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A FOURTH-ORDER PARABOLIC EQUATION
WITH A LOGARITHMIC NONLINEARITY

AHMED BONFOH

We consider some generalisations of the Cahn—Hilliard equation based on constitu-
tive equations derived by M. Gurtin in (1996) with a logarithmic free energy. Com-
pared to the classical Cahn—Hilliard equation (see [4, 5]), these models take into
account the work of internal microforces and the anisotropy of the material. We ob-
tain the existence and uniqueness of solutions results and then prove the existence of
finite dimensional attractors.

1. INTRODUCTION

We consider a generalisation of the Cahn-Hilliard equation, which is a conservation
law (in the sense that the average of the order parameter is conserved). This equation
is based on constitutive equations proposed by M. Gurtin in [10], and describes very
important qualitative features of two-phase systems, namely the transport of atoms be-
tween unit cells when we take into account the work of the internal microforces and
the anisotropy of the material. These derivations are based on belief that fundamental
physical laws involving energy should account for the work associated with each kinemat-
ical process (the order parameter in our case). See [10] for more details on this theory,
and [12] where the full nonlinear partial differential equations are derived. Most of the
mathematical literature on the Cahn—Hilliard equation (and also generalisations of the
Cahn—Hilliard equation) has concentrated on a polynomial nonlinearity or on more gen-
eral assumptions on the potential / excluding a logarithmic nonlinearity (see for instance
[3, 12, 13] and the references therein). Some results concerning the Cahn—Hilliard
equation with logarithmic potentials can be found in [1, 2, 7, 9].

Many equations arising from mechanics and physics possess a global attractor, which
is a compact invariant set which attracts uniformly the trajectories as time goes to infinity,
and thus appears as a suitable object for the study of the asymptotic behaviour of the
system. An important issue is then to study the dimension, in the sense of the fractal
dimension or the Hausdorff dimension, of the global attractor. Indeed, we would then
obtain an estimate of the number of degrees of freedom of the system. To this purpose,
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36 A. Bonfoh [2]

one approach is to prove the existence of an exponential attractor, which is a compact
positively invariant set which attracts exponentially the trajectories (and is thus more
stable than the global attractor under perturbations and numerical approximations),
contains the global attractor and has finite fractal dimension (see [8] for more details on
exponential attractors).

n

We set Q — ]^[]0, Li[, Lt > 0, i = 1, . . . ,n, n = 2 or 3, and consider the following

^ ) + adiv(BVAp) - div(BV/'(p)) = 0,

system:

(1.1) p\t=o = Po,

p is Q — periodic,

where B and B are two symmetric positive definite tensors with constant coefficients (B
is called mobility tensor), d is a constant vector, p is the order parameter (corresponding
to a density of atoms). The free energy / : [-1,1] —• E: is given by

(1.2)

where 0 < 9 < 6C.

For the mathematical setting of the problem, we denote by ||.|| and (.,.) the usual
norm and the scalar product in L2(fi). For each p e ^(Cl), m(p) stands for the average
of p, that is, m(p) = 1/\Q\ fnp(x)dx, and, for a space X, we denote by X the space
{q e X, m(q) = 0}. We set q = q - m(q), Vg € L^fi). We define by N = -d ivBV a
linear, selfadjoint, strictly positive operator with compact inverse iV"1 on ifper(fi). We

note that TV and -?—, and thus TV"1 and ^—, i = 1 , . . . ,n, commute.

The layout of this paper is as follows. In Section 2, we recall some results we already
know. In Section 3 we study a regularised problem where the potential / is replaced by
a regular function fm as in [7]. In Section 4, we derive uniform a priori estimates in m
for the approximate solutions which unable us to pass to the limit in the approximate
problem to get the existence and uniqueness of a weak solution as stated in Theorem
4.1. Section 5 is devoted to the study of the existence of the global attractor. Finally in
Section 6, we prove that the fractal dimension of the global attractor is finite by studying
the existence of exponential attractors. Throughout, the same letter c (and sometimes
Ci, i = 0 ,1 ,2 , . . . ) shall denote positive constants that may change from line to line.

2. PRELIMINARY RESULTS

We first recall the following result which is proved in [3].
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[3] A fourth order parabolic equation 37

PROPOSITION 2.1.

(i) The mapping q i-> || VB1/2Vg|| defines a norm on H%eT(Q) that is equivalent
to the usual H2-norm.

(ii) We have, for every? e L2(Q), (q, -div^ViV-1?)) = WB^VB^VN^qf.
Furthermore, the mapping q i-> ||B1/'2V'BXI2V'N~xq\\2 defines a norm on
L2(£l) that is equivalent to the usual I?-norm.

