INTEGRAL POINTS ON ELLIPTIC CURVES OVER FUNCTION FIELDS

W.-C. CHI, K. F. LAI and K.-S. TAN

(Received 8 January 2003; revised 28 May 2003)

Communicated by King Lai

Abstract

We prove a new formula for the number of integral points on an elliptic curve over a function field without assuming that the coefficient field is algebraically closed. This is an improvement on the standard results of Hindry-Silverman.

2000 Mathematics subject classification: primary 11G05; secondary 14H52.

1. Introduction

Serge Lang has conjectured that on a minimal Weierstrass equation of an elliptic curve over a number field, the number of integral points should be bounded solely in terms of the field and the rank of the group of rational points [4, page 140]. Hindry and Silverman [3] proved an analogue of Lang's conjecture for non-constant elliptic curves over zero-characteristic one-dimensional function fields. Influenced by the original work of Mason [5], we use a formula on 2-divison points given by Tan [7] and the method of Evertse [1, 2] to prove another analogue of Lang's conjecture for these curves.

Let K be the field of rational functions on an algebraic curve of genus g over the constant field k of characteristic 0 . We do not assume that k is algebraically closed. Let M_{K} denote the set of all places of K. For a finite subset S of M_{K}, denote by \mathscr{O}_{S} the ring of S-integers of K. Consider a non-constant elliptic curve E defined by

$$
\begin{equation*}
y^{2}=x^{3}+A x+B, \quad A, B \in \mathscr{O}_{s} . \tag{1}
\end{equation*}
$$

The set of S-integral points of this curve is $E\left(\mathscr{O}_{S}\right)=\left\{P \in E(K): x(P), y(P) \in \mathscr{O}_{S}\right\}$. Let $\Delta=-\left(4 A^{3}+27 B^{2}\right)$ be the discriminant of the equation (1) and $\mathscr{D}_{E / K}$ be the divisor of the minimal discriminant of E / K. Then we have

$$
\begin{equation*}
(\Delta)=\mathscr{D}_{E / K}+12 \sum_{v \in M_{K}} \rho_{v} \cdot v \tag{2}
\end{equation*}
$$

for some integers ρ_{v}, where $\rho_{v} \geq 0$, if $v \notin S$. Let α, β, γ be the three roots of $x^{3}+A x+B=0$ (in some extension field) and let m be the degree $[K(\alpha, \beta, \gamma): K]$ which is at most 6. Define

$$
\begin{aligned}
& S_{1}=\left\{v \in M_{K}: v \notin S, v(\Delta)>0, \rho_{v}=0\right\} \quad \text { and } \\
& S_{2}=\left\{v \in M_{K}: v \notin S, \rho_{v}>0\right\}
\end{aligned}
$$

Denote by s, s_{1}, s_{2} the cardinality of S, S_{1} and S_{2}. Denote the rank of $E(K)$ by r. Let $h_{K}\left(\mathscr{D}_{E / K}\right)$ be the height of $\mathscr{D}_{E / K}$ (see Section 2.1). Put

$$
\begin{aligned}
& a_{E}= \begin{cases}144 & \text { if } h_{K}\left(\mathscr{D}_{E / K}\right) \geq 24(g-1) \\
\left(8 \pi^{2}(g-1)\right)^{2 / 3} & \text { if } h_{K}\left(\mathscr{D}_{E / K}\right)<24(g-1),\end{cases} \\
& b_{E}= \begin{cases}20 \cdot 10^{5.75}+1 & \text { if } h_{K}\left(\mathscr{D}_{E / K}\right) \geq 24(g-1) \\
20 \cdot 10^{5.5+11.5 g}+1 & \text { if } h_{K}\left(\mathscr{D}_{E / K}\right)<24(g-1)\end{cases}
\end{aligned}
$$

THEOREM. $\left|E\left(\mathscr{O}_{S}\right)\right| \leq a_{E} \cdot\left(b_{E}\right)^{r}+810 \cdot 24^{r} \cdot 2^{24 m\left(s+s_{2}\right)}$.
Let us compare the above theorem with the result of Hindry and Silverman ([3]). Let

$$
c_{E}= \begin{cases}10^{7.1} & \text { if } h_{K}\left(\mathscr{D}_{E / K}\right) \geq 24(g-1) \\ 10^{7+12 g} & \text { if } h_{K}\left(\mathscr{D}_{E / K}\right)<24(g-1)\end{cases}
$$

Theorem 1.1 ([3, Theorem 0.6]). Let K be a one-dimensional function field of characteristic 0 and genus g, and let E / K be a non-constant elliptic curve given by an S-minimal equation (1). Then $\left|E\left(\mathscr{O}_{S}\right)\right| \leq a_{E}\left(c_{E} \sqrt{|S|}\right)^{r}$.

First, we note that in our theorem, we do not need to restrict ourselves to the cases where E is S-minimal. Also, in [3], there is no explicit formula given for the symbol $|S|$. Consider the elliptic curve E defined over $K=\mathbb{Q}(t)$ by $Y^{2}=X^{3}-p(t) X$, where $p(t)=t^{2 l}+2 t^{l}+2$, and l is a large integer. Its discriminant is $\Delta=4 p(t)^{3}$. Take $S=\left\{\infty, v_{p(t)}\right\}$ and $R=(x, y)=\left(-1, t^{l}-1\right)$. Then R is an S-integral point of E. The Weil height of y is l, but the size of S is 2 . If Proposition 8.2 in [3] is to be true, then $|S|$ should not be the cardinality of S which is 2 here. Instead $|S|$
should be $2 l+1$, which is the size of the places of $\overline{\mathbb{Q}}(t)$ sitting over S. But then we see that there are countably infinitely many cases where our bound is better than Hindry-Silverman's bound.

Here is the sketch of the proof. We first divide the set of S-integer points into two subsets, the first contains points with heights bounded above by a constant which depends on E, the second contains the remaining points. We bound the cardinality of the first set by using the counting method from [3] which applies the result of Mason [5]. For the second set, we associate to an S-integer point some unit equations over certain field extension and use the machinery developed by Evertse [1, 2].

