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SUMMARY

The multi-locus systems expressing non-epistatic and generalized
symmetric selection lend themselves to the study of the stability of cer-
tain central polymorphic equilibria. These equilibria persist when any -
form of migration connects demes which share a common equilibrium.
The analysis of the stability of the equilibrium in the global system is
tractable, thus supplementing known protection results for two alleles at
one locus with stability conditions on an internal equilibrium involving
an arbitrary number of loci, each with an arbitrary number of alleles. Two
of the principal findings are that stability of central Hardy—Weinberg
type equilibria increase with ‘more’ migration and ‘more’ recombina-
tion. As a corollary, local stability in each deme implies stability in a system
with migration superimposed; but instability in each deme when isolated
does not imply instability when migration is superimposed.

1. INTRODUCTION

Two areas of population genetics theory which are currently under active investi-
gation are multi-locus multi-allele phenomena and migration—selection (environ-
ment) interaction. This work is part of a continuing series of theoretical studies
seeking to integrate the two. A particular goal is to delimit the existence and
nature of polymorphisms. Recent reviews pertaining togenetic polymorphism under
conditions of variable selection and migration are given by Hedrick, Ginevan &
Ewing (1976) and Felsenstein (1976), which include numerous references to
experimental, field, and theoretical studies. We shall omit most of the relevant
references which are cited in these reviews.

Theoretical analyses pertaining to the nature of selection migration interaction
have centred on the model of a diploid trait at a single locus involving two alleles
mainly seeking to ascertain conditions for a protected polymorphism (i.e. con-
ditions assuring that neither allele ever goes extinct). Characterizations and classi-
fications of the stable equilibrium configurations with several demes have been
dealt with only for special migration patterns (e.g. stepping-stone mode and related
clinal regimes (Nagylaki, 1976, 1977; Fleming, 1975; Karlin & Richter-Dyn, 1976)
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and the gene frequency patterns in the familiar Levene population structure (Kar-
lin, 1977)). Our objective in this work is to analyse in a multi-deme context the
equilibrium properties of certain central’ polymorphic frequency states emanating
from selection migration balance for a multi-locus multi-allele system.

In the case of a single-habitat model, the feasibility of selection balance main-
taining a central polymorphic equilibrium has been investigated for two general
classes of selection regimes: the ‘extended non-epistatic’ viability structure (see (i)
below) and the ‘generalized symmetric’ selection pattern (delimited more precisely in
(ii), see also Karlin, 1978).

(i) Extended non-epistatic selection

The extended non-epistatic selection construction encompasses combinations of
multiplicative, additive and neutral viability effects across loci. No restrictions are
placed on the numbers of loci and/or alleles per locus, but it is instructive and of
independent interest to set forth first the two-locus two-allele case. The concept of
non-epistasis involves intrinsic selection coefficients at the separate loci. Let the
intrinsic fitness coefficients for the indicated genotypesat thz first locus be

AA:w®?, Ada:w) =w), aa:wl, (1a)
and at the second locus
BB:w?, Bb:uw() = w®, bb:wil. (1b)

In the two-locus two-allele model, there are four basic selection forms which are
used for constructing the exfended non-epistatic selection regimes. 1t is appropriate
to display these four basic non-epistatic regimes, conforming to the haplotype
arrangement A B, 4b, aB, ab, associated with the intrinsic fitness parameters of (1):
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Thus, the fitness of the genotype 4B/Ab corresponding to W9 has value w{
reflecting selection acting only at the first locus. Similarly, the fitness value of
AB/Ab corresponding to WO is w{? and that of 4B/Ab associated with WD is
w® w{?. Finally, the fitness ascribed to 4B/A4b (in fact any genotype) by WOis 1.
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In the two-locus context the extended non-epistatic selection structure founded
on the intrinsic fitness parameters of (1) consists of the combined fitness expression

F = aWaD 4 W00 4y WO L SWOO (o, 8,7,8 > 0); (3)

that is, a weighted sum of the four basic fitness matrices. Observe that F for the
determination =7y =8 = 0, « = 1 reduces to the classical multiplicative non-
epistatic regime. The specialization # = y = 1,a = § = 01in (3) leads to the classical
additive non-epistatic regime.

It is illuminating and helpful to pass to three loci to better convey the scope and
nature attendant to the ‘extended’ non-epistatic selection form. We may assume
that there is a general number of alleles, m,, at the kth locus (k = 1, 2, 3). Let the
intrinsic fitness matrix for the kth locus be W® = |w{?[[7%_, specifying the fitnesses
associated with the diplotypes (4{¥A{®). These matrices combine in eight ways
(2" for » loci) to generate the basic selection regimes underlying ‘extended’ non-
epistatic selection structures. We highlight these matrices in tabular form indicating
the fitness associated with the genotype

