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Abstract

K. D. Magill has investigated the semigroup generated by the idempotent continuous mappings of a
topological space into itself and examined whether this semigroup determines the space to within
homeomorphism. By analogy with this (and related work of Bridget Bos Baird) we now consider the
semigroup generated by nilpotent continuous partial mappings of a space into itself.
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1. Introduction

In [2] Howie investigated the semigroup generated by all the idempotents in
&~(X), the full transformation semigroup on a set X, and subsequently in [4]
Magill considered the corresponding subsemigroup of S( X), the semigroup of all
continuous self-maps of a topological space X.

Certain transformation semigroups contain a "zero" and hence "nilpotents":
for example, the semigroup S(X) of all partial one-to-one transformations of a
set X contains the "empty mapping" D as a zero as well as maps / for which
fm = • for some m > 2, and in [7] we characterised the elements of J{X) that
can be written as a product (under composition) of such "nilpotents". In this
paper we commence by investigating the extent to which the semigroup NC{X)
generated by all continuous nilpotents whose domains are closed subsets of a
topological space X determines the underlying space to within a homeomor-
phism; we also consider the same question for various subsemigroups of NC(X)
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128 R. P. Sullivan [2]

(this work is analogous to that of Baird [1] and Magill [4]) and remark that the
problem of characterising the elements of NC(X) appears insurmountable. How-
ever, when we specialise to the closed unit interval / in Section 3 and define a
nilpotent to be any continuous map f: I -* I such that fm = 0, the zero constant
map, we obtain a more complete answer: namely that mlpotents in this sense can
be characterised in terms of an order property (using the natural order on / ) , and
the product of any two nilpotents is again nilpotent.

This paper was completed while visiting Professor J. M. Howie at the Univer-
sity of St. Andrews, Scotland. We thank him and his colleagues for their generous
hospitality during the visit.

2. Partial nilpotents

If A" is a set and / , g £ £P(X\ the semigroup (under composition) of all partial
transformations of X, then dom(/g) = domg n g~\domf). This simple fact
will enable us to define various semigroups 5 of continuous partial maps by
demanding that the domain of each element of S possess some topological
property. We say f&0>(X) is nilpotent if fm = • for some m > 1 and that /
has index m if fm = • and fm~l * D. Clearly, if / e &>(X) is nilpotent in this
sense, then dom / and ran / are proper subsets of X.

Our first aim is to show that if Nc( X) denotes the semigroup generated (under
composition) by all continuous nilpotents whose domains are closed subsets of a
topological space X, then NC(X) determines all regular 7\ spaces to within
homeomorphism (recall that a space X is regular if for each closed Q c X and
a £ Q, there exist disjoint open U, V c X such that Q c U and a e V; and X is
7\ if and only if the points of X are closed).

We shall need the following result: it is analogous to Lemma 2.5 in [4].

LEMMA 1. If X is a regular 7\ space, then {f~1(x): x £ l , / e NC(X)} is a
basis for the closed subsets of X.

PROOF. Suppose Q is a non-empty closed subset of X, and let a £ Q. Since X
is regular, there exist disjoint open subsets U, V of X such that Q c U and
a e V. Define a partial map fa by putting dom/a = X\ V (a closed subset of X
containing U) and fa(x) = a for all x £ V. Then fa is a continuous nilpotent of
index 2, and it is easy to check that Q = C\{f~\a): a e X\Q}.
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[3] Continuous nilpotents on topological spaces 129

We now recall a result from [6]: if X is an arbitrary set, any subsemigroup 5 of

&*( X) is briefly referred to as a transformation semigroup and S is said to cover X

if for all x & X, there exists an idempotent constant in S with range equal to

THEOREM 1. If S is a transformation semigroup covering an arbitrary set X, and

if 4> is an automorphism of S, then there exists a permutation g: X -» X such that

The following theorem can be proven in a manner identical with that of

Theorem 1 in [6], so we omit the details.

THEOREM 2. / / S, T are transformation semigroups covering arbitrary sets X, Y,

respectively, and if <f>: S -* T is an isomorphism, then there exists a unique bijection

h: X -> Y such that <j>(f) = hfh~x for all f"e 5 . Moreover, if <j>: S -» T is an

isomorphism, and if iA e S for some A c X, then <?>(',<) = *-h(Ay where h: X —> Y

is the bijection associated with <|>.