2. Heights and 2-division points

2.1. Heights Let us fix our convention on the heights on fields. We can consider K as a finite extension of a rational function field $k(t)$.

Let I be a maximal set of pairwise non-associate irreducible polynomials in $k[t]$. For $\xi(t) \in k(t)^{*}$, write $\xi(t)=C \prod_{\eta \in I} \eta^{n_{n}(\xi)}$, where $C \in k^{*}$ and only finitely many of the integers $n_{\eta}(\xi)$ are non-zero. Put $v_{\eta}(\xi)=\operatorname{deg}(\eta) n_{\eta}(\xi)$. Define $\operatorname{deg}\left(v_{\eta}\right)=\operatorname{deg}(\eta)$.

If $\xi=\xi_{1} / \xi_{2}$, with $\xi_{1}, \xi_{2} \in k[t]$, put $v_{\infty}(\xi)=\operatorname{deg}\left(\xi_{2}\right)-\operatorname{deg}\left(\xi_{1}\right)$. Also, define $\operatorname{deg}\left(v_{\infty}\right)=1$. Then we have the product formula

$$
\sum_{v \in M_{\left.k^{(}\right)}} v(\xi)=0
$$

where $M_{k(t)}=\left\{v_{\infty}\right\} \cup\left\{v_{\eta}: \eta \in I\right\}$ is the set of valuations on $k(t)$.
Following Evertse [2, Section 1.3], we have on K a set M_{K} of valuations which are normalized with respect to $M_{k(t)}$ and the product formula $\sum_{v \in M_{K}} v(\xi)$, for every $\xi \in K^{*}$ also holds. Thus each valuation $v \in M_{K}$ is obtained from a rational irreducible divisor, denoted as [v].

For any $v \in M_{K}$, there is an associated $v_{0} \in M_{k(t)}$ and a positive integer \boldsymbol{e}_{v} such that $v(\xi)=e_{v} v_{0}(\xi)$, for every $\xi \in k(t)^{*}$. Let $K_{v}, k(t)_{v_{0}}$ be respectively the completions of K and $k(t)$. Then the degree of v is defined as follows

$$
\operatorname{deg}(v)=\left[K_{v}: k(t)_{v_{0}}\right] \operatorname{deg}\left(v_{0}\right)
$$

The height h_{K} on K is defined by $h_{K}(\xi)=\sum_{v \in M_{K}} \max \{0,-v(\xi)\}$, if $\xi \in K^{*}$ and $h_{K}(0)=0$.

For a divisor $\mathscr{C}=\sum_{v \in M_{K}} m_{v}[v]$, put $h_{K}(\mathscr{C})=\sum_{v \in M_{K}} \max \left\{0, m_{v}\right\} \operatorname{deg}(v)$.
2.2. 2-division points In this section, we quote some results from [7]. All the statements can be easily checked.

Let $P=(\xi, \eta) \in E\left(\theta_{s}\right), K_{1}=K(\alpha, \beta, \gamma)$ and $L=K_{1}(\sqrt{\xi-\alpha}, \sqrt{\xi-\beta}, \sqrt{\xi-\gamma})$. Fix a choice of square roots, and let

$$
\zeta-\alpha=(\sqrt{\xi-\alpha}+\sqrt{\xi-\beta})(\sqrt{\xi-\alpha}+\sqrt{\xi-\gamma})
$$

Then there exists $\tau \in L$ such that the point $Q=(\zeta, \tau)$ in $E(L)$ satisfies $2 Q=P$. Moreover, if $D_{0}=(\alpha, 0) \in E[2]$ and $Q^{\prime}=\left(\zeta^{\prime}, \tau^{\prime}\right)=Q+D_{0}$ in $E(L)$, then

$$
\begin{equation*}
\left(\zeta^{\prime}-\alpha\right)(\zeta-\alpha)=(\alpha-\beta)(\alpha-\gamma) \tag{3}
\end{equation*}
$$

From this, we see that if T, T_{1}, T_{2} are respectively valuations in M_{L} sitting over respectively those in S, S_{1}, S_{2}, and $T_{3}=T \cup T_{1} \cup T_{2}$, then $\zeta-\alpha, \zeta-\beta, \zeta-\gamma$ are all T_{3}-units.

Note that if P^{\prime} is another point in $E(K)$ such that $P-P^{\prime} \in 2 E(K)$, then from the Kummer sequence, both P and P^{\prime} determine the same class in $H^{1}(K, E[2])$ and, in particular, they determine the same extension L / K. Therefore, the extension L / K only depends on the image of P in $E(K) / 2 E(K)$.

3. The units equation

3.1. The units equation For $P=(\xi, \eta)$, there are four choices of $Q=(\zeta, \tau) \in E(L)$ such that $2 Q=P$. For each such Q, let

$$
M=\max \left\{h_{L}\left(\frac{\zeta-\alpha}{\alpha-\beta}\right), h_{L}\left(\frac{\zeta-\beta}{\beta-\gamma}\right), h_{L}\left(\frac{\zeta-\gamma}{\gamma-\alpha}\right)\right\} .
$$

An element σ in $\{(\zeta-\alpha) /(\alpha-\beta),(\zeta-\beta) /(\beta-\gamma),(\zeta-\gamma) /(\alpha-\gamma)\}$ is called maximal if $h_{L}(\sigma)=M$.