A§1)A§-2)AS¢3)
ADADAD
Matrix Entry Remarks
wa.Ln whh w? wf) Independent multiplicative factors accruing
from all three loci
w0 wih wi? Loei 1 and 2 interact multiplicatively while
locus 3 manifests neutrality
weoen win wid Loci 1 and 3 interact multiplicatively while
locus 2 manifests neutrality
weLy w2 wd Loci 2 and 3 interact multiplicatively while
locus 1 manifests neutrality
w00 wil) Selection only acting at locus 1
wae-1.0 wd Selection only acting at locus 2
we-0-1 w Selection only acting at locus 3
W©.0.0 1 Neutral

With this notation extended non-epistasis induces a fitness matrix of the form

F o=y WOty WOLLO Lo WO 4 WOLY
F gy WO Lo WOLO g WOOD 4o .00, (4)

As with two loci, the standard multiplicative non-epistatic form ensues from the
choice a,,; = 1 with all other o’s equal to zero. Additive non-epistasis results from an
equal weighting of certain groupings of the marginal fitness matrices; namely

%100 = Xpro = %oy = 1, Qyp1 = Xy39 = Xyo1 = For1 = g9 = 0.
Other interesting specializations of (4) reflect a mixed additive multiplicative
interaction among the loci. For example, the choice &,y = a4 = 1 (with the re-
maining a’s equal to zero) entails multiplicative non-epistasis between the first two
loci, but additive non-epistasis between the gene complex consisting of the first two
loci and the third locus. The extension of the construction of (4) to more loci follows,
mutatis mutandis.
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Hardy-Weinberg multilocus type polymorphic equilibrium. A notable feature of an
extended non-epistatic selection is the existence of multilocus Hardy-Weinberg
(H.-W.) type equilibria which we presently delimit. Assume for each k the existence
of a polymorphic equilibrium (£{,2",...,2{%) = &, for the one-locus m-allele
system induced by the intrinsic fitness matrix W®, We may construct a haplotype
frequency array of the multi-locus system by multiplying the marginal frequencies
of the constituent alleles. In this manner, the frequency of the haplotype

{Agl’Ag-Z’A,?)} is ﬁw(cl)i(jg)@?)-

This haplotype frequency array is an equilibrium independent of the recombination
distribution of the multi-locus system associated with the fitness matrix F. An
equilibrium state composed by multiplying the marginal loci genotype component
frequencies is called a Hardy-Weinberg (H.—W.) configuration. In the two-locus
case a H.-W. state exhibits linkage equilibrium, and in the multi-locus case it
renders zero higher order measures of association in most senses (see Bennett
(1954) and also Hill (1976)).

(ii) ‘Generalized symmetric’ selection

Generalized symmetric selection expression is an extension of the notions of
symmetric under- and overdominance. In this perspective, fitness depends on
which loci are homozygous or heterozygous and otherwise is not influenced by the
specific allelic composition at the locus. As before the theory is readily forthcoming
without restriction on the number of loci and alleles involved, but to facilitate the
exposition we shall initially confine the discussion to the cases of two and three loci
carrying two alleles each. The prototype two-locus fitness matrices are

B ’ B
- ()

1
a
o o

R ™+~ R
R = R
AR

B

W,, which is the Lewontin—Kojima (1960) symmetric viability model, prescribes
fitness values invariant under relabelling of alleles. Equivalently, fitness is a
function of the number of heterozygous loci. The fitness array W, incorporates loci
position effects signifying that fitness depends on which loci are heterozygous. The
population state which assigns equal frequency (in this case }) to all haplotypes is
an equilibrium which we refer to as the central equilibrium.

In the three-locus case the corresponding fitness values of a genotype are as
follows:

o where all separate loci are homozygous;

p; where locus number 7 is heterozygous while the other two loci are homozygous;
8, where locus 7 is homozygous while the other two loci are heterozygous;

v where all three loci are heterozygous. (6)
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Thus the corresponding fitness matrix has the form

ABC ABc AbC Abc aBC aBc abC abc
ABC o Ps f. &
ABc By «a 0, B & b v d3

AbC Ba & @ Bs & Y i) 9,

Abe & B By «a Y 03 d, 0 =T )
aBC B 0 3 Y @ Bs B B '

aBc J, I d3 By 8, Ji

Y
abC 8 v B 6 B 8 o« s
abe Y 8 6 P & P fr «

The central equilibrium has each haplotype with frequency . The fitness values
as defined above in (6) are independent of the number of alleles, but the indexing
system must be modified for more loci. The general formulation can be found in
Karlin (1978).

The multi-deme selection—migration model

We assume the standard model for a population which evolves subject to mating,
recombination, and selection forces acting within habitats connected by gene flow
among demes comprising the aggregate population. The present formulation
assumes N distinct habitats (each with an associated deme). Within each habitat,
the genetic composition of the deme is affected by mating and selection. The trans-
formation of haplotype frequencies is incorporated into a vector function £, appro-
priate to the kth habitat. In the framework of multi-locus and multi-allele models
investigated here, a vector of haplotype frequencies describes the genetic composi-
tion of each deme and each f, is vector valued (a collection of functions involving a
multivariate argument that determine the changes of the haplotype frequency
array over successive generations due to the local selection—mating-recombination
interaction). The explicit form of f, for the extended non-epistatic and generalized
symmetric models are displayed in Karlin (1978, 1979). For our purposes, the
explicit transformation formulas are not needed.

