lorentz force to gravity is very low: stellar interiors are thus in a regime where
β = P/PMag >> 1, PMag = B2/ (2µ0) being the magnetic pressure. Then, we identify the
invariants governing the evolution of the reconnection phase, that leads to relaxed states
in the non force-free case. The first one is the magnetic helicity

H =
∫
V
A ·B dV, (2.3)

which is an ideal MHD invariant known to be roughly conserved at large scales during
relaxation. The second one is the mass encompassed in poloidal magnetic surfaces

MΨ =
∫
V

Ψ ρ dV, (2.4)

conserved because of the stable stratification, which inhibits the radial movements and
thus the transport of mass and flux in this direction. Note that this invariant can also be
seen as a topological constraint. (see Moffatt 1985). Next, we assume a selective decay
during relaxation (c.f. Biskamp 1997), in which the magnetic energy Emag =

∫
V

B2

2µ0
dV

(µ0 being the vaccum magnetic permeability), and thus the total energy

E = Emag +
1
2

∫
V

ρ (V + 2U) dV, (2.5)

where U is the specific internal energy per unit mass, decays much faster than H and
MΨ, so that they can be considered constant on an energetic decay e-folding time. This is
due to the stable stratification and to the different orders of spatial derivatives involved
in the variation of Emag and H:

dEmag

dt
= −

∫
V

η j 2 dV and
dH
dt

= −
∫
V

η j ·BdV, (2.6)

where η is the magnetic diffusivity and µ0 j = ∇ × B, j being the current. The reached
equilibrium is thus the one of minimum energy for given magnetic helicity and mass
encompassed in magnetic flux tubes. This can be determined applying a variational
method where we minimize E with respect to H and MΨ

δE + aHH + aMΨ MΨ = 0, (2.7)

where aH and aMΨ are Lagrangian multipliers. This allows to derive the elliptic linear
partial differential equation governing Ψ (Woltjer 1959; Montgomery & Phillips 1989;
Duez & Mathis 2010):

∆∗Ψ +
λ2

1

R2 Ψ = −µ0 ρ r2 sin2 θ β0 . (2.8)
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Here, ρ is the density in the non-magnetic case, ∆∗Ψ ≡ ∂rrΨ+sin θ∂θ (∂θΨ/ sin θ) /r2 the
Grad-Shafranov operator in spherical coordinates, λ1 the eigenvalue to be determined, R
a characteristic radius, and β0 is constrained by the field’s intensity. We have identified
aH = − 1

µ0

λ1
R and aMΨ = −β0 . Note that if MΨ is not taken into account, we recover

force-free minimum magnetic energy equilibria for a given helicity derived by Taylor
(1974).

This equation is similar to the Grad-Shafranov equation used to find MHS equilibria
in magnetically confined plasmas (Grad & Rubin 1958; Shafranov 1966), the source term
being here related to the stellar structure through ρ (for a discussion of the general form
of this equation in astrophysics, see Heinemann & Olbert 1978). Furthermore, this equi-
librium is in a barotropic state (in the hydrodynamic meaning of the term, i.e. isobar
and iso-density surfaces coincide) where the field is explicitly coupled with stellar struc-
ture through ∇ × (FL/ρ) = 0, where FL is the Lorentz force. This is a generalization of
Prendergast’s equilibrium taking into account compressibility, first studied in polytropic
cases by Woltjer (1960).