Let us write any one of the following equations

$$
\begin{align*}
& \left(\frac{\zeta-\alpha}{\alpha-\beta}\right)-\left(\frac{\zeta-\beta}{\alpha-\beta}\right)+1=0 \\
& \left(\frac{\zeta-\beta}{\beta-\gamma}\right)-\left(\frac{\zeta-\gamma}{\beta-\gamma}\right)+1=0 \\
& \left(\frac{\zeta-\gamma}{\gamma-\alpha}\right)-\left(\frac{\zeta-\alpha}{\gamma-\alpha}\right)+1=0
\end{align*}
$$

as

$$
x_{0}+x_{1}+x_{2}=0
$$

where $\delta \in\{\alpha, \beta, \gamma\}$. Put $\underline{x}=\left(x_{0}, x_{1}, x_{2}\right)$ and say that (Q, \underline{x}) is associated with P (through (δ)). We call \underline{x} maximal, if x_{0} is maximal. We define

$$
h_{L}(\underline{x})=\sum_{w \in M_{L}} \max \left\{-w\left(x_{0}\right),-w\left(x_{1}\right),-w\left(x_{2}\right)\right\}
$$

Then we have $h_{L}(x)=h_{L}\left(x_{0}\right)$.
Let C be a constant whose value will be determined latter. Let I be the set consisting of those (P, Q, \underline{x}) such that $P \in E\left(\mathscr{O}_{S}\right),(Q, \underline{x})$ is associated with P, \underline{x} is maximal, and $h_{L}(x) \leq C h_{L}\left(\mathscr{D}_{E / K}\right)$.

For $\delta \in\{\alpha, \beta, \gamma\}$, let $I I_{\delta}$ be the set consisting of those (P, Q, x) such that $P \in E\left(\mathscr{O}_{S}\right),(Q, \underline{x})$ is associated with P through $(\delta), \underline{x}$ is maximal, and $h_{L}(\underline{x})>$ $C h_{L}\left(\mathscr{D}_{E / K}\right)$.

Let $\tilde{I}, \tilde{I}_{\delta}$ be the image of $I, I I_{\delta}$ under the projections $I \longrightarrow E(\mathscr{O}), I I_{\delta} \rightarrow E(\mathscr{O})$, by $(P, Q, \underline{x}) \mapsto P$.
3.2. Case I Suppose that $(P, Q, \underline{x}) \in I$ and $Q=(\zeta, \tau)$. Then

$$
\begin{equation*}
h_{L}\left(\frac{\tau^{4}}{\Delta}\right) \leq 2\left(h_{L}\left(\frac{\zeta-\alpha}{\alpha-\beta}\right)+h_{L}\left(\frac{\zeta-\beta}{\beta-\gamma}\right)+h_{L}\left(\frac{\zeta-\gamma}{\gamma-\alpha}\right)\right) \leq 6 h_{L}(x) \tag{4}
\end{equation*}
$$

Let \hat{h}_{K} (respectively, \hat{h}_{L}) denote the canonical height of E over K (respectively, over L).

Lemma 3.1. If $P \in \tilde{I}$, then $\hat{h}_{K}(P) \leq(1 / 3)(1+6 C) h_{K}\left(\mathscr{D}_{E / K}\right)$.

Proof. Let (Q, \underline{x}) be associated with P. We have

$$
\hat{h}_{K}(P)=(1 /[L: K]) \hat{h}_{L}(P), \quad h_{K}\left(\mathscr{D}_{E / K}\right)=(1 /[L: K]) h_{L}\left(\mathscr{D}_{E / K}\right)
$$

It suffices to show $\hat{h}_{L}(P) \leq(4 / 12)(1+6 C) h_{L}\left(\mathscr{D}_{E / K}\right)$. This will follow from $h_{L}\left(\mathscr{D}_{E / L}\right) \leq h_{L}\left(\mathscr{D}_{E / K}\right), \hat{h}_{L}(P)=4 \hat{h}_{L}(Q),(4)$ and [3, Proposition 8.3] which says that $\hat{h}_{L}(Q) \leq(1 / 12) h_{L}\left(\tau^{4} / \Delta\right)+1 / 12 h_{L}\left(\mathscr{D}_{E / L}\right)$.

Lemma 3.2. Let \tilde{I}^{\prime} be the set of $P \in E(K)$ such that

$$
\hat{h}_{K}(P) \leq(1 / 3)(1+6 C) h_{K}\left(\mathscr{D}_{E / K}\right)
$$

Then $\tilde{I} \subset \tilde{I}^{\prime}$ and $E(K)_{\text {tor }} \subset I^{\prime}$. Moreover,
(1) $\left|\tilde{I}^{\prime}\right| \leq 144\left(4\left(10^{11.5}(1+6 C)\right)^{1 / 2}+1\right)^{r}$, if $h_{K}\left(\mathscr{D}_{E / K}\right) \geq 24(g-1)$;
(2) $\left|\tilde{I}^{\prime}\right| \leq\left(8 \pi^{2}(g-1)\right)^{2 / 3}\left(4\left(10^{11+23 g}(1+6 C)\right)^{1 / 2}+1\right)^{r}$, if $h_{K}\left(\mathscr{D}_{E / K}\right)<24(g-1)$.

Proof. We follow the method used in the proof of [3, Theorem 8.1], where a counting lemma from [6] is used. Thus we have

$$
\left|\tilde{I}^{\prime}\right| \leq\left|E(K)_{\mathrm{tor}}\right|\left(2 \sqrt{4(1+6 C) h_{K}(E) / \mu}+1\right)^{r}
$$

where $h_{K}(E)=(1 / 12) h_{K}\left(\mathscr{D}_{E / K}\right)$, and

$$
\mu= \begin{cases}10^{-11.5} h_{K}(E) & \text { if } h_{K}(E) \geq 2(g-1) \\ 10^{-11-23} g h_{K}(E) & \text { if } h_{K}(E)<2(g-1)\end{cases}
$$

Also,

$$
\left|E(K)_{\mathrm{tor}}\right| \leq \begin{cases}144 & \text { if } h_{K}(E) \geq 2(g-1) \\ \left(8 \pi^{2}(g-1)\right)^{2 / 3} & \text { if } h_{K}(E)<2(g-1)\end{cases}
$$

3.3. Local calculations Let $v \in S_{1}$ and K_{v} be the completion of K at v. Then (1) is a local minimal Weierstrass equation of E / K_{v}. Let L_{w} be the completion of L at w sitting over v. For $P=(\xi, \eta) \in E\left(K_{v}\right), Q=(\zeta, \tau) \in E\left(L_{w}\right)$ such that $2 Q=P$, let

$$
\begin{array}{lll}
x_{0, \alpha}=(\zeta-\alpha) /(\alpha-\beta), & x_{1, \alpha}=-(\zeta-\beta) /(\alpha-\beta), & x_{2, \alpha}=1 \\
x_{0, \beta}=(\zeta-\alpha) /(\beta-\gamma), & x_{1, \beta}=-(\zeta-\gamma) /(\beta-\gamma), & x_{2, \beta}=1 \tag{5}\\
x_{0, \gamma}=(\zeta-\gamma) /(\gamma-\alpha), & x_{1, \gamma}=-(\zeta-\alpha) /(\gamma-\alpha), & x_{2, \gamma}=1
\end{array}
$$