The effects of geographical gene flow are summarized by an N x N backward
migration matrix M = [im,|Y which prescribes in each generation the proportion of
the ith deme originating from the jth habitat. We assume that M is time homo-
geneous and independent of the genetic composition of the demes. Details on the
construction of M and elaborations on the formulation can be found in, e.g., Karlin
(1976). It is helpful to display the order of forces in the process:

post-migration individuals - recombination and mating -
selection (on progeny)— migration (8)
We are interested in delineating the nature of the stable equilibrium configura-
tions for multi-locus multi-allele systems evolving under the influence of various

forms of selection—migration interactions. In this vein, we concentrate on the
following specific objectives, concepts and problems.
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We note in Section 2 that when each habitat experiences an extended non-
epistatic selection regime which may vary between habitats such that all these
selection forms are based on the same set of marginal overdominant fitness matrices
(or each environment (habitat) expresses a case of generalized symmetric selection),
then a common Hardy—-Weinberg polymorphic equilibrium configuration exists
uniformly over the population range, independent of the various local recombination
rates and also unaffected by the population-dispersal pattern. We inquire as to the
conditions for stability of this equilibrium state expressed in terms of the local
selection-recombination regimes and the migration and population structure para-
meters. Detailed mathematical formulae delimiting the precise stability conditions
for these polymorphic equilibria are available (see Result I and also consult the
Appendix).

We treat primarily a number of qualitative inquiries as to how changing various
parameter specifications affects the character and/or strength of stability of the
central H.-W. equilibrium configuration. It is informative and revealing to ascer-
tain some robust properties concerning the dynamics and equilibrium behaviour via
suitable comparisons of the ‘degree’ of stability (i.e. the magnitude of the principal
eigenvalue of the local linear approximation) for the H.—W. polymorphic equili-
brium state. The three strata of the selection—migration model (8), allowing various
levels and representations, are migration, recombination, and the selection struc-
tures. We investigate the consequences of altering the parameters specifying these
structures.

(1) Migration is most conveniently described by interdeme dispersal rates coupled
to population structure, relative deme sizes, influences of local selection, mating
system, etc. There is no intrinsic total ordering among migration patterns. That is,
generally no single real parameter m can summarize the migration strength and
such reductions are mostly inappropriate. Several natural concepts and indices for
comparing migration forms have been proposed (Karlin, 1976). We shall discuss the
implications of two of these which we spell out in Section 1 pertinent to the following:

What is the effect of ‘more mixing’ or ‘more migration’ on the degree of stability
of the H.—W. or central equilibria?

(2) Recombination. The interactions of selection and linkage are more subtle and
are usually studied in the cases of clusters of tightly linked genes (small recombina-
tion rates throughout) or loosely linked blocks of genes (free recombination through-
out). However, recombination varies between these extremes. The variation may be
temporal or spatial, systematic or random. The following problem is naturally
suggested.

What is the effect of varying linkage relationships relative to deme sites on the
stability of ‘central’ H.—-W. equilibria?

(8) Selection generally varies over the population range, i.e. between habitats;
this is a foundation of ecological genetics. In the case of extended non-epistasis,
there is a natural interpretation for the variation between habitats. The invariance
of the intrinsic selection coefficients suggests that the underlying biological and
biochemical processes associated with the loci are invariant. The different weightings
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reflect the relative importance of those processes in the particular habitat (e.g.
water conservation may be important in some habitats whereas efficient use of
potassium ismore important in others). Cryptic coloration will vary inits importance
as components of the total fitness in accordance with the nature of the habitat.

Apart from varying the relative importance of the loci (for fitness), the intensity
of selection across all loci may vary. This form of variation is perhaps better suited
to the generalized symmetric model; in the extended non-epistatic model it is
equivalent to increasing (or decreasing) the weight of the neutral selection term.
With the foregoing motivations in mind, we may pose the following problem quite
generally as:

What is the effect of contrasting selection intensities relative to habitat sites on
the degree of stability of the H.~W. or central equilibria?

(4) Another objective of this work is to investigate conditions under which the
multi-deme problem can be reduced to an equivalent (or ‘effective’) single-deme
problem. This is often possible if a Levene population subdivision model is in force
and rarely for other population migration structures.

‘We also compare the results obtained on stability of the H.-W. or central equili-
bria to known results for protection (i.e. stability of the boundary equilibria).