To study this problem, we rewrite (1.1) in the following form

(2.1)

p is f2-periodic.

We take formally, but the calculations can be easily justified, the L2-scalar product of

the first equation of (2.1) with F(p, -£Y Noting that (d.Vg.g) = 0, Vq € L2(ft), we
obtain

V " / Jj. \"/ It Ci-L I I I I V • ' *^' 7 I '

where

(2.3)

We then deduce that J(p) is a Lyapunov function for (1.1). Apart from its interest from
the physical point of view, this result is useful to obtain informations on the structure of
the global attractor (see for instance [13]).

Due to the spectral properties of operator N, there exists a basis of. eigenvectors
{ej}{ieN} on H2

eT(fl) which is orthonormal in L2(S7) and is associated with the eigenvalues
such that

ei = \ieJ,j = l,2,...

0 = Ao < Aj ^ A 2 , . . . , Aj —¥ 00 .

+00 +00

We then set, for p = ^2 Pj e,-, and for all s € R, N"p — ^2 Aj pj e,-, and
j=0 j=l

+00

i=o j=\

We endow V3 with the seminorm \p\a = ||Afs/2p||, the semiscalar product (u, v),
= {Ns'2u,N''2v) and the norm \\p\\, = (\p\2 + m(p)2)1/2. Note that VQ =
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Vi = Hper(Q,), V2 = Hper(Q) and ||.||a is a norm equivalent to the usual norm of HS(Q).
Also, V-s is the dual space of V .̂

The following results can be found in [7].

LEMMA 2 . 1 .

(i) We have |p|J = \\p\\l = f, Ajp2.
j=i

(ii) Vu, v e i 2 (H) , we have

(u, u)o = (u, v) - m(u)m{v)\Q.\

{u,v)0 = (u,u) = (u,iJ) = (u,v).

(iii) There exists a constant Co > 0 such that |u|x ^ Co||Vu||,Vu G ifper(fi).

(iv) We have

c\u\3., c> 0, s ^ s', Vu e V,-,

«|A. ,+(I-A).2 < lufcMl,-*, si ^ s2, A G [0,1], Vu € VS2.

The following proposition is proved in [6].

PROPOSITION 2 . 2 . The norms \\.\\2 and (| |VB1/2Vp||2 + | |p| |2)1 /2 are equiv-

aient to the usual H2-norm on i72
er(f2). Furthermore, there exists constants c\ and c2

which can be chosen independently of Q such that ci||p||2 ^ ||p||/f2
er(n) ^ C211/f112> Vp

3. A REGULARISED PROBLEM

We denote by tp and <f> the functions

(3.1) ip{s) = (1 + s) ln(l + s) + (1 - s) ln(l - s),

and <f>(s) = il/(s), for s e] - 1,1[. We then have f(s) = - (0c /2)s2 + (6>/2)^(s) and
f'(s) - - 0 c s + (ff/2)^(s).

The major difficulty in the study of problem (1.1) is that </>(s) is singular at s = ±1
and, therefore, has no meaning if p = ±1 in an open set of non-zero measure. To
overcome this difficulty, we consider a regularised problem as in [7]. The logarithmic
free energy f(s) is replaced by the polynomial function fm(s) — —(8c/2)s2 + (8/2)tpm(s),

where m € N, and

(3.2) ^ ) -

The idea is to study the approximate problem and derive uniform estimates (in m) and
then pass to the limit m —» +00. This approach is justified by the fact that / can be
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written as / («) = -(6c/2)s2 + 6 ^(s2k+2/(2k + 1)(2* + 2)), for s €] - 1,1[. We then
m *=0

have <j>m{s) — 2^(s2*+1)/(2A; + 1), and consider the following problem

(3.3)(3.4) Fm(pm, *g) = -7V-Mi
g

-aApm - 0cpm + -<

(3-5) pm\t=o — Pa,

(3.6) p m is Q — periodic.

The main aim of this paper is to extend the results of [7] and [6] to system (1.1).
First, we note that the approximate potentials fm satisfy conditions (3.1) to (3.5) on
the potential / of [3, Theorem 3]; and therefore, this theorem is applicable to system
(3.3)-(3.6). We then have the following result.