Suppose that E / K_{v} has multiplicative reduction at v. Then exactly one element among the set $\{\alpha-\beta, \beta-\gamma, \gamma-\alpha\}$ has positive valuation and the others are local units. We assume that $v(\beta-\gamma)>0$ and $v(\alpha-\beta)=v(\gamma-\alpha)=0$. Let $Q^{\prime}=\left(\zeta^{\prime}, \tau^{\prime}\right)=$ $Q+(\alpha, 0)$. Then (3) implies that $w(\zeta-\alpha)=w\left(\zeta^{\prime}-\alpha\right)=0$.

Similarly, if $Q^{\prime \prime}=\left(\zeta^{\prime \prime}, \tau^{\prime \prime}\right)=Q+(\beta, 0)$, then from $(\zeta-\beta)\left(\zeta^{\prime \prime}-\beta\right)=(\beta-\alpha)(\beta-\gamma)$, we get $w(\zeta-\beta) \leq w(\beta-\gamma)$. We also have $w(\zeta-\gamma) \leq w(\beta-\gamma)$. Therefore,

$$
\begin{aligned}
& w\left(x_{1, \alpha}\right)=\max \left\{w\left(x_{0, \alpha}\right), w\left(x_{1, \alpha}\right), w\left(x_{2, \alpha}\right)\right\} \\
& w\left(x_{2, \beta}\right)=\max \left\{w\left(x_{0, \beta}\right), w\left(x_{1, \beta}\right), w\left(x_{2, \beta}\right)\right\} \\
& w\left(x_{0, \gamma}\right)=\max \left\{w\left(x_{0, \gamma}\right), w\left(x_{1, \gamma}\right), w\left(x_{2, \gamma}\right)\right\}
\end{aligned}
$$

We have proved the following lemma.
Lemma 3.3. Suppose that $v \in S_{1}$ and w is a place of L above v. If E / K_{v} has multiplicative reduction, then there exist $i_{\alpha}, i_{\beta}, i_{\gamma} \in\{0,1,2\}$, which depend on E / K_{v} only such that for every $P \in E\left(K_{v}\right)$, we have

$$
\begin{aligned}
& w\left(x_{i_{\alpha}, \alpha}\right)=\max \left\{w\left(x_{0, \alpha}\right), w\left(x_{1, \alpha}\right), w\left(x_{2, \alpha}\right)\right\}, \\
& w\left(x_{i_{\beta}, \beta}\right)=\max \left\{w\left(x_{0, \beta}\right), w\left(x_{1, \beta}\right), w\left(x_{2, \beta}\right)\right\}, \\
& w\left(x_{i_{r}, \gamma}\right)=\max \left\{w\left(x_{0, \gamma}\right), w\left(x_{1, \gamma}\right), w\left(x_{2, \gamma}\right)\right\} .
\end{aligned}
$$

For $\hat{P}=(\hat{\xi}, \hat{\eta}) \in E\left(K_{v}\right), \hat{Q}=(\hat{\zeta}, \hat{\tau}) \in E\left(L_{w}\right)$ such that $2 \hat{Q}=\hat{P}$, define $\hat{x}_{j, \alpha}, \hat{x}_{j . \beta}, \hat{x}_{j . \gamma}, j=0,1,2$, as in (5). We denote by $E_{0}\left(K_{v}\right)$ (respectively, $E_{1}\left(K_{v}\right)$) the set of elements in $E\left(K_{v}\right)$ whose reduction at v are smooth (respectively, the identity).

Lemma 3.4. Suppose $v \in S_{1}, E / K_{v}$ has additive reduction at v and w is a place of L sitting over v. For $P \in E\left(K_{v}\right), Q \in E\left(L_{w}\right)$ such that $2 Q=P$, there exist $i_{\alpha}, i_{\beta}, i_{\gamma} \in\{0,1,2\}$, which depends on E / K_{v} and Q and such that if $\hat{P} \in E\left(K_{v}\right)$, $\hat{Q} \in E\left(L_{w}\right)$ with $2 \hat{Q}=\hat{P}$ and $\hat{Q}-Q \in E_{0}\left(K_{v}\right)$, then

$$
\begin{aligned}
& w\left(\hat{x}_{i_{\alpha, \alpha}}\right)=\max \left\{w\left(\hat{x}_{0, \alpha}\right), w\left(\hat{x}_{1, \alpha}\right), w\left(\hat{x}_{2, \alpha}\right)\right\}, \\
& w\left(\hat{x}_{\beta, \beta}\right)=\max \left\{w\left(\hat{x}_{0, \beta}\right), w\left(\hat{x}_{1, \beta}\right), w\left(\hat{x}_{2, \beta}\right)\right\}, \\
& w\left(\hat{x}_{i_{r, \gamma}}\right)=\max \left\{w\left(\hat{x}_{0, \gamma}\right), w\left(\hat{x}_{1, \gamma}\right), w\left(\hat{x}_{2, \gamma}\right)\right\} .
\end{aligned}
$$