2. RESULTS
(A) Methods

It is useful to commence the treatment by detailing formally the model. The
population involving » loci, and m,, alleles A, AP, ..., A% at the kth locus is
distributed over N habitats (or demes). We characterize the haplotype frequency
array in each deme by the vector x comprised of I1}_, m, components. The haplo-
type frequencies at the ith deme are distinguished by appending the appropriate
subscript, X(;). The consequences of selection and mating are implemented through
the set of vector-valued functions, f ;) acting in the ith habitat; accordingly

Xo = fn(Xw) (9)

describes the change due to selection, recombination, and mating in the ith habitat.
The generation cycle is completed by migration exchange converting {%X} to

{X(} by the formula
N N
Xy = jgl my; X = j;l m;fp(x;) (E=1,2,...,N), (10)

where the prime refers to the next generation. These global transformation equa-
tions can be written more compactly in terms of the extended vector

zZ= <X(l)’ X(2)s +ee» X(N)>

and the vector-valued function F = (f),fy),...,fp) which has z as its argument
such that f;; acts on x;,. In this notation, (10) becomes

2’ = MF(z) abbreviated to 2z’ = T(z). (11)
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Henceforth, we stipulate that the environmental selection regime
F = (f.f,,....fy) (12)

consists of component extended non-epistatic selection regimes based on the same
marginal overdominantfitness matrices (that is, the f;;) are each representations of
extended non-epistatic viability effects constructed in terms of the same marginal
viability matrices) or all £, are cases of generalized symmetric selection forms.
Moreover, to ease the exposition we will juxtapose the results for the extended
non-epistatic and generalized symmetric models as their analyses paraphrase one
another.

For all representations of extended non-epistasis with marginal over-dominance
at each locus there exists a Hardy-Weinberg (H.-W.) polymorphic fixed point

R =1,(R), (13)

which is dependent solely on the marginal fitness matrices (i.e. the extended H.-W.
polymorphism R is independent of the local selection regime; that is, the choices for
a in (4). It follows from substituting (13) into (10), since we assume that each £ is
based on the samemarginal fitnesses, that the common frequency vector % in each
habitat or the geographical population array Z= (R,R,...,%) constitutes an
equilibrium state of the transformation equation (11). We underscore this fact:

Where extended non-epistasis is operating in each habitat based on the same over-
dominant marginal fitness matrices, there exists an extended Hardy-Weinberg poly-
morphic equiltbrium 2 = (X, R, ..., %) exhibiting the same single-deme H.—W . equili-
brium.

In the case of generalized symmetric selection, the central state x* exhibiting
equal frequency for all haplotypes is a fixed point for each f;. We may introduce
z* = (X*,x*,...,x*) analogous to £ and we have:

When a representation of generalized symmetric selection is in force at each habitat
of the population range, there is present an extended central multi-deme equilibrium z*
with the property that all haplotype frequencies have equal value in each deme.

(B) Stability conditions for the extended Hardy—Weinberg equilibrium 2
and the central equilibrium z*

The ascertainment of stability for any interior equilibrium follows a classical
methodology of non-linear analysis. In this procedure, we compute the local linear
approximation to the transformation (11) applicable in a neighbourhood of the
equilibrium point p in question. This procedure produces a matrix mapping written
T"(p) (see the Appendix) and p is stable if the dominant eigenvalue of 7"(p) (desig-
nated p(7")) is in magnitude less than 1. It is usual to employ 1 —p(7") as an index
of the degree (or strength) of stability. All perturbations must reflect a zero net
change in haplotype frequencies since the frequencies sum to one. Hence, the pertur-
bation space has dimension

o= (-
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in each deme and correspondingly the global system is NE dimensional. For a
general environmental selection regime the discernment of stability for an interior
equilibrium requires computation of N R eigenvalues of a matrix of order NR x NR.
This may not be feasible, even for reasonable values of N and E. However, under
extended non-epistasis based on thesamemarginal fitnesses across habitats we have
available the fact that

the £, share a common set of eigenvectors (independent of 1) for their linear approxima-
tion matrices L; about R (14)

(cf. Karlin & Liberman (1978b)). We designate the set of common eigenvectors
(restricted to the perturbation space) by u;, u,, ..., up. Let Ay (= A¢)) be the N x N
diagonal matrix whose ith entry (down the diagonal) is the eigenvalue of L,
corresponding to u,. The significance of (14) is that it reduces the verification of
stability of Z to establishing the R inequalities

pMA,) <1 (r=1,2,..,R), (15)

where p(C) designates the magnitude of the dominant eigenvalue of the matrix C.
(For a sketch of the proof attendant to (15) see the Appendix). Observe that the
evaluations in (15) involve calculating eigenvalues for R matrices each of order N.
This is @ much reduced effort compared with calculating the eigenvalues for an
NR x NR matrix. We record the conclusion of (15) as:
Result 1

(1). Under extended non-epistasis based ona common set of marginal over-dominant
fitness matrices, the condition for stability of the extended H.—W . equilibrium Z is

p(MA,) <1 (r=1,2..,R) (15)

(see following (14) for the definition of A,,).
A completely parallel result applies for generalized symmetric selection forms
(the eigenstructure appears in Karlin & Avni (1979)):
(i) Under generalized symmetric selection, the condition for stability of the central
equilibrium z* is
P(MA,) <1 (r=1,2,...,R). (15)

In view of certain symmetry attributes a number of the conditions of (15) co-
incide. Moreover, in the case of extended non-epistasis about half the inequalities
of (15) are superfluous provided the intrinsic matrices are overdominant.