As in [6] we let Ax denote the constant map with domain A and range {x};

moreover, if A = {a}, we abbreviate Ax to ax. With this notation, we now

observe that if A" is a 7\ space, then Nc( X) contains all the maps xx for x e X

(since xx = yx ° xy for y + x), and so NC(X) covers X. Thus we may conclude

from Theorem 2 that if X, Y are 7\ spaces and <j>: NC(X) -» NC(Y) is an

isomorphism, then there exists a bijection h: X -* Y such that <H/ ) = hfh~l for

all / e Nc( X). This establishes part (i) of the next result. The proof of parts (ii)

and (iii) is akin to that of Lemma 2.8 [4], so we omit the details (in fact the only

difference lies in the use of the injective constants xx rather than the total

constants Xx).

LEMMA 2. If X, Y are 7\ spaces and <j> an isomorphism from NC(X) onto NC(Y),
then there exists a bijection h: X -* Ysuch that

(i) * ( / ) = hfh~l for eachf& NC(X),
(ii) h(f-\x)) = ${fy\h(x)) for each f<=Nc(X) andx e X, and
(iii) h-\g-\y)) = (4>-\g))-\h-\y)) for each ge NC(Y) andy e Y.

From Lemmas 1 and 2, we readily deduce

THEOREM 3. / / X, Y are regular Tx spaces, then <>: NC(X) -> NC(Y) is an

isomorphism if and only if there exists a homeomorphism h: X -* Y such that

</>(/) = hfli-1 for allfeNc(X).
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We now consider the subsemigroup NCO(X) of NC(X) generated by all continu-
ous maps whose domains are closed-and-open (clopen) subsets of a topological
space X, and ask whether NCO(X) determines X to within a homeomorphism. In
fact, it is easy to show that if X is 0-dimensional (that is, has a basis consisting of
clopen subsets of X) and also Tx, then {f~\x): x e X, f e NC0(X)} is a basis
for the closed subsets of X (compare Lemma 2.5 [4] and Lemma 1 above).
Moreover, if a e X and b,c & X\a (an open subset of X), then there exist
clopen subsets Hx and H2 of X\a such that b e H1 and c e H2. Thus,
E — Hx U H2 is a proper clopen subset of X containing b and c, and if
rf G X \ £, then £fc = (X\ E)b ° Ed, a product of nilpotents each with index 2.
In other words, if X is a 0-dimensional 7\ space, then, for each x j £ l , iVC(,(X)
contains an idempotent constant whose domain contains {x, y}, and whose range
equals {x}.

The last remark guarantees that if X, Y are 0-dimensional 7\ spaces, then
NCO(X) and NCO(Y) cover jf and Y, respectively, and so, by Theorem 2, if <f>:
NCO(X) -* NCO(Y) is an isomorphism, then there exists a bijection h: X -* Y such
that <>(/) = ftflt'1 for all / e NC0(X). To prove that in this situation we have

h(f-\x)) = <t>(f)-\h(x))

for all x e X, we use the discussion of the last paragraph in showing the
equivalence of the following statements (compare with [4], page 239):

y e h(f-\x)).
y = h(z) and f(z) = JC.
j = /z(z) and / « Az — Ax for some A containing {x, z}.
y = h(z) and *(/).<#»(^z) = * ( ^ J .
j ' = /i(z) and <X/)°J5A(z) = 5A(x) for some 5 containing {/i(x), h{z)}.
y = h{z) and

That is, when X, Y are 0-dimensional 7\ spaces, we can establish a result for
isomorphisms between NCO(X) and NCO(Y) that is entirely similar to Lemma 2
above. We put all this together in

THEOREM 4. If X, Y are 0-dimensional 7\ spaces, then <j>: NCO(X) -* NC0(Y) is
an isomorphism if and only if there exists a homeomorphism h: X -* Y such that

Our next aim is to provide conditions under which NIF(X), the semigroup
generated by all nilpotent homeomorphisms whose domains are closed subsets of
a topological space X, determines X to within a homeomorphism of X. However,
we first note that in Theorem 2, when we restrict our attention to inverse
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subsemigroups of J{ X), the semigroup of all injective partial transformations of
an arbitrary set X, we obtain Theorem 3.1 of [1]. Since a particular example of an
inverse semigroup covering X is the semigroup IF(X) of all homeomorphisms
whose domains are closed subsets of a 7^ space X, we obtain the next result
directly from Theorem 2 (compare with Corollary 3.5 in [1]).

