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Abstract

We prove a new formula for the number of integral points on an elliptic curve over a function field without
assuming that the coefficient field is algebraically closed. This is an improvement on the standard results
of Hindry-Silverman.

2000 Mathematics subject classification: primary 11G05; secondary 14H52.

1. Introduction

Serge Lang has conjectured that on a minimal Weierstrass equation of an elliptic curve
over a number field, the number of integral points should be bounded solely in terms
of the field and the rank of the group of rational points [4, page 140]. Hindry and
Silverman [3] proved an analogue of Lang's conjecture for non-constant elliptic curves
over zero-characteristic one-dimensional function fields. Influenced by the original
work of Mason [5], we use a formula on 2-divison points given by Tan [7] and the
method of Evertse [1, 2] to prove another analogue of Lang's conjecture for these
curves.

Let K be the field of rational functions on an algebraic curve of genus g over the
constant field it of characteristic 0. We do not assume that k is algebraically closed.
Let MK denote the set of all places of K. For a finite subset S of MK, denote by ^s
the ring of 5-integers of K. Consider a non-constant elliptic curve E defined by

(1) y2=x3 + Ax + B, A,Be0s-
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The set of S-integral points of this curve is E(0S) = {P e E(K) :x(P),y(P) e 0S).
Let A = — (4A3 + TIB1) be the discriminant of the equation (1) and @E/K be the
divisor of the minimal discriminant of E/K. Then we have

(2) (A) = 9E,K + 12 £ A, • v,
veMK

for some integers p v , where pv > 0, if v & S. Let or, ft, y be the three roots of
x3 + Ax + B = 0 (in some extension field) and let m be the degree [K(a, p , y) : K]
which is at most 6. Define

51 = {v e MK : v i S, v(A) > 0, pv = 0} and

52 = {v e A/* : w £ 5, A, > 0}.

Denote by s, s\, s2 the cardinality of 5, 5i and S2. Denote the rank of E(K) by r. Let
) be the height of @E/K (see Section 2.1). Put

= J144 if
fl£ I (Sn2(g - I))2/3 if hK(2E,K) < 24(g - 1),

b = J 2 0 10575 + l iffc
£ J20-1055+115" + l if

THEOREM. | £ ( ^ 5 ) | < a £ • (bEy + 810 • 24r • 224m(J+l2).

Let us compare the above theorem with the result of Hindry and Silverman ([3]).
Let

[ l 0 7 1 ifhK{9E/K)>
CE | l07 + 1 2« ifhK{9B,K)<2A(g-\).

THEOREM 1.1 ([3, Theorem 0.6]). Let K be a one-dimensional function field of
characteristic 0 and genus g, and let E/K be a non-constant elliptic curve given by
an S-minimal equation (1). Then \E(0S)\ < ^(CfVTSlY.

First, we note that in our theorem, we do not need to restrict ourselves to the
cases where E is S-minimal. Also, in [3], there is no explicit formula given for the
symbol \S\. Consider the elliptic curve £ defined over AT = Q(r)by Y2 = X*-p(t)X,
where p{t) = tv + 2tl + 2, and / is a large integer. Its discriminant is A = 4p(r)3.
Take 5 = {oo, vp{t)] and R = (x, y) = (— 1, t' — 1). Then R is an S-integral point
of E. The Weil height of y is /, but the size of S is 2. If Proposition 8.2 in [3] is
to be true, then \S\ should not be the cardinality of S which is 2 here. Instead \S\

https://doi.org/10.1017/S1446788700013586 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013586


[3] Integral points on elliptic curves over function fields 199

should be 21 + 1, which is the size of the places of Q(f) sitting over S. But then
we see that there are countably infinitely many cases where our bound is better than
Hindry-Silverman's bound.

Here is the sketch of the proof. We first divide the set of 5-integer points into
two subsets, the first contains points with heights bounded above by a constant which
depends on E, the second contains the remaining points. We bound the cardinality
of the first set by using the counting method from [3] which applies the result of
Mason [5]. For the second set, we associate to an 5-integer point some unit equations
over certain field extension and use the machinery developed by Evertse [1,2].

2. Heights and 2-division points

2.1. Heights Let us fix our convention on the heights on fields. We can consider K
as a finite extension of a rational function field k(t).

Let / be a maximal set of pairwise non-associate irreducible polynomials in k[t].
For £(r) e k(t)*, write £(f) = C n , 6 / rjn"^\ where C € k* and only finitely many of
the integers «,,(£) are non-zero. Put vn(%) = deg(jj)n,,(£). Define deg(u,,) = deg(r/).