Example. In the case of two habitats where the fitness matrices are of the form
W, in (5) (generalized symmetric selection two loci, two alleles each),

2
RBR=1Im, —1=3.
k=1
The expressions for A are

2(1 +aqw)

7 0
A = | 1w+ an +Aw
w 0 2(1 +m) ’
1+oy +ag+ e/
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2(1+ag))
L+oqp+oagy +

Ay = o(p T %) Bw

0

0
2(1+agg)
1+ag+ag) + Ao

2(1+ B~ 2rBw) 0
Ag = 1+oag+any +Ao .
0 (1+ B —2rfw)
1+ o)+ 9+ By

In this example, the recombination parameter r appears only in Ag). Further, in
the case of symmetry between loci with a = «’, the first two matrices coincide.
Reductions of this sort hold in higher dimensions, particularly in circumstances of
multiple alleles.

(C) How does “increased’ migration affect the stability of the extended
H ~W. or central equilibrium?

A first approach to this question is to consider the dichotomy of no migration
versus migration. It follows on the basis of the stability criterion that, if the H.-W.
(central) equilibrium is stable in each habitat with no migration, it remains stable in the
global system where any level or form of migration is introduced. Of course, where the
H.—W. (central) equilibrium is stable in some habitats and unstable in others, the
stability in the global system depends on the particular migration pattern.

We highlight an example which shows that the H.-W. (central) equilibrium can
be unstable in each habitat when there is no migration, but stable when migration is
introduced. For this purpose, consider a two-locus, two-allele, two-deme system
with selection matrices of the generalized symmetric form W, as prescribed in (5).
The relevant eigenvalues are

2+28—4pr 2+ 2a 2420’ (16)
1+a+a’'+pf 1+a+a’'+p 1+a+a'+f°

If we set

(i) =14 o =12 f=11

in the first habitat and

(id) a=12 o =14, f=11

in the second habitat, the second and third eigenvalues guarantee instability in the
first and second habitats, respectively, when there is no migration. However, if we
introduce uniform migration exchange, that is

ot ), )

$ 3

it is readily checked that the central equilibrium is stable despite local instability.
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A number of different approaches and concepts of broader scope than the above
dichotomy for comparing migration patterns and classifying levels of migration
flow are set forth in Karlin (1976). For our present objectives we consider two of
these notions positing a partial ordering corresponding to ‘more’ migration.

One concept prescribes a backward migration matrix M, as more mizing than
M, (or M) if

M, = M, M, (18)

with all matrices non-negative, positive definite, and mutually commuting.

This is an expression of the notion that, if individuals migrate twice per generation
rather than once, more migration is innate to M, than to M,. The restriction to
positive definite implicates a small to moderate migration flow per generation pre-
cluding excessive and strongly oscillatory inter-deme gene dispersal patterns. In
particular, it disallows the case with

0 1 1 0
M1=M2=(1 0)’ M3=(0 1)

in which M, is clearly less mixing than M, and concomitantly for which result II
below does not hold.
Subject to the assumptions (18) it has been established (Karlin, 1979) that

PM M, A) < p(M A), (19)

where A is a positive diagonal matrix. If recombination is ‘natural’, then the diago-
nal elements in A,, are positive. (‘Natural’ recombination, in the case of two loci,
reduces to the constraint that 0 < r < 4. A formal definition in the multi-locus
context appears in Karlin & Liberman (1978a). It encompasses recombination dis-
tributions straddled between zero and free recombination. These include the non-
interference phenomena of independent crossover events between loci where each
recombination has probability not exceeding 4.) We have

ResultIT

(i) Consider a multi-deme population subject to an extended non-epistatic selection
regime (i.e. every local selection matrix is a version of extended non-epistasis based
on thesamemarginal fitness matrices). Where migration is more mizxing in the sense of
(18), then the degree of stability of the extended H.—W . equilibrium % is increased.

(ii) Where migration is more mixzing in the sense of (18), then, under generalized
symmetric selection, the conditions for stability of the central equilibrium are less
stringent.

For a Deakin (1966) migration pattern of the form M = (1 —a) B +al,where Risa
rank one migration matrix, a reduced homing propensity « provides a more mizing
(in the sense of (18)) migration structure. Thus, in this example, decreasing the
homing rate enhances the opportunities for stability of the H.-W. polymorphic
equilibrium. Actually, the fact that with an increased homing rate the degree of
stability of the H.-W. polymorphic equilibrium is diminished is a general affirma-
tion applicable to all migration structures. This conclusion rests on the following
mathematical fact:
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The dominant eigenvalue
p([(1—a)M +al]A) increases as o increases (0 <a < 1), (20)

where M is an arbitrary migration matrix and A is any positive diagonal matrix.
The proof of (20) is quite recondite (Karlin, 1979). Accepting the assertion of (20),
we infer

Result I1I

(i) Under extended mon-epistatic selection based on the same set of marginal over-
dominant fitness matrices in each habitat and a natural recombination-segregation dis-
tribution, the stability of the extended H.—W. equilibrium is facilitated by a uniform
decrease in homing over deme sites.