2.2.2. Solution
The boundary conditions have now to be discussed. In Duez, Mathis & Turck-Chièze

(2010) and Duez & Mathis (2010), we considered the general case of a field confined be-
tween two radii, owing to the possible presence of both a convective core and a convective
envelope and to ensure the conservation of magnetic helicity. We here choose to cancel
both radial and latitudinal fields at the surface, to avoid any current sheets, conserving
once again magnetic helicity; the possible effects of the convective core on the large-scale
surrounding field are neglected. Using Green’s function method we finally obtain the
purely dipolar, general solutions indexed by i:

Ψi (r, θ) = −µ0β0
λi

1

R
r

{
j1

(
λi

1
r

R

) ∫ R

r

[
y1

(
λi

1
ξ

R

)
ρξ3

]
dξ

+y1

(
λi

1
r

R

)∫ r

0

[
j1

(
λi

1
ξ

R

)
ρξ3

]
dξ

}
sin2 θ, (2.9)

R being the upper boundary confining the magnetic field; λi
1 are the set of eigenvalues

indexed by i allowing to verify the boundary conditions. The functions jl and yl are
respectively the spherical Bessel functions of the first and the second kind.

As shown in Duez & Mathis (2010), the first radial mode is the lowest energy state
for given H and MΨ; we thus focus here only on this mode i = 1. The toroidal magnetic
field is then given using F (Ψ) = λ1

1Ψ/R. Furthermore, this state is ruled by the following
helicity-energy relation

H =
2µ0R

λ1
1

(
Emag −

1
2
β0MΨ

)
, (2.10)

which generalizes the one known in plasma physics for Taylor states to the stellar non
force-free case.

In the case of a stably stratified n = 3 polytrope (a good approximation to an upper
main-sequence star radiative envelope) where we set R = 0.85 R∗, we have λ1

1 � 32.95
(represented in Fig. 1), while for a constant density profile, we have λ1

1 � 5.76.

2.2.3. Comparison with numerical simulations
Let us now compare our analytical configuration to those obtained using numerical

simulations (see Braithwaite & Spruit 2004; Braithwaite & Nordlund 2006; Braithwaite
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Figure 1. Left: toroidal magnetic field strength in colorscale (arbitrary field’s strength) and
normalized isocontours of the poloidal flux function (Ψ) in meridional cut for the lowest energy
equilibrium configuration (λ1

1 � 33); the neutral line is located at r � 0.23 R∗. Right: magnetic
field lines representing this mixed field configuration in 3-D looking from the side (the colorscale
is a function of the density). Taken from Duez, Braithwaite & Mathis (2010).

2008) in more details. Braithwaite and collaborators performed numerical magnetohydro-
dynamical simulations of the relaxation of an initially random magnetic field in a stably
stratified star. Then, this initial magnetic field is always found to relax on the Alfvén
time scale into a stable magneto-hydrostatic equilibrium mixed configuration consisting
of twisted flux tube(s). Two families are then identified: in the first, the equilibria configu-
rations are roughly axisymmetric with one flux tube forming a circle around the equator,
such as in our configuration; in the second family, the relaxed fields are non-axisymmetric
consisting of one or more flux tubes forming a complex structure with their axis lying
at roughly constant depth under the surface of the star. Whether an axisymmetric or
non-axisymmetric equilibrium forms depends on the initial condition chosen for the ra-
dial profile of the initial stochastic field strength ||B|| ∝ ρp : a centrally concentrated one
evolves into an axisymmetric equilibrium as in our configuration while a more spread-
out field with a stronger connection to the atmosphere relaxes into a non-axisymmetric
one. Braithwaite (2008) indicates that, if using an ideal-gas star modeled initially with
a polytrope of index n = 3, the threshold is p ≈ 1/2.

Moreover, as shown in Fig. 7 in Braithwaite (2008), the selective decay of the magnetic
helicity (H) and of the magnetic energy (Emag) assumed in §2.1.1. occurs during the initial
relaxation with a stronger decrease in Emag than that of H. Furthermore, the transport
of flux and mass in the radial direction is inhibited because of the stable stratification
and the mass encompassed in poloidal magnetic surfaces is conserved (i.e. MΨ). The
obtained configuration is of course non force-free.