If f = £,/&, with £,, fc € k[t], put ««,(!) - degfe) - deg(£,). Also, define
= 1. Then we have the product formula

($) = 0,

where Mkw = {i»oo} U {vn : r\ e /} is the set of valuations on k(t).
Following Evertse [2, Section 1.3], we have on AT a set MK of valuations which

are normalized with respect to Mk(t) and the product formula EueM* v(£), for every
£ e K* also holds. Thus each valuation v e MK is obtained from a rational irreducible
divisor, denoted as [v].

For any v € MK, there is an associated v0 e M*(,) and a positive integer ev such that
v(%) = evv0(%), for every ^ € k(t)*. Let ^ , i(r)m be respectively the completions
of K and k(t). Then the degree of v is defined as follows

The height A, on K is defined by M £ ) = E»6M»
 m a x {° ' -"(?)}. if ? e AT* and

»(0) = 0.
For a divisor <€ = Y.^MK mv[v], put M t f ) = E v e ^ max{0, m j deg(u).

2.2. 2-division points In this section, we quote some results from [7]. All the
statements can be easily checked.
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Let P = (§, n) € E{0,\ Kx = K(a, 0, y) and L =
Fix a choice of square roots, and let

- a = (ys-a + J$- ft) (y% - a - y) •

Then there exists x e L such that the point Q = (f, r) in E(L) satisfies 2Q = P.
Moreover, if Do = (a, 0) e E[2] and Q = (f', r') = Q + Do in £(L), then

(3) (f'-a)(f-a) = (a-0)(a-y).

From this, we see that if T,TU T2 are respectively valuations in ML sitting over
respectively those in 5, Si, S2, and Ti = TUTiUT2, then £ - a, f - 0, f - y are all
T3-units.

Note that if /" is another point in E(K) such that P - /" e 2E(K), then from
the Kummer sequence, both /> and P' determine the same class in Hl(K, E[2]) and,
in particular, they determine the same extension L/K. Therefore, the extension L/K
only depends on the image of P in E(K)/2E(K).

3. The units equation

3.1. The units equation ForP = (£, rj), there are four choices of Q — (£, r)eE(L)
such that 2Q = P. For each such Q, let

A/ = max

An element a in {(£ - a)/(a - /S), (f - /8)/(/8 - y), (f - y)/(a - y)} is called
maximal if hL{o) = M.

Let us write any one of the following equations

as

where 8 6 {a, y3, y}. Put x = (J:0. * I . ^2) and say that (Q, x) is associated with P
(through (8)). We call x_ maximal, if ^0 is maximal. We define
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Then we have hL(x) = hL(x0).
Let C be a constant whose value will be determined latter. Let / be the set consisting

of those (P, Q, x) such that P e E(fis)-, (Q, *) is associated with P, x_ is maximal,
andfct(x)< ChL{9EIK).

For <5 6 {a,fi, y], let IIS be the set consisting of those (P, Q, x) such that
P e E(£?s), (Q,x) is associated with P through (<5), * is maximal, and hL(x) >
ChL(9s/K).

Let 7,1~IS be the image of /, 1IS under the projections / —> E{<7), IIS -
by(P, G,i)i-^ P.

3.2. Case I Suppose that (P, £>> x) e / and Q = (?, r). Then

Let hK (respectively, hL) denote the canonical height of E over K (respectively,
over L).

LEMMA 3.1. If P e I, then hK(P) < (1/3)(1 + 6QhK(9E/K).

PROOF. Let (Q, x) be associated with P. We have

hK(P) = (1/[L : K])hL(P), hK(@E/K)

It suffices to show hL(P) < (4/12)(l + 6QhL(®E/K). This will follow from
hd^j/L) < hd®E/ic), hdP) = 4AL(0, (4) and [3, Proposition 8.3] which says
that hdQ) < (l/12)/iL(r4/A) + l/12hL(9E/L). D

LEMMA 3.2. Let I' be the set of P € E(K) such that

Then I C / ' and E(K)tor C /'. Moreover,

(1) l('l < 144(4(10" 5(1 + 6C))1/2 + l)r, ifhK{9EIK) > 24(^ - 1);
(2) |/ ' | < (87r2(g - l))2/3(4(10n+23«(l +6C))1/2 + l)r, ifhK{2>EIK) < 2A(g - 1).

PROOF. We follow the method used in the proof of [3, Theorem 8.1], where a
counting lemma from [6] is used. Thus we have

/ ' | < \E(K)Wr\
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where hK{E) = (l/12)hK(9E/K), and

if hK(E)>2(g-l),
j if hK(E)< 2(g-l).