(ii) Under generalized symmetric selection and natural recombination rates, the
stability of the central equilibrium is enhanced with a uniform decrease in homing.

The migration form (1 —a) M + al can be construed as a mixture of the pattern M
and a wuniform rate of homing with respect to all deme sites. In the situation of
variable homing rates such that the degree of homing varies with habitat location,
the proposition corresponding to (20) is not a valid principle and concomitantly
Result ITI may not hold.

(D) What is the effect of changing the recombination distribution on the
stability of the central or H ~W . equilibrium?

In the case of two loci, recombination is fully delimited by a single parameter .
We can say unambiguously that 7, involves more recombination than r, if », > 7,;
restricted to the range of ‘natural’ recombination, 0 < » < {. (Many results do not
hold for r > .) When there are more than two loci, a single parameter is no longer
sufficient for the recombination process. In fact, in the presence of three loci the
general recombination—segregation distribution is characterized by three para-
meters, and four loci require seven parameters. The notions of zero and free recom-
bination are well defined, but whatrepresents ‘ natural’recombination between those
two levels is a subtle affair. Also, the notion of ‘more recombination’ is not auto-
matic. These problems are considered in Karlin & Liberman (1978a). The reader may
bear in mind the two-loci case for the subsequent results although they are valid in
the context of multiple loci.

It has been established for extended non-epistatic selection and/or generalized
symmetric selection that the diagonal values appearing in A, are non-increasing as
recombination ‘increases’. ‘Natural’ recombination assures that the eigenvalues
are non-negative. Recall that A; < A, (this inequality is meant componentwise)
entails

p(MA,) < p(MA,). (21)
To sum up:
Result IV

(i) Under extended non-epistatic selection in each habitat based on the same over-
dominant marginal fitnessmatricesand natural recombination, the degree of stability of
the extended H ~W. equilibrium is enhanced by ‘more recombination’. Also,
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(ii) Under generalized symmetric selection, the stability of the central equilibrium is
Sacilitated by 'more recombination’.

(E) What is the comparative influence of spatially and [or temporally varying
selection regimes on the stability of the H —W . central equilibrium?

We are not able to resolve this question in general terms, but discussion of the
following case is informative. Consider two representations of a two-locus two-
allele viability model which are simultaneously extended non-epistatic and gen-
eralized symmetric; to wit, the classical symmetric additive and symmetric multi-
plicative non-epistatic models (see (3)). The corresponding fitness matrices are

2 1+ 14+a 2a
1+a 2 200 1+«
— W0 ©1 —

Wy=WEo+W l+a 2a 2 14+a (22a)

20 1+ 1+a 2
and
1 a o a?
1 2
Wy = wan = [ & at o« (220)

based on the marginal fitness matrices

1 «a

®— WO —
W — e (a 1) (@ > 1).

The presence of the single parameter a suggests its use as a natural index of
selection intensity.

We examine first the effect of perturbing « in a single habitat where either W, or
W, is in force. Because & > 1 (which is necessary for marginal overdominance),
inspection of (16) reveals that we need consider only one eigenvalue (which depends
on 7 and «) for determining the stability of the H.—W. polymorphic equilibrium.

In the additive case, this eigenvalue is

24 (1-2r) (2a)

2+ % (23)

It is directly verified that over the range « > 1 (synonomous with intrinsic over-
dominance) the quantity (23) is smaller than 1 and monotonically decreasing in
r and «a.

The multiplicative case is not as simple. The relevant eigenvalue is

[2+ (1—27) 2a7]

(1+a)? (24)

The behaviour of this quantity as a function of » and « is depicted graphically in
Fig. 1.
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dp[Ba=0
05
p<1; dplda>0
p=1
0-25
p>1
0
1 a )

Fig. 1. For the multiplicative model, the behaviour of p in (24) is displayed as a
function of » and a; dp/ad = 0 is simply the curve r = (x—1)/2a; the condition
p = 1 gives rise to the curve r = (@ — 1)?/4a2.

We infer on the basis of Fig. 1 and the previous discussion that in a single-deme
population, where either the selection regime W, or W, is in force, that increasing
selection intensities can never cause the establishment of stability of the H.-W.
(central) equilibrium. This is trivial in the additive case since stability always
ensues provided the marginal fitness matrices are overdominant. However, stability
can be lost in the multiplicative case where r < 1.) In contrast, however, in the con-
text of a multi-deme population involving only additive or multiplicative non-
epistatic selection expression (of the forms (22)) in each habitat, then suitably
increasing selection intensities locally can cause either the establishment or the
abrogation of stability of the H.—W. (central) equilibrium without any restriction
on the local state of the recombination rates. '

(F) Can we specify some meaningful and accessible necessary and/or sufficient
conditions for a stable polymorphism?

An immediate consequence of the stability criterion (15) provides that marginal
overdominance and enough positive recombination are necessary in the establish-
ment of a stable extended H.—W. polymorphism in the multi-deme case. This con-
clusion ensues as an easy extension of the collateral necessary conditions in a single
deme model. We state this formally as

Result V

Marginal overdominance and enough positive recombination are essential (in par-
ticular, marginal overdominance and free recombination always suffice) for the main-
tenance of a stable H.—W. polymorphism under an extended non-epistatic selection
regime with any migration structure.