Finally, note that our analytical configuration for which Emag;P/Emag ≈ 5.23 × 10−2

(where Emag;P =
∫
V B2

P/ (2µ0) dV) verifies the stability criterion derived by Braith-
waite (2009) for axisymmetric configurations: AEmag/Egrav < Emag;P/Emag � 0.8,
where Egrav is the gravitational energy in the star, and A a dimensionless factor whose
value is ∼ 10 in a main-sequence star and ∼ 103 in a neutron star, while we expect
Emag/Egrav < 10−6 in a realistic star (see for example Duez, Mathis & Turck-Chièze
2010). Our analytical solution is thus similar to the axisymmetric non force-free relaxed
solution family obtained by Braithwaite & Spruit (2004) and Braithwaite & Nordlund
(2006).
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These configurations can thus be relevant to model initial equilibrium conditions for
evolutionary calculations involving large-scale fossil fields in stellar radiation zones (see
for example Mathis & Zahn 2005; Brun & Zahn 2006; Garaud & Guervilly 2009).

3. Stability: numerical method
3.1. The numerical model

Analytical methods have been powerful to prove linear instabilities of magnetic configura-
tions but unable to study nonlinear phases and to demonstrate stability. For this reason,
we now turn on numerical simulations. The setup of the numerical model is similar to
that in Braithwaite & Nordlund (2006), where a fuller account can be found. We use the
Stagger code (Nordlund & Galsgaard 1995), a high-order finite-difference Cartesian
MHD code containing a “hyper-diffusion” scheme. The resolution is 1923. We model the
star as a self-gravitating ball of ideal gas (γ = 5/3) with radial density and pressure pro-
files initially obeying the polytropic (thus barotropic) relation P ∝ ρ1+(1/n) , with index
n = 3, which models an upper main-sequence star radiative envelope. It seems unlikely
that a different EOS will make even much quantitative difference to the results; the im-
portant point is the stable stratification. We use this model to compare the dynamical
evolution of the mixed (poloidal-toroidal) configuration to that of its purely poloidal and
toroidal components on their own, both of which are unstable as mentioned above. We
should therefore see these instabilities, growing on an Alfvén timescale. To test the sta-
bility of the configurations, we add a random “white noise” perturbation to the density
field. The perturbation in density (1% in amplitude) contains length scales ranging from
R∗ to 0.08R∗, the latter being double the Nyquist wavelength. This is roughly equivalent
to azimuthal wavenumbers up to m = 38 at a radius of R∗/2.

3.2. Results

3.2.1. Purely poloidal component

The simulation is run for around ten Alfvén crossing times τA, over which time the
instability grows, becomes nonlinear and results in the destruction of most of the original
magnetic energy. The magnetic field amplitude is plotted at the left of Fig. 2, split into
components according to azimuthal wavenumber m; obviously at t = 0 all the energy is
in the axisymmetric m = 0 part. Note the clear transition at t ≈ 2 τA from the linear
phase to the nonlinear, reconnective phase.

Figure 2. Time evolution of the (log) amplitudes in azimuthal modes m = 0 to 4 averaged over
the stellar volume of the magnetic field in the simulations with the purely poloidal field (left),
purely toroidal field (middle) and the mixed field (right). Initially, all the magnetic energy is in
the m = 0 mode since the initial conditions are axisymmetric. Taken from Duez, Braithwaite &
Mathis (2010).
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3.2.2. Purely toroidal component
The middle plate of Fig. 2 shows the evolution of the toroidal field; clearly, the m =

1 mode of the Tayler instability is dominant. After its linear growth, the instability
manifests itself in the nonlinear regime (cf. Brun 2007; Elstner et al. 2008) mainly in
the movement of spherical shells relative to one another. We expect eventual complete
destruction of the field on a longer timescale.