COROLLARY 1. If X, Y are Tx spaces, then <j>: IF(X) -» IF(Y) is an isomor-
phism if and only if there exists a homeomorphism h: X —* Ysuch that <t>(f) — hfh*1

forallf(=IF(X).

Since NIF(X) is also an inverse semigroup and since, when X is 7\, NIF(X)
covers X, we readily obtain (using results analogous to Lemmas 1 and 2 to show
that h is a homeomorphism)

COROLLARY 2. If X, Yare regular 7\ spaces, then </>: NIF(X) -> NIF(Y) is an
isomorphism if and only if there exists a homeomorphism h: X —* Y such that

hfh-1 for all ft NIF(X).

We now prove a result similar to Corollary 2.9 in [4].

THEOREM 5. If X, Y are regular 7\ spaces, then any isomorphism from NIF(X)
onto NIF(Y) has a unique extension to an isomorphism from IF(X) onto IF(Y).

PROOF. Suppose <j> is an isomorphism from NIF(X) onto NIF(Y). By Corollary
2 there is a homeomorphism h: X -* Y such that <j>(f) = hfh~1 for every
/ G NIF(X). We extend <j> to an isomorphism <#>: IF(X) -» IF(Y) by defining
<K/) = hfh'1 for each / e IF(X); the extension is unique since any isomorphism
i// from IF{X) onto IF(Y) that agrees with <j> on NIF(X) must also agree with $
on {xx: x G X), and this suffices to prove that \f/ = 4>.

REMARK 1. As above, it is possible to show that the semigroup generated by all
nilpotent homeomorphisms whose domains are clopen subsets of a O-dimensional
Tx space determines that space to within a homeomorphism.

REMARK 2. In general, if X is an arbitrary set and / e &>(X) is nilpotent, then
hfh~l e ^ ( X ) is nilpotent for every permutation h: X -* Y. With this in mind, it
readily follows that if X is a regular Tx space, then the automorphism group of
NC(X) is isomorphic to the group of all homeomorphisms from X into X
(compare with Corollary 2.10 [4]). Similar statements could also be made about
the automorphism groups of NIF(X) and NCO(X) for suitable spaces X.
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In [7] we characterised products of nilpotents in ^{X) as those f &J{X) such
that | Z \ r a n / | > rank/ and | ^ \ d o m / | > rank/, where rank/ is defined to
be |ran/|. Unfortunately, this latter condition does not suffice to ensure that if
/ G IF(X), and / satisfies the condition, then / e NIF(X). One problem entails
deciding when, for / e IF(X), there exists a closed set Q c X\domf and a
(nilpotent) homeomorphism g: dom / -* Q (compare the proof of Theorem 3 in
[7]). For example, suppose that X = A U B is a disjoint union of two sets with
cardinal equal to | X\ > So. If we take X, A and • as the open subsets of X, then
NIF(X) = {•} since IF(X) = (t^, tB,D}, and, although tB satisfies the above-
mentioned condition, it cannot be written as a product of non-zero nilpotents in
IF(X) (since there are none!). For a more interesting example, let X be an infinte
set and fix a proper subset Yof X for which \Y\ = \X\. We topologise X with the
smallest (7\) topology under which Y and all finite subsets of X are closed. In
this event, Q Q X is closed if and only if Q is finite or Q = Y U F for some finite
F c l . Suppose iY-fi ' " ' /„> a product of nilpotents in IF(X). Then 7 c
dom/,, and since /„ e IF(X), we deduce that dom/, = Y U E and ran/, = 7 U
F for some finite sets E, F c X. However, since /„ can be regarded as a nilpotent
element of J(Z), where Z = Y U £ U F, we must have |Z \dom/ , | = | F \ £ |
> rank/n = \X\, which is plainly a contradiction.

Of course if we sufficiently narrow our vision, then everything will work. Let us
say that a space X is bonded if for every proper closed A c X, there exists some
closed B Q X\A such that |2?| = \A\. Rather surprisingly, such spaces exist in
abundance. For example, suppose X, Y are sets such that \X\ > \Y\ > So, and let
us topologise X by saying that A c X is closed if and only if \A\ < \Y\. Clearly,
X with this topology is a bonded space, and for such X we shall write X = Xk

where k = |y| and call X a bonded k-space. (We thank Dr. Peter Jupp for giving
us this example.) However, not every bonded space is an Xk for some cardinal k:
for instance, any countably infinite set X, topologised by saying that A c X is
closed if and only if A is finite, is a bonded space and does not equal any Xk by
definition.