Also,

(144 if

^ ~ 1 ( 8 2 ( ^ - I))2/3 if hK(E)<2(g-l).

3.3. Local calculations Let v e S{ and #„ be the completion of K at v. Then (1)
is a local minimal Weierstrass equation of E/Kv. Let Lw be the completion of L at w
sitting over t>. For P = (£, 77) e E(KV), Q = (£, r) e £(£„,) such that 2 Q = P, let

(5) xo./, = (f - a)/(0 - y), JC,,̂  = -(? - y)/{P - y),
xo.y = (? - y)/(Y - a), Xi,r = -(S-a)/(y-a), x2,r =

Suppose that E//sfv has multiplicative reduction at u. Then exactly one element among
the set {a — ft, f$ — y, y — a] has positive valuation and the others are local units.
We assume that v(p - y) > 0 and v(a - ft) = v(y - a) = 0. Let Q = (£', r') =
Q + (a, 0). Then (3) implies that iu(f - a) = 10 (f - a) = 0.

Similarly, if <2" = (£", T") = G + (/S, 0), then from tf-pW-p) = (p-a)(p-y),
we get w(i; — P) < w(P — y). We also have u>(f — y) < w(P — y). Therefore,

= max{w(xo,a), w(xha), w(x2,a)},

, w(xhfi), w(xu)},

), w(xhY), w(x2,y)}.

We have proved the following lemma.

LEMMA 3.3. Suppose that v € S\ and w is a place of L above v. If E/Kv has
multiplicative reduction, then there exist ia, ip, iy e (0, 1, 2), which depend on E/Kv

only such that for every P e E(KV), we have

w(xia,a) = ma\{w(xo,a), w(xha), w(x2,a)},

) , w(x2,p)},

) , w(x2iy)}.

For P = (g,fj) e E(KV), Q = (f , f) € E(LW) such that 2Q = P, define
Xj.a,Xj^,Xj_y,j = 0, 1, 2, as in (5). We denote by EO{KV) (respectively, £,(£„)) the
set of elements in E(KV) whose reduction at v are smooth (respectively, the identity).

https://doi.org/10.1017/S1446788700013586 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013586


[7] Integral points on elliptic curves over function fields 203

LEMMA 3.4. Suppose v e Si, E/Kv has additive reduction at v and w is a place
of L sitting over v. For P e E(KV), Q 6 E(LW) such that 2Q = P, there exist
ia, ip, iy e {0, 1, 2), which depends on E/Kv and Q and such that if P e E(KV),
Q e E(LW) with 2Q = P and Q - Qe EO(KV), then

iaji) = max{w(xo,a), w(xUa), w(x2,a)),

w(xhf)) = max{w(xo,(,), w(xhfi), w(x2,p)},

w(xiry) = max{w(xo,y), w(xhy), w(x2,r)}.

PROOF. Put/? = Q-Q = (f0, r0). Letabemin{w(ct-P), w(P-y), w(y-a)}.
Then a > 0. Let L'w, be an extension of Lm such that

min{u;'(a - £), w'(P - y), w'(y - a)} = 2m

for some positive integer m. Then E/L'w, has semi-stable reduction at w'. In fact,
if nw, is a prime element of L'w,, then the substitution

transforms (1) into

(7) E:y2 = (x-

where a = 0, ji = jz~?m(f} — a), y = n~}m(y — a) are all local integers and at least
two elements in the set {a — ft, fi — y, y — a] are local units. We assume that

(8) w'(a - P) = 0 = w'(a - y).

Denote the transformation of R (respectively, Q, Do := (a, 0), Dx := (ft, 0),

D2 •= (y, 0), Q := Q + Do, & := Q + Du Q" •= Q + Di) under (6) by
R = (fo.fo) (respectively, Q = ( | , f ) , Do = (a,0), D, = (/3, 0), D2 = (y,0),
Q = (f, f ) = Q + Do, G" = ( r , T") = G + O,, G'" = (f"«", T7") = G_+ D2).
We introduce similar notations for Q. Because R e EO(KV), we have R e E\{L'W).
Since Q = Q + Do + R = Q + R, the reductions at w' of G' and Q are the same.
In particular, the reduction of Q is the identity if and only if that of Q is identity.
Consequently, we have that w'(S'Q a) < Oif and only if w'(x'Oa) < 0. From (3) and (8),
we have that w'(xOa) > 0 if and only if w'(xOa) > 0.