Proof. Put $R=\hat{Q}-Q=\left(\zeta_{0}, \tau_{0}\right)$. Let a be $\min \{w(\alpha-\beta), w(\beta-\gamma), w(\gamma-\alpha)\}$. Then $a>0$. Let $L_{w^{\prime}}^{\prime}$ be an extension of L_{w} such that

$$
\min \left\{w^{\prime}(\alpha-\beta), w^{\prime}(\beta-\gamma), w^{\prime}(\gamma-\alpha)\right\}=2 m
$$

for some positive integer m. Then $E / L_{w^{\prime}}^{\prime}$ has semi-stable reduction at w^{\prime}. In fact, if $\pi_{w^{\prime}}$ is a prime element of $L_{w^{\prime}}^{\prime}$, then the substitution

$$
\left\{\begin{array}{l}
\tilde{x}=\pi_{w^{\prime}}^{-2 m}(x-\alpha) \tag{6}\\
\tilde{y}=\pi_{w^{\prime}}^{-3 m} y
\end{array}\right.
$$

transforms (1) into

$$
\begin{equation*}
\tilde{E}: \tilde{y}^{2}=(\tilde{x}-\tilde{\alpha})(\tilde{x}-\tilde{\beta})(\tilde{x}-\tilde{\gamma}), \tag{7}
\end{equation*}
$$

where $\tilde{\alpha}=0, \tilde{\beta}=\pi_{w^{\prime}}^{-2 m}(\beta-\alpha), \tilde{\gamma}=\pi_{w^{\prime}}^{-2 m}(\gamma-\alpha)$ are all local integers and at least two elements in the set $\{\tilde{\alpha}-\tilde{\beta}, \tilde{\beta}-\tilde{\gamma}, \tilde{\gamma}-\tilde{\alpha}\}$ are local units. We assume that

$$
\begin{equation*}
w^{\prime}(\tilde{\alpha}-\tilde{\beta})=0=w^{\prime}(\tilde{\alpha}-\tilde{\gamma}) \tag{8}
\end{equation*}
$$

Denote the transformation of R (respectively, $Q, D_{0}:=(\alpha, 0), D_{1}:=(\beta, 0)$, $D_{2}:=(\gamma, 0), Q^{\prime}:=Q+D_{0}, Q^{\prime \prime}:=Q+D_{1}, Q^{\prime \prime \prime}:=Q+D_{2}$) under (6) by $\tilde{R}=\left(\tilde{\zeta}_{0}, \tilde{\tau}_{0}\right)$ (respectively, $\tilde{Q}=(\tilde{\zeta}, \tilde{\tau}), \tilde{D}_{0}=(\tilde{\alpha}, 0), \tilde{D}_{1}=(\tilde{\beta}, 0), \tilde{D}_{2}=(\tilde{\gamma}, 0)$, $\left.\tilde{Q}^{\prime}=\left(\tilde{\zeta^{\prime}}, \tilde{\tau^{\prime}}\right)=\tilde{Q}+\tilde{D}_{0}, \tilde{Q^{\prime \prime}}=\left(\tilde{\zeta^{\prime \prime}}, \tilde{\tau^{\prime \prime}}\right)=\tilde{Q}+\tilde{D}_{1}, \tilde{Q}^{\prime \prime \prime}=\left(\tilde{\zeta^{\prime \prime \prime}}, \tilde{\tau^{\prime \prime \prime}}\right)=\tilde{Q}+\tilde{D}_{2}\right)$. We introduce similar notations for \hat{Q}. Because $R \in E_{0}\left(K_{v}\right)$, we have $\tilde{R} \in \tilde{E}_{1}\left(L_{w}^{\prime}\right)$. Since $\tilde{\hat{Q}}^{\prime}=\tilde{Q}+\tilde{D}_{0}+\tilde{R}=\tilde{Q}^{\prime}+\tilde{R}$, the reductions at w^{\prime} of $\tilde{\hat{Q}}^{\prime}$ and \tilde{Q}^{\prime} are the same. In particular, the reduction of $\tilde{\hat{Q}}^{\prime}$ is the identity if and only if that of \tilde{Q}^{\prime} is identity. Consequently, we have that $w^{\prime}\left(\tilde{\hat{x}}_{0, \alpha}^{\prime}\right)<0$ if and only if $w^{\prime}\left(\tilde{x}_{0, \alpha}^{\prime}\right)<0$. From (3) and (8), we have that $w^{\prime}\left(\tilde{\hat{x}}_{0, \alpha}\right)>0$ if and only if $w^{\prime}\left(\tilde{x}_{0, \alpha}\right)>0$.

Note that for $j=0,1,2$, and $\delta=\alpha, \beta, \gamma$, we have $\tilde{x}_{j, \delta}=x_{j, \delta}$, and $\tilde{\hat{x}}_{j, \delta}=\hat{x}_{j, \delta}$.
If $\tilde{E} / L_{w^{\prime}}^{\prime}$ has good reduction at w^{\prime}, then $w^{\prime}(\beta-\gamma)=0$ and so as before we see that $w^{\prime}\left(x_{j, \delta}\right)>0$ is equivalent to $w^{\prime}\left(\hat{x}_{j, \delta}\right)>0$, for $j=0,1,2$ and $\delta=\alpha, \beta, \gamma$. We then
choose $i_{\alpha}, i_{\beta}, i_{\gamma}$ in the following way. If for a $\delta \in\{\alpha, \beta, \gamma\}$, we have $w\left(x_{j, \delta}\right)>0$ for some j, then we choose $i_{\delta}=j$. Otherwise, we choose $i_{\delta}=2$. This proves the lemma for the potentially good reduction case.

It remains to prove the case where $\tilde{E} / L_{w^{\prime}}^{\prime}$ has multiplicative reduction. By (8), we must have $w^{\prime}(\tilde{\beta}-\tilde{\gamma})>0$. From $\tilde{\hat{Q}}=\tilde{Q}+\tilde{R}$ we have $\tilde{\hat{Q}} \notin \tilde{E}_{0}\left(L_{w^{\prime}}^{\prime}\right)$ if and only if $\tilde{Q} \notin \tilde{E}_{0}\left(L_{w^{\prime}}^{\prime}\right)$. Consequently, we have $w^{\prime}(\tilde{\hat{\zeta}}-\tilde{\beta})>0$ if and only if $w^{\prime}(\tilde{\zeta}-\tilde{\beta})>0$. From (8), we see that $w^{\prime}\left(\tilde{\hat{x}}_{1, \alpha}\right)>0$ if and only if $w^{\prime}\left(\tilde{x}_{1, \alpha}\right)>0$.