Every bonded A>space is Tx (obviously) and normal: if A, B c Xk are disjoint
closed sets then \X\(A U B)\ = |*|, and we can write X\(AU B) = Pi) Q,
where 1̂ 1 = \Q\ = \X\. In this event, P U A and Q U B are both open in Xk and
contain A and B, respectively. However, not every normal space is a bonded
A>space: any set X with the discrete topology is normal and cannot be an Xk for
any cardinal k < \X\.

Bonded A>spaces also have the property: if A, B c Xk are closed with the same
cardinal, and / : A -> B is any bijection, then / is a homeomorphism. For, if
C c Xk is closed, then f(A n C) = B n /(C) and, by virtue of the cardinality
condition, both /(C) and 5 n /(C) are closed in A :̂ that is, / is a closed map.
Likewise, if D Q Xk is closed, then f~\B n D) = A n f\D), where /"H-D) is
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closed. (Note that this is true because / is injective; thus, / is a continuous map.)
Finally, observe that since both |ran/| and |dom/| are less than k and k < \X\,
we have |X\ ran/ | = \X\ dom/| = \X\: that is, by [7] Theorem 3, / is a product
of nilpotents in IF(Xk); in fact, since (A"\ran/) n (X\domf) has cardinal
equal to \X\, it is easy to see that / is actually a product of just two nilpotents
each with index 2.

3. Total nilpotents

As noted by Kuratowski [3, pp. 285-286], "every O-dimensional space is
homeomorphic to a subspace of the Cantor discontinuum", and "every topologi-
cal space with cardinal less than c (the continuum) is O-dimensional". Since
therefore we hae to some extent been working in Section 2 with spaces of cardinal
less than c, it seems natural now to focus the light on spaces with cardinal c. In
particular, we here study nilpotents defined on / = [0,1], the closed unit interval.
For this context it seems inappropriate to consider "partial" nilpotents. Instead,
we let So(/) denote the semigroup (under composition) of all continuous self-maps
of / that fix 0, and observe that S0(I) contains as "zero" the mapping 0:
[0,1] -> 0. In this section we characterise the "nilpotents" of S0(I) and show that
the product of any two nilpotents is again nilpotent.

An / G So(/) will be called nilpotent if fm =f° ••• ° f = 0 for some m > 1;
we say / has index m if fm = 0 but fm~l * 0, and we let N(I) denote the set of
all nilpotents in S0(I).

Clearly nilpotents in this sense are never surjective; to say more about them, we
shall use (without mention) the fact that real-valued continuous functions map
closed intervals to (possibly degenerate) closed intervals and possess the Inter-
mediate Value Property.

LEMMA 3. IffeN(I) and f* 0, then there exist a > 0 and b < 1 such that
/([0, a]) = 0 andf(I) = [0, b]. Moreover, if af = sup{a e /: /([0, a]) = 0}, then
f(x) < x for all x > a^.

PROOF. Suppose fm+l = 0 and fm * 0. Then fm: [0,1] -> [u, v] for some
u,v e I and, since /m(/(0)) = 0, we deduce that 0 e [u, v]. Hence u * v, and in
fact, u = 0; since fm+1 = 0, we obtain /([0, v]) = 0 for v > 0, and consequently
/ : [0,1] -» [0, b] for some b < 1.

Now, the set [a e /: /([0, a]) = 0} is non-empty and bounded above by 1;
hence, af exists and it equals 1 if and only if / = 0. If x > af > 0, then
/([0, x]) = [0, Cj] for some cx e I. If x > cv then f(x) < cx < x, and the result
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follows (note that f{x) =£ x since / is nilpotent and x ¥= 0); on the other hand, if
x < cv then /([0, cj) = [0, c2], and again, if x > c2, the result follows, while if
x < c2, we repeat the argument. This process must stop, since otherwise we
obtain a sequence {cn} for which 0 < x < cn and /"([0,x]) = [0,cn] for all n,
contradicting the nilpotency of / .