Remark

There is no analogue to Result V for generalized symmetric selection. Marginal
fitnesses do not exist, and the central equilibrium can be either stable or unstable
with either zero or free recombination.
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(G) When can we reduce the multi-deme selection-migration dynamics and [or
equalibrium structure to an equivalent single deme?

We treat this problem in the context of the stability analysis for the Levene (1953)
population subdivision model. Result IV describes the relative stability require-
ments of the central equilibrium when the recombination rate is concordantly
either increased or diminished throughout the population range (i.e. over all
habitats). However, there are circumstances where recombination could increase
over part of the population range and decrease over a different part of the popula-
tion range.

A case of interest has the same selection regime operating in each deme, but
different local recombination rates. In the context of the Levene migration pattern
which is of rank 1, the criterion for stability of the central (H.~W.) polymorphism
is that for a single deme which has the recombination rate collapsed to a weighted
(with respect to deme sizes) arithmetic mean of the local recombination rates. This
is because the recombination parameter occurs linearly in the expression of the
eigenvalues and for the Levene migration pattern the criterion for stability is a
weighted arithmetic mean of the local corresponding eigenvalues.

If the migration patternisnot of the special Levene form the criteria donotreduce
to an averaging of the local #’s. Assuming that the migration flow is small to mod-
erate (formally this means that the backward migration matrix is positive definite)
there is available an expeditious sufficient condition (cf. Karlin, 1976) for insta-
bility. A workable sufficient criterion for stability is not available as yet.

Another question of interest concerns a system of demes each carrying a version
of the extended non-epistatic selection regime (3) where the parameters «, £, ¥ and
¢ may vary with habitat site. We seek to compare and/or reduce the conglomerate
(multi-deme) selection structure to a single-deme model involving a case of the
extended non-epistatic selection regime.

This question is tractable if the migration pattern is the special Levene subdi-
vision structure and recombination is independent of the local environmental state
in the population range. For concreteness, we consider the symmetric additive and
multiplicative non-epistatic selection patterns where the underlying marginal
fitness matrix is given by

W<1>=W<2>=W=(1 “) a>1
a 1)’

(see (2)).
A particular generalized non-epistatic selection pattern of interest is
W =1Wad A Wa0o 4 L WoD],
The first term on the right conveys multiplicative non-epistasis and the expression
in brackets corresponds to additive non-epistasis (cf. (22)). As noted earlier, follow-

ing (22), we may confine attention to a single perturbation eigenspace. Rearrange-
ment of (16), using (23) and (24), gives

1 2+ (1—2r)2a? 2+ (1—2r) 20
%(1+a)2+5(2+2a>[%‘”“)2( (o )*‘5‘2*2“)( Frer )]“

12 GRH 32
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as the condition for stability. This may be written in more suggestive notation in the
form

gl =

Af
2w A,
i=1

N
where ¥ ¢; = 1, w’s are fitness terms corresponding to the components of (3),
i=1
N
w= 3 c;wy;,
i=1

and {A;} comprise the eigenvalues of the local linear approximations at the cen-
tral H.-W. equilibrium.

A little reflexion provides that this is the criterion for stability under hard selec-
tion with a Levene migration pattern for deme sizes ¢;. This conclusion is justified
because the net change of a perturbation is the weighted average of the local changes.
We used the additive and multiplicative selection schemes solely for illustrative
purposes; any generalized non-epistatic selection pattern can be decomposed in this
manner. This points up that either hard selection is a more natural concept than
soft selection in this context or the generalized non-epistatic selection patterns
should be appropriately weighted to engender soft selection.

Remark

We noted previously that all representations of extended non-epistatic selection
patterns based on the same marginal fitness matrices share the same Hardy—Wein-
berg equilibrium. Furthermore, in a system of demes any such common equilibrium
persists as an equilibrium independent of the migration structure. This should not be
construed to imply that these common H.—W. equilibria are the only polymorphic
equilibria. In fact, the example of one-locus symmetric underdominance (e.g.
Bazykin, 1972; Karlin & McGregor,1972, p. 192) shows that a multi-deme popula-
tion under small migration flow can have other nonsymmetric equilibria. Sym-
metric underdominance is a generalized symmetric selection pattern and is assuredly
generalized non-epistatic when there is only one locus.

3. DISCUSSION

The study of multi-deme population genetic systems has concentrated mostly on
the ascertainment of conditions for a protected polymorphism, while classifications
and direct analysis pertinent to stable polymorphic configurations are uncommon.
Some exceptions occur pertaining to delineations of clinal morphotones (e.g. Slatkin,
1973; Nagylaki, 1976; Karlin & Richter-Dyn, 1976) and with respect to the charac-
terizations of gene frequency patterns in the Levene subdivision model (Karlin,
1977). These latter works are restricted to one-locus two-allele traits.