Also, the reductions at w^{\prime} of $\tilde{\hat{Q}}^{\prime \prime}$ and $\tilde{Q}^{\prime \prime}$ are the same, and this leads to the equivalence between $w^{\prime}\left(\tilde{\zeta}^{\prime \prime}-\tilde{\beta}\right)<0$ and $w^{\prime}\left(\tilde{\zeta}^{\prime \prime}-\tilde{\beta}\right)<0$. From $(\tilde{\zeta}-\tilde{\beta})\left(\tilde{\zeta}^{\prime \prime}-\tilde{\beta}\right)=$ $(\tilde{\beta}-\tilde{\alpha})(\tilde{\beta}-\tilde{\gamma})$ it follows that $w^{\prime}\left(\tilde{x}_{0, \beta}\right)>0$ if and only if $w^{\prime}\left(\tilde{\hat{x}}_{0, \beta}\right)>0$.

We can use methods similar to the above to show that $w^{\prime}\left(\hat{x}_{j, \delta}\right)>0$ if and only if $w^{\prime}\left(x_{j, \delta}\right)>0$ for $\delta \in\{\alpha, \beta, \gamma\}, j \in\{0,1,2\}$. We then let

$$
i_{\delta}= \begin{cases}j & \text { if } w^{\prime}\left(x_{j, \delta}\right)>0 \\ 2 & \text { if } w^{\prime}\left(x_{0, \delta}\right)=w^{\prime}\left(x_{1, \delta}\right) \leq 0\end{cases}
$$

3.4. Case II For $\underline{x}=\left(x_{0}, x_{1}, x_{2}\right) \in P^{2}(L), w \in M_{L}$, put

$$
m_{w}(x)=\min \left\{w\left(x_{0}\right), w\left(x_{1}\right), w\left(x_{2}\right)\right\}-\max \left\{w\left(x_{0}\right), w\left(x_{1}\right), w\left(x_{2}\right)\right\}
$$

LEMMA 3.5. If $\delta \in\{\alpha, \beta, \gamma\}, P \in \tilde{I}_{\delta}$, and (Q, \underline{x}) is associated to P, then

$$
\sum_{w \in T_{1}} m_{w}(x) \geq-(1 / 2) h_{L}\left(\mathscr{D}_{E / K}\right)
$$

Proof. Without loss of generality, we may assume that

$$
\delta=\alpha, \quad \underline{x}=\left(\frac{\zeta-\alpha}{\alpha-\beta},-\frac{\zeta-\beta}{\alpha-\beta}, 1\right)
$$

Let $Q^{\prime}=\left(\zeta^{\prime}, \tau^{\prime}\right)=Q+D_{0}$ as before. Then (3) implies that

$$
-w(\alpha-\beta) \leq w((\zeta-\alpha) /(\alpha-\beta)) \leq w(\alpha-\gamma)
$$

Similarly, we have

$$
-w(\alpha-\beta) \leq w((\zeta-\beta) /(\alpha-\beta)) \leq w(\beta-\gamma)
$$

If $\max \{w((\zeta-\alpha) /(\alpha-\beta)), w((\zeta-\beta) /(\alpha-\beta)), 0\}>0$, then

$$
\min \{w((\zeta-\alpha) /(\alpha-\beta)), w((\zeta-\beta) /(\alpha-\beta)), 0\}=0
$$

and $m_{w}(\underline{x}) \geq-(1 / 2) w\left(\Delta_{E / K}\right)$.

If $\max \{w((\zeta-\alpha) /(\alpha-\beta)), w((\zeta-\beta) /(\alpha-\beta)), 0\}=0$, then

$$
\min \{w(\zeta-\beta / \alpha-\beta), w(\zeta-\beta / \alpha-\beta), 0\} \leq 0
$$

and $m_{w}(\underline{x}) \geq-(1 / 2) w\left(\Delta_{E / K}\right)$. Therefore,

$$
\sum_{w \in T_{1}} m_{w}(\underline{x}) \geq \sum_{w \in T_{1}}-(1 / 2) w\left(\Delta_{E / K}\right) \geq-(1 / 2) h_{L}\left(\mathscr{D}_{E / K}\right)
$$

Lemma 3.6. If $\delta \in\{\alpha, \beta, \gamma\},(P, Q, \underline{x}) \in I I_{\delta}$, then

$$
\begin{equation*}
\sum_{w \in T \cup T_{2}} m_{w}(x)<-3(1-(1 / 6 C)) h_{L}(x) \tag{9}
\end{equation*}
$$

Proof. Recall that $T_{3}=T \cup T_{1} \cup T_{2}$. Following the proof of [2, Lemma 2] and using the product formula we have

$$
\begin{aligned}
\sum_{w \in T_{3}} & m_{w}(\underline{x}) \\
& =\sum_{w \in T_{3}}\left(\left(w\left(x_{0}\right)+w\left(x_{1}\right)+w\left(x_{2}\right)\right)-3 \max \left\{-w\left(x_{0}\right),-w\left(x_{1}\right),-w\left(x_{2}\right)\right\}\right) \\
& =\sum_{w \in M_{L}}\left(\left(w\left(x_{0}\right)+w\left(x_{1}\right)+w\left(x_{2}\right)\right)-3 \max \left\{-w\left(x_{0}\right),-w\left(x_{1}\right),-w\left(x_{2}\right)\right\}\right) \\
& =-3 h_{L}(\underline{x}) .
\end{aligned}
$$

By Lemma 3.5, we have

$$
\sum_{w \in T \cup T_{2}} m_{w}(\underline{x})-(1 / 2) h_{L}\left(\mathscr{D}_{E / K}\right) \leq \sum_{w \in T \cup T_{2}} m_{w}(\underline{x})+\sum_{w \in T_{1}} m_{w}(\underline{x})=-3 h_{L}(\underline{x})
$$

and therefore,

$$
\sum_{w \in T \cup T_{2}} m_{w}(\underline{x})<-\left(3 h_{L}(\underline{x})-(1 / 2 C) h_{L}(\underline{x})\right)=-3(1-(1 / 6 C)) h_{L}(\underline{x})
$$

The extension L / K depends only on the class of P in $E(K) / 2 E(K)$. For each class \bar{P}_{0} in $E(K) / 2 E(K)$ and for $\delta \in\{\alpha, \beta, \gamma\}$, denote by $I_{\delta, \bar{P}_{0}}$ the set of (P, Q, \underline{x}) in I_{δ} such that $\bar{P}=\bar{P}_{0}$; and by $\tilde{I}_{\delta, \bar{P}_{0}}$ its image in $E\left(\mathscr{O}_{s}\right)$. Every P in $\tilde{I}_{\delta, \bar{P}_{0}}$ determines the same field extension L / K.