We note for future reference that the above proof actually shows a little more:
namely, if / e N(I) and x > a}, then /([0, x]) = [0, c], where c < x.

LEMMA 4. / / / e So(7), a«</ */ ffere exista a > 0 SMC/I tfza* /([0, a]) = 0
f(x) < x for all x > a, then f is nilpotent.

PROOF. If a — 1, then / = 0, so we suppose that a < 1 and let f(x{) be a
global maximum of / on [a, 1]. Then a < x1 (otherwise / = 0, contrary to
supposition), and / ( x j < xv If f(xx) < a, then / 2 = 0 since / : [0,1] -» [0, x j .
So we suppose that a < f(xx) and let f(x2) be a global maximum of / on
[a,/(*!)]• T h e n /([«,/(*i)D = [0,/(*2)], and /(x2) < x2*f(Xl). If/(x2) < a,
then we obtain / 3 = 0. So we suppose a <f(x2) and repeat the argument. In this
fashion we can generate a strictly descending sequence {xn} bounded below by a:

Suppose j = limxM. Then >> > a: if j ; = a, we have a < lim/(xn) = f(y) = 0,
contradicting a > 0; while if j> > a, we have y = lim/(A:n) = f(y), contradicting
the fact that f{x) < x whenever x > a. Hence, the foregoing process must stop in
a finite number of steps and when it does we deduce that / is nilpotent.

We now use the characterisation of nilpotents presented in Lemmas 3 and 4 to
show that N(I) is a subsemigroup of S0(I).

THEOREM 6. / / / , g e S0(I) are nilpotent, thenfg is also.

PROOF. If either / or g equals 0 then fg = 0. So, we suppose that / ¥= 0 and
g =t 0, in which case 0 < ag < 1 and /g([0, ag]) = 0. Let J = s u p { z e 7 :
/g([0> 2]) = 0}. Then 0 < ag < d < 1, and d = 1 if and only if /g = 0. If d < 1
and d < x then ag < x and g(x) < x by Lemma 3; if g(x) < af then /g(x) = 0,
contradicting the choice of d. Hence af < g(x) and we obtain fg{x) < g(x) < x,
as required.

The automorphisms of various subsemigroups of S(I) have been determined in
[5] and [8]. We now provide evidence to suggest that every automorphism <f> of
N(I) is "inner": that is, there exists a homeomorphism k: I -» / such that

= kfk'1 for all / e # ( / ) (compare Remark 2 above). For this purpose we
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let E(a, b) denote the set of all / e N(I) for which af= a and /([0,1]) = [0, b].

The next result provides a useful characterisation of the sets E(a, a) that readily

shows they are preserved by automorphisms of N(I).

LEMMA 5. / / / e N(I) then f^E(a,a) for some a e / if and only iffgf = 0 for
allgeN(I).

PROOF. Suppose / e E(a, a) and let g e E(b, c). If a < b, then g/ = 0 and if
b < a then g([0, a]) = [0, d] where </ < a and so /g/ = 0. Conversely, suppose
fgf = 0 for all g e # ( / ) where / e E(a, b) and / * 0. If a < b then /(*) # 0 for
some f where a < t < b; we then let 0 < .s < a and define a map g via: g(x) = 0
for 0 < x < a, g(x) = s(x - a)/(t - a) for a < x < t, g(x) = t for b < x < 1,
and

, x /(x - t) + s(b - x) , ,
g(x) = -i ^3 -^ ^ for ? < x < 6.

Then g3 = 0 and if /(w) = fc then fgf(w) ¥= 0; a dual argument for the case
6 < a concludes the proof.

To prove the next result we shall use the obvious fact that whenever 0 < a, b, c
< 1, we have: a < b if and only if E(b, c) • E(a, a) = 0.

LEMMA 6. Suppose </> « an automorphism of N(I). Then there is a strictly
increasing function k: I -* I such that <j>(E(a, b)) = E(k(a), k{b)) for all a, b
with 0 < a, b < 1. /

PROOF. For 0 < a,b < 1 we define k(a) = b if and only if <t>(E(a,a)) =
E(b, b). From the above remark, x = y if and only if E(x, x) • E(y, y) =
E(y, y) • E(x,x) = 0: this and Lemma 5 can be used to show that & is a
well-defined permutation of I\ {0,1}. We put k(0) = 0 and A:(l) = 1, and again
use the remark to deduce that k is strictly increasing.
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