Note that for; = 0, 1, 2, and 8 = a, p, y, we have xJtS = xjiS, and xjiS = xJiS-
If E/L'w, has good reduction at w', then w'(fi — y) = 0 and so as before we see that

w'(Xj;,{) > 0 is equivalent to W'(XJ,S) > 0, fory = 0, 1, 2 and 8 = a, ft, y. We then
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choose ia, ip, iY in the following way. If for a S € {a, P, y], we have w(xJS) > 0 for
some j , then we choose i4 = 7 . Otherwise, we choose i4 = 2. This proves the lemma
for the potentially good reduction case.

It remains to prove the case where E/L'w, has multiplicative reduction. By (8), we
must have w'{fi - y) > 0. From £ = Q + R we have Q <£ EO(L'W,) if and only if
Q i EO(L'W,). Consequently, we have u/(£ - P) > 0 if and only if u/(£ - P) > 0.
From (8), we see that w'(xiia) > 0 if and only if w'(x\a) > 0.

Also, the reductions at w' of Q" and Q' are the same, and this leads to the
equivalence between u/(£" - )8) < 0 and u/(£" - /3) < 0. From (f - /3)(£" - fi) =
0 - a)(y3 - y) it follows that w'(x0Ji) > 0 if and only if u/(£0,/i) > 0.

We can use methods similar to the above to show that W'(XJ_S) > 0 if and only if
w'(xj,s) > 0 for & e (a, /3, y},j e {0, 1,2}. We then let

. _ J; if tfOcj,,) > 0;
^ ~ \2 if U;'(JCW) = w'(xhS) < 0. n

3.4. Case II For^ = (xo,xux2) e P2(L), w e ML, put

mw(x) = min{u;(*o), w(xi), w(x2)} - ma\{w(x0), w(xi), w(x2)}.

LEMMA 3.5. IfS e {a,£, / } , P 6 I~h, and(Q,x) is associated to P, then

PROOF. Without loss of generality, we may assume that

/ £ - « S-p \
8= a, x_=[ - , a ' 1 ) '

\a-P a-p )
Let Q = (£', x')= Q + Do as before. Then (3) implies that

-w(a -P)< ttf((f - a)/(a - P)) < w(a - y).
Similarly, we have

-w(a -P)< w((£ - p)/(a - p)) < w(P - y).

tf - a) I (a - p)), w{(£ - p)/{a - P)), 0} > 0, then

min{u;((^ - «)/(« - P)), u;((f - P)/(a - p)), 0} = 0

andmw(x) > -(l/2)w(AE/K) .
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Jfmax{w{(£ - «)/(<* - 0)), u>((? - B)/(a - B)), 0} = 0, then

min{u; (£ - 0/a - B),«;(?- /3/a - 0) , 0} < 0

^ y > — (l/2)w(AE/K). Therefore,

weT, weTi

LEMMA 3.6. //<5 e {a, 0, y}, (P, Q, x) e lh, then

(9)

PROOF. Recall that 73 = T U 7, U T2. Following the proof of [2, Lemma 2] and
using the product formula we have

= ^ ((w(x0) + w(Xi) + w(x2)) - 3ma\{-w(x0), - 1

((w(x0) + w(xi) + w(x2)) - 3max{-w(x0), -w(xi), -w(x2)})

= -3hL(x).

By Lemma 3.5, we have

- (l/2)hL(®E/K) <

and therefore,

mw(x) < -(3hL(x) - (l/2QhL(x)) = -3(1 - (l/6Q)hL(x). •

The extension L/K depends only on the class of P in E(K)/2E(K). For each
class Fo in E(K)/2E(K) and for S e {a, 0, y], denote by IISj0 the set of (P, Q, x)
in IIS such that P = Po\ and by flSp0 its image in E{&s). Every P in //j j0 determines
the same field extension L/K.

The following lemma is the additive form of [2, Lemma 1].

LEMMA 3.7. Let B be a real number with 0 < B < 1, let Y be an index set of
cardinality q > 1 and put R(B) = (1 - B)-xBBI{B-l\ Then there exists a set W of
cardinality at most max(l, (2B)'l)R(B)l'-\ consisting of tuples (r°)jeY with V° > 0,
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j e Y and 5 ^ ; e y P? = B with the following property: for every set of real Fj, j e Y,
and real A with Fj < 0, V; e Y and J2jer Fj - A there exists a mPie (ry W e W
such that Fj < T* A., for all j € Y.

For a real number 0 < B < 1, write Bx = 5(1 - (1/6C)).