3.2.3. Mixed configuration
The mixed poloidal-toroidal configuration exhibits completely different behaviour. The

magnetic amplitudes are plotted on the right of Fig. 2, where we see an absence of
growing modes. The kinetic energy present results simply from the initial perturbation
and the oscillations and waves it sets up. No significant change in the configuration
during the evolution is seen. To better examine the potentially unstable regions, we
use Tayler’s stability criteria (Tayler 1973) for purely toroidal fields and estimate the
stabilisation from the poloidal component, following Braithwaite (2009). In Fig. 3, we
plot this criteria for modes m = 0 and m = 1. The m = 0 mode is unstable almost
everywhere and the m = 1 mode is unstable in a large cone around the poles; however
the poloidal field stabilises these modes in most of the meridional plane except near the
equatorial plane where it merely stabilises all wavelengths small enough to fit into the
available space. Moreover, we can examine closely the behaviour of the field in the vicinity
of the magnetic axis, where it can be approximated as the addition of an axial and a
toroidal field (cylindrical geometry). Bonanno & Urpin (2008a) outlined that in this case
magnetic configurations can be subject to non-axisymmetric resonant instability. They
determined the dependency of the Tayler instability maximum growth rate as a function
of the azimuthal wave-number m and of the ratio ε of the axial field to the toroidal
one. In our case, close to the center the flux function exhibits a behaviour in Ψ ∝ r2 , so
the azimuthal field is proportional to s = r sin θ corresponding to the Bonanno et al.’s
parameter α = 1. As underlined by the authors, in that case the maximum growth rate
changes remarkably slowly with m for all modes with m � 2 and the instability is weakly
non-anisotropic. If we take as a value for s1 the radius of the neutral line or the one where
the azimuthal field is strongest, we obtain respectively ε = 0.64 or ε = 0.79. According to
their study (see Bonanno & Urpin 2008a, Fig. 7), we fulfill the stability criterion for the
modes m = 0, 1 and 2. Our results are therefore in agreement with their linear analysis.

4. Conclusion and perspectives
Using semi-analytic methods, we derived (with an appropriate choice of boundary con-

ditions) then tested an axisymmetric non force-free relaxed magnetostatic equilibrium,
which could exist in any non-convective stellar region: the radiative core of solar-type
stars, the external envelope of massive stars, and compact objects. Using numerical sim-
ulations, we demonstrate the ability of the set-up to recover well-known instabilities in
purely poloidal and toroidal cases, then find stability of the mixed configuration under all
imaginable perturbations. We show the agreement of the result with linear analysis, high-
lighting the stabilizing influence of the poloidal field on the toroidal one, especially in the
region close to the symmetry axis where purely toroidal fields usually develop kink-type
instabilities in priority. This is the first time that the stability of an analytically-derived
stellar magnetic configuration has been confirmed numerically (Duez, Braithwaite &
Mathis 2010).

This result has strong astrophysical implications: the configuration, as described in
Duez & Mathis (2010), provides a good initial condition to magneto-rotational transport
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Figure 3. Half of the meridional plane, showing the regions stable against the m = 0 and 1
Tayler modes in the absence of the poloidal component, and their stabilisation by the radial
component Br . Taken from Duez, Braithwaite & Mathis (2010).

to be included in next generation stellar evolution codes and to magnetohydrodynamic
simulations – where up to now the initial field would have been chosen arbitrarily; fur-
thermore it will help to appreciate the internal magnetic structure of neutron stars, and
various astrophysical processes involving magnetars.

Finally, we have to take into account differential rotation and induced meridional cir-
culation in MHD relaxation theory in a near future.
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Discussion

C. Forest: What are the boundary conditions on relaxation? Is there a mechanism for
helicity injection or extraction at tachocline?

S. Mathis: In this work, we consider initially confined relaxed magnetic configurations
as a first step. These then open due to ohmic dissipation. The case of open boundary
conditions should be treated in a near future.

J. Toomre: In your work, you don’t take into account the differential rotation and the
induced meridional circulation. What could be the modification of relaxed configurations
if those are treated?

S. Mathis: In this work, we first study non-rotating purely magnetic equilibria as Braith-
waite and collaborators. The obtained states are inchanged by the presence of a uniform
rotation. However, if there is a differential rotation, a meridional circulation will be in-
duced that will modify the obtained relaxed configurations (see Mestel, Moss & Tayler
1988).
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