THEOREM 3 . 1 . We assume that p0 6 H*er(n). Then, for all m e N, (3.3)-(3.6)
possesses a unique solution pm satisfying pm € C([0, T]; H*eT(Q)) D L2(0, T; #per(ft)) and

e L2(0,T;L2(n)). If furthermore p0 € H2
er(n), then pm e C([0,T};Hler(n)) and

We have the conservation property:

(3.7) m(pm(t)) = m(p0), Vt > 0,

which follows from (3.3) by taking the L2-scalar product with 1. We deduce from Section
2 that

(3.8) Jm(pm) = f ||Vpm||2 -d-±fp2
mdx+e-[ <pm(pm) dx.

We have

(3.9,

and, using the inequality (0/24)y2 - (0c/2)y + {361/26) ^0,Vy£ R, we obtain

(3.10)
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Therefore,

(3.11) J

From now, we suppose that d

I, and obtain

= 0. We take the 1? -scalar product of (3.3) with

Noting that ^m(s) ^ 0, Vs e R; and then (-£r<f>'m(pm), ~ ) Z 0; we finally obtain
. . . . . \ eft at /
the estimate

dt

Furthermore, we have

.2

dt
£

dpm

dt - 1
, and

l

dpm

dt

2

- 1

We then obtain

Frn\Pm,
dpm

and, therefore

(3.15)
a

4. EXISTENCE AND UNIQUENESS OF SOLUTIONS

We want to give in this section a result on the existence and uniqueness of solution for
system (1.1). To this purpose, we need to derive several a priori estimates uniform in m
for solutions pm, for all m 6 N. We assume that p0 satisfies p0 6 H*ei(Q), ||/>o||*,°°(fi) ^ 1,
and m(po) €] — 1,1[. The regularised counterpart of (2.2) is

(4.1) = 0,
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where we have

(4.2) Jm{Pm{t)) < Jm(p0) < J(PO) < +OO, Vi > 0,

and, thanks to (3.11),

(4-3) — IJVpTjtH2 ^ J{po) + " ^ F I ^ I -

We deduce that |pm|i ^ ci a n d therefore

(4.4) ||pm||i < c,

where c are independent of m. Integrating (4.1) with respect to t, t G [0,T], we obtain

(4.5) Jm

therefore

(4.6)

and /„

(4.7)

ds = Jm(p0),

c,

dt ^ c, and therefore

dt^c,

where c is independent of TO. We multiply (3.15) by t and obtain after calculation

+
Using Gronwall's lemma and estimates (4.3) to (4.7), we obtain

(4.9)

and \ /

(4.10)

at
c, and therefore

llijrll •

https://doi.org/10.1017/S0004972700034249 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034249


42 A. Bonfoh [8]

where c is independent of m. We now take the L2(fi)-semiscalar product of (3.4) with
<t>m(Pm), and obtain

(4.11)

- a(Apm,(j>m(pm))0 - 0c(pm,4>m{pmj)a + -\<j>m{Pm)\l-

Noting that (Apm, <j>m{pm))0 = - fn |Vpm|Vm(Pm) dx ^ 0, and the equivalence of norms

at
and

at
l, we obtain
I

(4.12) ^

and therefore

(4.13)

where c is independent of m. We finally take the L2-scalar product of Fm(pm, -^-j with
Npm obtaining

(4.14) i ^ + - 0c\Pm\l

), NPm) = (Fm [Pm,

Noting that (</>m(Pm),NPm) - !n<t>'m{pm)\Bxl2Vpm\2dx ^ 0, we deduce the estimate

(4.15) —II

T
and then /0

T(||V51/2Vpm||2 + ||pm||2) dt s$ c thanks to (4.4), and therefore

(4.16) / || A»||2 d t ^ c ,
Jo

where c is independent of m. The L2-scalar product of Fm(pm, - ^ ) with Npm and the
\ at i

fact that T - d i v ^ V ^ ) , An) - (^,-div(BVpm)) also give

(4.17)

- a(Apm, Npm) - 6c{pm, Npm) + -{4>m{pm), Npm),
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and therefore, thanks to the equivalence of norms

2\l/2

and ||pm||tf2er(n) on # 2
e r ( f i ) , and estimates (4.4), (4.9) and (4.10)

(4-18) ^ c1+c2(e)

^ c3(e) +rtc4(| |VB1/2VPm|i2 + ||pm||2), Ve > 0.

With a suitable choice of e we deduce that «(| |VB1/2Vpm||2 + ||pm||2) ^ c, and therefore

(4.19) y/i\\pmh < c,

where c is not depend on m.

We have the following result.