LEMMA 3.8. Let B be a real number satisfying 1/2 < B < 1. For each ~P0 e
E(K)/2E(K), there exists a set Wp0 of cardinality at most 3f+'2fl(fi)'+'2', consisting
of tuples (i(w)wsTuT2, (rw)weTuT2) with i(w) € {0, 1, 2}, rw > Ofor all w e T U T2
and HwzTun r>" = #i such tnat •' for every S e {a, 0, y), (P, Q, x) e H6ja, there is
a tuple (i(w)w£VjT2, (rw)weTUT2) in Wp0 such that

(10) —w(Xi{w)) - max{—w(x0), —w(xi), — w(x2)} < 3rwhL(x) for w e TU T2.

PROOF. We apply Lemma 3.7. Take A = - 3 ( 1 - (l/6C))hL(x). Let T U T2 be
the index set, set q = \T U T%\. For each w e T U T2, take Fw = mw(x) and denote
rw = T° (1 - (1/6C)). Then apply the inequality (9). For each (x), choose i(w) such
that — w(xi(w)) = rrnn{—w(x0), —w(xi), — w(x2)}. In general, for each w e T U T2,
there are three choices for i(u>). •

In Lemma 3.8, for a (P, Q,x) e Ihja, we can actually extend the tuple 0(W)W€TUT2,

(Tw)weTuT2) to a tuple (i(w)weT,, (rw)weTj) by taking, for w e Tu Vw = 0 and i(w) to
be the is described in Lemma 3.3 and Lemma 3.4. Then we have

(11) —w(xi{w)) - max{-io(x0), -w(xi), -w(x2)} < -3rwhL(x), w e T3.

Note that for w e Tu the choice of /„, may depend on (P, Q, x).

DEHNITION3.1. For fixed S e {a, p, y], Po e E{K), two triples (P, Q,x),
(/", Q,x[) in IlSP-o are equivalent if there is an R e 12E(K) such that Q =
Q + R. They are strictly equivalent if they are equivalent and there is a tuple
(i(w)WzTUT2, (^w)weTuT2) in Wp0 such that both £ and *' satisfy (10).

If w e Tuw\v and E/Kv is of additive reduction, then \2E{K) c EO(KV).
Therefore, by Lemma 3.3 and Lemma 3.4, if (P, Q, x) and (/", Q, x') are strictly
equivalent they both satisfy (11), for the same extended tuple (i(w)w€Ti, (rw)weTi)-

This proves the following lemma.

LEMMA 3.9. Let B be a real number satisfying 1/2 < B < 1. For each S e
{a, fi, y], Po e E(K)/2E(K), and each equivalent class 0 in Hsj0, there exists a
set W@ of cardinality at most 3'+'2R(B)'+'2', consisting of tuples (i(w)weTi, (rw)w€T})
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with i(w) 6 {0, 1, 2], Fw > Ofor all w € T3 and J2W<=T3
 r<« = B i such 'hat for every

(P, Q, x) € 0 , there exists a tuple (i(w)weT,, (Tw)weT)) in W@ such that

(12) -w(xi(w)) - max{-u;(;co), -w(* i ) , -w(*2)} < 3rwhL(x) for w € 73.

LEMMA 3.10. For S e {a, 0, y], we have \IIS\ < 1080 (24)r 82' 82'2.

PROOF. According to [2, Theorem 2'], if B\ = 0.846 then associated to a tuple in
W0, (11) has at most 10 solutions. We take C = 4. Then B = 0.846 • 24/23 < 0.883.
and R(B) < 64/3.

Therefore, each strictly equivalent class in IIS j 0 contains at most 10 elements.
By Lemma 3.8, there are at most (12)r+23'+'2/?(B)'+<2~1 strictly equivalent classes
in IIsJo. We have 3'+'2(64/3)'+'2-1 = (3/64) 82'+2'2. Since IIS is decomposed into a
disjoint union of at most 2 r + 2 subsets of the form //j,p0, there are at most 10 x 4 x
24' x 242 x 3/64 x 82/+2'2 elements in IIS. •

Letm = | ^ ( a , f$, y) : jfc|. Then t < 4ms and t2 < Ams2.

LEMMA 3.11. \E(ff,) \ I\ < 810 • 24r • 224m(i+J2).

PROOF. If P 6 E{0S) \ I, then four choices of signs give at least four elements in
//„ U lip U IIY. Therefore, E(0S) \ I has cardinality not greater than ( |//J + |//^| +
\IIy\)/4. D

Using the above and Lemma 3.2, we prove the following:

THEOREM 3.12. We have

(1) \E(0S)\ < 144(20- 10575 + l ) r + 810-24r-224m( j+ i2 ) ifhK(9E/K) < 24(g - 1);
(2) \E(0S)\ < (Sn2(g-l))2'3(20-l0y5+n-5s+iy+&10-2Ar-2Um(s+si\ifhK(9E/K <

24(g - 1).
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