The following lemma is the additive form of [2, Lemma 1].

Lemma 3.7. Let B be a real number with $0<B<1$, let Y be an index set of cardinality $q \geq 1$ and put $R(B)=(1-B)^{-1} B^{B /(B-1)}$. Then there exists a set W of cardinality at most $\max \left(1,(2 B)^{-1}\right) R(B)^{q-1}$, consisting of tuples $\left(\Gamma_{j}^{0}\right)_{j \in Y}$ with $\Gamma_{j}^{0} \geq 0$,
$j \in Y$ and $\sum_{j \in Y} \Gamma_{j}^{0}=B$ with the following property: for every set of real $F_{j}, j \in Y$, and real Λ with $F_{j} \leq 0, \forall j \in Y$ and $\sum_{j \in Y} F_{j} \leq \Lambda$ there exists a tuple $\left(\Gamma_{j}\right)_{j \in Y} \in W$ such that $F_{j} \leq \Gamma_{j}^{0} \Lambda$, for all $j \in Y$.

For a real number $0<B<1$, write $B_{1}=B(1-(1 / 6 C))$.

Lemma 3.8. Let B be a real number satisfying $1 / 2 \leq B<1$. For each $\bar{P}_{0} \in$ $E(K) / 2 E(K)$, there exists a set $W_{\vec{P}_{0}}$ of cardinality at most $3^{t+t_{2}} R(B)^{t+t_{2}-1}$, consisting of tuples $\left(i(w)_{w \in T \cup T_{2}},\left(\Gamma_{w}\right)_{w \in T \cup T_{2}}\right)$ with $i(w) \in\{0,1,2\}, \Gamma_{w} \geq 0$ for all $w \in T \cup T_{2}$ and $\sum_{w \in T \cup T_{2}} \Gamma_{w}=B_{1}$ such that $:$ for every $\delta \in\{\alpha, \beta, \gamma\},(P, Q, \underline{x}) \in I I_{\delta, \bar{P}_{0}}$, there is a tuple $\left(i(w)_{w \in T \cup T_{2}},\left(\Gamma_{w}\right)_{w \in T \cup T_{2}}\right)$ in $W_{\bar{P}_{0}}$ such that
(10) $-w\left(x_{i(w)}\right)-\max \left\{-w\left(x_{0}\right),-w\left(x_{1}\right),-w\left(x_{2}\right)\right\} \leq 3 \Gamma_{w} h_{L}(\underline{x}) \quad$ for $w \in T \cup T_{2}$.

Proof. We apply Lemma 3.7. Take $\Lambda=-3(1-(1 / 6 C)) h_{L}(x)$. Let $T \cup T_{2}$ be the index set, set $q=\left|T \cup T_{2}\right|$. For each $w \in T \cup T_{2}$, take $F_{w}=m_{w}(\underline{x})$ and denote $\Gamma_{w}=\Gamma_{w}^{0}(1-(1 / 6 C))$. Then apply the inequality (9). For each (\underline{x}), choose $i(w)$ such that $-w\left(x_{i(w))}=\min \left\{-w\left(x_{0}\right),-w\left(x_{1}\right),-w\left(x_{2}\right)\right\}\right.$. In general, for each $w \in T \cup T_{2}$, there are three choices for $i(w)$.

In Lemma 3.8, for a $(P, Q, \underline{x}) \in I_{\delta, \bar{P}_{0}}$, we can actually extend the tuple $\left(i(w)_{w \in T \cup T_{2}}\right.$, $\left.\left(\Gamma_{w}\right)_{w \in T \cup T_{2}}\right)$ to a tuple $\left(i(w)_{w \in T_{3}},\left(\Gamma_{w}\right)_{w \in T_{3}}\right)$ by taking, for $w \in T_{1}, \Gamma_{w}=0$ and $i(w)$ to be the i_{δ} described in Lemma 3.3 and Lemma 3.4. Then we have

$$
\begin{equation*}
-w\left(x_{i(w)}\right)-\max \left\{-w\left(x_{0}\right),-w\left(x_{1}\right),-w\left(x_{2}\right)\right\} \leq-3 \Gamma_{w} h_{L}(\underline{x}), w \in T_{3} . \tag{11}
\end{equation*}
$$

Note that for $w \in T_{1}$, the choice of i_{w} may depend on (P, Q, \underline{x}).

DEFINITION 3.1. For fixed $\delta \in\{\alpha, \beta, \gamma\}, P_{0} \in E(K)$, two triples (P, Q, \underline{x}), $\left(P^{\prime}, Q^{\prime}, \underline{x}^{\prime}\right)$ in $I I_{\delta, \bar{P}_{0}}$ are equivalent if there is an $R \in 12 E(K)$ such that $Q^{\prime}=$ $Q+R$. They are strictly equivalent if they are equivalent and there is a tuple $\left(i(w)_{w \in T \cup T_{2}},\left(\Gamma_{w}\right)_{w \in T \cup T_{2}}\right)$ in $W_{\tilde{P}_{0}}$ such that both \underline{x} and \underline{x}^{\prime} satisfy (10).

If $w \in T_{1}, w \mid v$ and E / K_{v} is of additive reduction, then $12 E(K) \subset E_{0}\left(K_{v}\right)$. Therefore, by Lemma 3.3 and Lemma 3.4, if (P, Q, \underline{x}) and $\left(P^{\prime}, Q^{\prime}, \underline{x}^{\prime}\right)$ are strictly equivalent they both satisfy (11), for the same extended tuple $\left(i(w)_{w \in T_{3}},\left(\Gamma_{w}\right)_{w \in T_{3}}\right)$.