THEOREM 4 . 1 . We assume that p0 € H*ei(Q) and satisfy ||po|U°°(n) ^ 1, and
m(po) €] - 1,1[. Tien, (2.1) with d = 0, possesses a unique solution p such that

p € C([0,T];i^e r(n)) n L2(0,r ; tf2
e r (Q)), and ^ e L2(0,T;L2(fi)), VT > 0. Fur-

thermore, we have F^p, -£} e L2(0, T; H^T(Q)), ||p(*)||LOB(n) ^ 1, V<^ 0, and the set

< x € f2, |p(a:, ^)| = 1 > have zero mesure for i > 0.

PROOF: The proof is similar to that of [7] for the classical Cahn-Hilliard equation.
We just give a sketch of the proof. The uniqueness follows from the standard method
which consists of studying the equation of the difference of two solutions p\ and pi\ and
noting that {<t>{p\) — 4>{p2), P\— pi) ^ 0||pi - /^II2- The existence of solutions follows from
the limit m —> oo in the approximate problem (3.3)-(3.6). By Theorem 3.1, we know
that, for all m € N, there exists a unique solution such that pm £ C([0, T];i/per(0)) D

L2(0,T; #2
er(ft)) and - ^ G L2(0,r ;L

2(f i )) . The major difficulty is the passage to the

limit in the nonlinear term. Due to the uniform (in m) a priori estimates we obtained, we

prove that there exists a subsequence (which we still denote by {pm}meN) a n d a function

p such that

pm -> p in L2(0,T;#per(ft)) strongly and almost everywhere in ftx]0,T[;

pm - p in L2(0,T;H2
per(Q)) weakly,

pm ->• p in L°°(0,T;//per(fi)) weakly-star

^ in L2(0,T;L2(fi)) weakly,

almost everywhere in ftx]0,T[ and in D'(fix]0,T[)
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Passing to the limit, we obtain that p is a solution of (1.1). Furthermore, we have
p € C([0,T];L2(Q,)) and the map p(t) : [0,T] -> H*er(Q) is weakly continuous (see
compactness results of [11]). To conclude that p € C([0,T]; Hper(Q,)) we prove that the
map t : [0, T] —> jp(t)|x is continuous. The others points of theorem are justified in a
similar way as in [7]. D

5. EXISTENCE OF THE GLOBAL ATTRACTOR

We first recall the definition of the global attractor for a semigroup. Let E be a
Banach space.

DEFINITION 5.1: The set A is called aglobal attractor for the semigroup {S(t)}t>0

if A is compact in E\ A is strictly invariant, that is, S(t)A = A, W ^ 0; and A is an
attracting set for {S(*)}t>0

 m the following sense: for any bounded set B C E the
Hausdorff distance

dist£;(5(i)B,^) -> 0, when t -> oo.

We denote by V£ - [p G L2(Q); \m(p)\ ^ a} and by V? = [p € ^ ( 0 ) ; |m(p)|

< a>, for a ^ 0. We endow these sets by the norms of L2(fi) and Hpei(Q) respectively.
Thanks to Theorem 4.1, we can define the semigroup {S(t)}t>Q: S{t) : V{ -» Vf,
Po |-^ p(t), <T < 1. We easily prove that S(t) is continuous for the norm of Hper(Q)
(and also for the norm of L2(Cl) if we extend S(t) to L2(Q)). We actually consider
the restriction of S(t) to the space {p € L°°(Q); ||/9||L~(n) ^ l}- We now prove the
existence of bounded absorbing sets. We take the L2-scalar product of (3.4) with iV"1/^,
An = Pm- rn(po), and obtain

and therefore

(5.2) ~ ( | | p nI at + f
2fc+2

From (3.11) we have J(pm) - (0c/2)||pm||2 > a/2||Vpm||2 - (302/0)|fi|. Thanks to in-
equalities ||pm||_i ^ c||B1/2VB1/2VA^-1pm|| ^ c'||Vpm||, we deduce the estimate

(5-3) |

W + \\B"2VB^VN-lpmf) ^ D™,
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where C\ > 0 and

"L /T2*+2 fifl2

(5.4, O™ 2 W g + ,
The following result is then obtained.

PROPOSITION 5 . 1 . For all g > 0 and p0 e _2(fi) such that \\po\\ < g, \m(po)\
^ cr, there exists Ti(g) > 0 such that the solution pm of (3.3)-(3.6) satisfies

(5-5) | |pm(t)| |2 < dD™, W > r , ( ? ) .

furthermore, if CT < 1, then the solution p of (1.1) satisfies

(5.6)

Integrating (5.2) with respect to t, we deduce that

rt+l a rt+l „ _m _2*+2

/
( ^

1 c\ V H r m l l - l

and since J is decreasing and that ||pm||2 = | |pm||2 + m(p0)2|^|i we obtain thanks to (5.5)

where C2 > 0, and therefore
(5.9) pV/UOH <C?2D™ + X | Q | + 2 M' V*>Ti(«) + 1-

We then obtain the following result.