This paper seeks to shift the focus of multi-deme population genetic dynamics
from the study of boundary equilibria relevant to the ascertainment of conditions for
a protected polymorphism and the problem of initial increase upon introduction of
rare alleles to the analysis of internal equilibrium forms. This work also enlarges the
scope to include multiple-locus multiple-allele systems.
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In our models the representation of the extended non-epistatic selection struc-
tures (based on the same marginal selection coefficients) or generalized symmetric
selection regimes can differ with habitat site reflecting spatial and temporal varia-
tions in limiting resources, primary predators, climatic conditions, geographical
terrain, ete.

Our results are structurally stable, i.e. qualitatively invariant under small
perturbations on the parameters of the models. In this perspective we have con-
centrated on aspects of degree of stability of the central or H.—W. equilibrium
rather than stability versus instability as a dichotomy. The impreciseness of para-
meter estimates from nature and fluctuations due to statistical sampling further
dictate that we emphasize the qualitative conclusions of the analyses derived from
available analytic formulae.

A number of the findings extend the single-deme results. These include:

(i) Increases in the recombination frequency in one or several demes strengthens the
stability of the H.—W. and central equilibria.

(i) Stability in each deme without migration implies stability in the system with
any form of migration superimposed.

Other of the determinations bear no analogue in the case of a single deme. One
key result in this vein affirms:

(ili) An increased level of migration mixing entails more opportunities for stability
of the H—-W. and central equilibria.

Finally, several of our analyses contrast the single-deme with the multi-deme case.
Specifically,

(iv) Instability of the H~W. (or central) equilibria in each deme when isolated does
not imply instability of this common equilibrium in the system coupled by migration.

(v) Under extended non-epistasis some cases of increasing selection intensity can
abrogale stability.

Another facet of this work was the investigation of circumstances under which the
analysis of the central polymorphic equilibrium in the multi-deme formulation can
be reduced to an ‘equivalent’ single-deme version. This is rarely possible except for
the special Levene subdivision structure. In this case it is possible if the recombina-
tion rate is allowed to differ between habitats; and also if recombination is the same
in all habitats, but selection expression varies with deme site maintaining through-
out representations of either extended non-epistasis or generalized symmetric
selection.

A final matter is the comparison of these results concerning stability of internal
H.-W. or central equilibrium with known criteria for ‘protection’. Protection in
each deme implies protection in the system coupled by migration in contrast to
(iv) above because instability of fixation states is studied in the context of one
dimensional perturbation spaces. We established that although ‘more migration
diminishes the chances for protection, in striking contrast it increases the degree of
stability of the H.-W. and central equilibria. This result may appear offhand
internally contradictory. We can merely conclude that the phenomenon of protec-
tion and the stability of central equilibria are not synonymous realizations. In

I2-2
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particular, this means that increased migration flow does not cause a shift from
circumstances of stable fixation states to stable H.—W. or central equilibria out-
comes (or vice versa). Indeed, there exist other categories of polymorphic equilibrium
configurations which are stable with low migration and unstable with high migration.

The nature of these other internal equilibria is the subject of a later paper in this
series.

APPENDIX

We sketch here the method for studying the stability of an equilibrium in the
case where all the linear approximations to the local fitness functions about the
equilibrium share the same eigenvectors. In particular, this case includes the
H.—W. polymorphic equilibrium of the extended non-epistatic model and the central
equilibrium of the generalized symmetric model discussed in the text.

Let the eigenvectors of the linear approximations (restricted to the perturbation
space) be designated by

u, U, ..., Ug.
Then the perturbation in the 7th deme can be written as

K

o298 |
i=h g

and, if we designate the ith local linear approximation by L;, selection changes the
perturbation to

K K K
j=1 i=1 =1

by the linearity of L,, where A;; is the eigenvalue of L, associated with u;. After
selection has acted in each habitat, migration changes the gamete frequencies to

m K K m
> mu( % Ay “k) = X U, 3 myAyay
j=1 k=1 E=1  j=1

in the :th deme. Thus,

m
!
&= kzl Mg Agj Laess

which is independent of «;,, I & j. Thus, the coefficient of the kth eigenvector in the
1th habitat depends solely on the coefficients of that eigenvector in all the demes in
the previous generation.

The condition for instability of the equilibrium is that the largest eigenvalue of
the linear approximation is greater than one. We have just shown that all eigen-
vectors of the multi-deme transformation are catenations of multiples of an eigen-
vector for the single-deme transformation (i.e. of the form (7,51, 75;1,, ..., 7,5 4;)).
Therefore, a necessary and sufficient condition for instability is that @ < MA,, a
(component-wise) for some non-negative a, where A,, is the diagonal matrix with
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entries A;;, which, in the generic case when all recombination frequencies are less than
%, are non-negative. This is the condition which we stated in the text:

p(MA) > 1 for some eigenvector u.
The condition for stability is the negation, i.e.
P(MA,) <1 for all relevant eigenvectors u.

This research was supported in part by NIH Grant GM 10452-15 and NSF Grant MCS76-
80624-A01.
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