This proves the following lemma.

Lemma 3.9. Let B be a real number satisfying $1 / 2 \leq B<1$. For each $\delta \in$ $\{\alpha, \beta, \gamma\}, \vec{P}_{0} \in E(K) / 2 E(K)$, and each equivalent class Θ in $I I_{\delta, \bar{P}_{0}}$, there exists a set W_{Θ} of cardinality at most $3^{t+t_{2}} R(B)^{t+t_{2}-1}$, consisting of tuples $\left(i(w)_{w \in T_{3}},\left(\Gamma_{w}\right)_{w \in T_{3}}\right)$
with $i(w) \in\{0,1,2\}, \Gamma_{w} \geq 0$ for all $w \in T_{3}$ and $\sum_{w \in T_{3}} \Gamma_{w}=B_{1}$ such that for every $(P, Q, \underline{x}) \in \Theta$, there exists a tuple $\left(i(w)_{w \in T_{3}},\left(\Gamma_{w}\right)_{w \in T_{3}}\right)$ in W_{Θ} such that

$$
\begin{equation*}
-w\left(x_{i(w)}\right)-\max \left\{-w\left(x_{0}\right),-w\left(x_{1}\right),-w\left(x_{2}\right)\right\} \leq 3 \Gamma_{w} h_{L}(\underline{x}) \text { for } w \in T_{3} \tag{12}
\end{equation*}
$$

Lemma 3.10. For $\delta \in\{\alpha, \beta, \gamma\}$, we have $\left|I I_{\delta}\right| \leq 1080(24)^{r} 8^{2 t} 8^{2 t_{2}}$.

Proof. According to [2, Theorem 2^{\prime}], if $B_{1}=0.846$ then associated to a tuple in W_{Θ}, (11) has at most 10 solutions. We take $C=4$. Then $B=0.846 \cdot 24 / 23 \leq 0.883$. and $R(B) \leq 64 / 3$.

Therefore, each strictly equivalent class in $I_{\delta, \bar{P}_{0}}$ contains at most 10 elements. By Lemma 3.8, there are at most (12) ${ }^{r+2} 3^{t+t_{2}} R(B)^{t+t_{2}-1}$ strictly equivalent classes in $I I_{\delta, \bar{P}_{0}}$. We have $3^{t+t_{2}}(64 / 3)^{t+t_{2}-1}=(3 / 64) 8^{2 t+2 t_{2}}$. Since $I I_{\delta}$ is decomposed into a disjoint union of at most 2^{r+2} subsets of the form $I_{\delta, \bar{P}_{0}}$, there are at most $10 \times 4 \times$ $24^{r} \times 24^{2} \times 3 / 64 \times 8^{2 t+2 t_{2}}$ elements in $I I_{\delta}$.

Let $m=|K(\alpha, \beta, \gamma): k|$. Then $t \leq 4 m s$ and $t_{2} \leq 4 m s_{2}$.
Lemma 3.11. $\left|E\left(\mathscr{O}_{s}\right) \backslash \tilde{I}\right| \leq 810 \cdot 24^{r} \cdot 2^{24 m\left(s+s_{2}\right)}$.
PROOF. If $P \in E\left(\mathscr{O}_{s}\right) \backslash I$, then four choices of signs give at least four elements in $I I_{\alpha} \cup I I_{\beta} \cup I I_{\gamma}$. Therefore, $E\left(\mathscr{O}_{s}\right) \backslash \tilde{I}$ has cardinality not greater than $\left(\left|I I_{\alpha}\right|+\left|I I_{\beta}\right|+\right.$ $\left.\left|I I_{\gamma}\right|\right) / 4$.

Using the above and Lemma 3.2, we prove the following:

THEOREM 3.12. We have

(1) $\left|E\left(\mathscr{O}_{s}\right)\right| \leq 144\left(20 \cdot 10^{5.75}+1\right)^{r}+810 \cdot 24^{r} \cdot 2^{24 m\left(s+s_{2}\right)}$ if $h_{K}\left(\mathscr{D}_{E / K}\right) \leq 24(g-1)$;
(2) $\left|E\left(\mathscr{O}_{s}\right)\right| \leq\left(8 \pi^{2}(g-1)\right)^{2 / 3}\left(20 \cdot 10^{5.5+11.5 g}+1\right)^{r}+810 \cdot 24^{r} \cdot 2^{24 m\left(s+s_{2}\right)}$, if $h_{K}\left(\mathscr{D}_{E / K}<\right.$ $24(g-1)$.

Acknowledgement

W.-C. Chi was supported in part by the National Science Council of Taiwan, NSC91-2115-M-003-006. K.-S. Tan was supported in part by the National Science Council of Taiwan, NSC90-2115-M-002-014.

References

[1] J.-H. Evertse, 'On equations in S-units and the Thue-Mahler equation', Invent. Math. 75 (1984), 561-584.
[2] ———' 'On equations in two S-units over function fields of characteristic 0 ', Acta Arith. 47 (1986), 233-253.
[3] M. Hindry and J. H. Silverman, 'The canonical height and integral points on elliptic curves', Invent. Math. 93 (1988), 419-450.
[4] S. Lang, Elliptic curves: Diophantine analysis (Springer, Berlin, 1978).
[5] R. C. Mason, Diophantine equations over function fields, London Math. Soc. Lecture Note Ser. 96 (Cambridge University Press, Cambridge, 1984).
[6] J. H. Silverman, 'A quantitative version of Siegel's theorem’, J. Reine Angew. Math. 378 (1987), 60-100.
[7] K.-S. Tan, 'A 2-division formula for elliptic curves', preprint, (National Taiwan University, Taipei, 2002).

Department of Mathematics
National Taiwan Normal University
Taipei
Taiwan
e-mail: wchi@math.ntnu.edu.tw

School of Mathematics and Statistics
University of Sydney
NSW 2006
Australia
e-mail: kflai@math.usyd.edu.au

Department of Mathematics

National Taiwan University
Taipei
Taiwan
e-mail: tan@math.ntu.edu.tw