PROPOSITION 5 . 2 . We assume that p0 satisfies the conditions of Proposition

5.1. Then, the solution pm of (3.3)-(3.6) satisfies

(5.10) \ \ l

Furthermore, if a < 1, then the solution p of (1.1) satisfies

(5.11) ||j5(t)||| < c,_)ai W ^ T ^ J + l.

Integrating (4.1) from t to t + 1 and using (5.9), we obtain for all t ^ -\(p) + 1

(5.12)
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Now, appling uniform Gronwall's lemma to (3.15), we obtain for all t ^ Ti(g) + 2,

(5.13)

We finally deduce from (4.17), as for (4.18), that

i • 2

(5-14) <C l JD- + c2(e)| |-gi| +e(||div(SVpm)||2

^ c3(e)D? + ec4(||VBl<2VPm\\2 + \\Pm\\2), Ve > 0.

A proper choice of £ gives (||VJ51/2Vpm||2 + ||pm||2) < cD™ and therefore the following
result.

PROPOSITION 5 . 3 . We assume that po satisfies t ie conditions of Proposition
5.1. Then, the solution pm of (3.3)-(3.6) satisfies

(5.15) 2

Furthermore, if a < 1, then the solution p of (1.1) satisfies

(5.16) \\p(t)\\2
2 ^ c3Da, V O 7 i ( e ) +

We have

(5.17) 1

and for a < 1, we have

(5.18)

n2k+2

and then Do -^ 0 when |Q| - • 0.

Thanks to Proposition 5.1 to 5.3, we obtain the bounded absorbing sets in Vg and

in V,CT. Together with the continuity and the uniform compactness of the semigroup lead

to the existence of the global attractor. The reader is refered to [13] for more details on

the attractors. We have the following result.

THEOREM 5 . 1 . The semigroup {S{t)}t>Q possesses the global attractor Ao in

Vg and in Vf, a < 1 which is bounded in H2
er(n).

R E M A R K 5.1. The global attractor A^ is the same in V£ and in V".
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6. EXISTENCE OF EXPONENTIAL ATTRACTORS

Now, we recall the definition of the exponential attractor where A is the global
attractor for the semigroup {S(*)}t>0-

DEFINITION 6.1: A set M is called exponential attractor for {5(t)} t > 0 if M is
compact in E; A C M; S(t)M C M, Vt ^ 0; for every u0 in E, we have

distE(S(t)u0, M) ^ ci exp(-c2t), Vt ^ 0,

(here c\ > 0, c2 > 0 are independent of u0); and M has finite fractal dimension.

To prove the existence of an exponential attractor, we use the approach of [8]. Rewriting
(1.1) in the form

(6.1) ^ + Bp + R{p) = 0,

we just have to prove that there exists a real number /3 € (0,1/2] such that, for all u,v
belonging in E, we have

(6.2) \R{u)-R{v)\E^c\B^u-v)\E.

This estimate guarantees the squeezing property for (6.1) which lead to the existence of
an exponential attractor. To this purpose, we first consider a bounded absorbing set in
V° D Hper(fl) which we denote by Ba and set

Xa = (J S{t)Ba,

where S{t)Ba C Ba, Vt ^ T2. Since H2(Q) C L°°(Q,), we deduce from Proposition 2.3
and Proposition 5.3 the following result.

PROPOSITION 6 . 1 . Let a e] - 1,1[. If \Q\ is sufficiently small, there exists a
constant S, 0 < 6 < 1 such that

We are now in the position to give the following result.

THEOREM 6 . 1 . The semigroup {S(t)} possesses an exponential attractor on Xa.
In consequence, the global attractor Aa obtained in Theorem 5.1 has finite fractal di-
mension.

PROOF: We rewrite (1.1) in the form

(6.3) ^ + (L
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where Lp = p - div(BVp), Ap = p+ adiv(BVAp), and D{p) = -div (BVf'(p)) - p.
Condition (6.2) is held. Indeed, since / " is bounded in Xa, we have

(6.4) | | / / ( « ) - / » | | < c ( a ) | | U - t ; | | > Vu,veXa.

Noting the equivalence of norms j|JD 1i*||̂ ra(n) and ||u||, and thus I^IrM)1/2^ and ||u||
on Xa, we have

\\L-'D{u) - L~lD{v)\\ < c\\L-\u - v)\\H2{n) + c\\L

(6.5) ^C(<J)\\U-V\\

therefore the result.
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