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On the 2-Parallel Versions of Links
Jae-Ho Chang, Sang Youl Lee and Chan-Young Park

Abstract. In this paper, we show that the absolute value of the signature of the 2-parallel version of a link is
less than or equal to the nullity of it and show that the signature, nullity, and Minkowski units of the 2-parallel
version of a certain class of links are always equal to 0, 2, and 1 respectively.

1 Introduction

The Artin’s braid group Bn on n strings has a standard presentation as a group with genera-
tors σ1, σ2, . . . , σn−1 and relations σiσi+1σi = σi+1σiσi+1 (1 ≤ i ≤ n− 2) and σiσ j = σ jσi

(|i− j| ≥ 2). The generator σi and its inverse σ−1
i are represented as the oriented diagrams:

· · · · · · · · · · · ·

1 i i + 1 n

σi

1 i i + 1 n

σ−1
i

By (b, n) we mean a braid b in Bn. The closure of a braid (b, n), denoted by (b, n)∧ or
simply by b∧, is the link obtained by joining the n points at the top of the braid (b, n) to the
corresponding n points at the bottom without further crossings as in Figure 1.1. It is well
known that any oriented link is ambient isotopic to the closure of some braid [1].

In [8], J. Murakami defined the parallel versions of links in S3 and showed that it is
possible to distinguish links by using polynomial invariants of their parallel versions though
these invariants coincide for the links themselves. So there is a motivation to study parallel
versions of knots or links and their invariants.

In this paper, we define an integral matrix B(β) for a braid word β and give the Goeritz

matrix of the 2-parallel version
(
φ(2)

n (β), 2n
)∧

of a closed braid (β, n)∧ in terms of the
matrix B(β). Using this we give a necessary condition for a given link � to be the 2-parallel
version of a knot or link by means of the signature and the nullity of �. In fact we prove
that if a link � of µ-components is the 2-parallel version of a knot or link, then |σ(�)| ≤
n(�) ≤ µ. This confirms that a certain class of links cannot be obtained by the 2-parallel
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β

A

β∧ = the closure of β

Figure 1.1

versions of knots or links. We also show that the signature σ(�(2)), the nullity n(�(2)), and
the Minkowski units C p(�(2)) for any prime integer p, including p = ∞, of the 2-parallel
version �(2) of a knot � such that � has a braid representative β with det

(
B(β)
)
�= 0 are

always equal to 0, 2, and 1 respectively.

2 Matrices for Braid Words

Let β = σ
τi1
i1
σ
τi2
i2
· · ·σ

τim
im

(τik = ±1) be a braid word in Bn, which involves all of the gener-
ators σ1, . . . , σn−1. For each i ∈ {1, 2, . . . , n − 1}, let si denote the number of the letters
σ±1

i occurring in the word β. Let us rewrite the si occurrence of the generators σ±1
i as

στ (i,1)
(i,1) , σ

τ (i,2)
(i,2) , . . . , σ

τ (i,si )
(i,si )

keeping the order from left to right, where τ (i, k) denotes the ex-
ponent of the generator σi in β which constitutes σ(i,k) and s1 + s2 + · · · + sn−1 = m. The
resulting word is denoted by β̄. Of course β̄ and β represent the same braid in Bn.

For each i = 1, 2, . . . , n − 1, we denote W̄ i
p(p = 1, 2, . . . , si) to be the subword of β̄

whose initial letter is στ (i,p)
(i,p) and terminal letter is στ (i,p+1)

(i,p+1) cyclically (here, si + 1 is identified

with 1). Define W i
p to be the word obtained from W̄ i

p by replacing all στ (k,q)
(k,q) (k �= i − 1, i,

i + 1) by the empty word.

Definition 2.1 Let β = σ
τi1
i1
σ
τi2
i2
· · ·σ

τim
im

(τik = ±1) be a braid word in Bn, which involves

all of the generators σ1, . . . , σn−1 and β̄, W i
p as above.

Let B(β) = (Bi j)1≤i, j≤n−1 be the blockwise tridiagonal m × m integral matrix defined
as follows: Each diagonal block Bii(1 ≤ i ≤ n−1) of B(β) is defined to be the si× si matrix
given by Bii =

(
2τ (i, 1)

)
for si = 1 and

Bii =




τ (i, 1) 0 0 · · · 0 τ (i, 1)
τ (i, 2) τ (i, 2) 0 · · · 0 0

0 τ (i, 3) τ (i, 3) · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · τ (i, si − 1) 0
0 0 0 · · · τ (i, si) τ (i, si)




(si ≥ 2).
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For i �= j, the block Bi j is the si × s j matrix defined by

Bi j =

{
Osi×s j , si × s j zero matrix if |i − j| �= 1

(bi j
pq)1≤p≤si ;1≤q≤s j if |i − j| = 1,

where

bi j
pq =

{
0 if στ (i,p)

(i,p) is not in the word W j
q

−τ (i, p) if στ (i,p)
(i,p) is in the word W j

q .

Example 2.2 Let β1 = σ1σ2 · · ·σn ∈ Bn+1 (n ≥ 1) and let β2 = σ
n
1 ∈ B2 (n > 1). Then

β̄1 = σ(1,1)σ(2,1) · · ·σ(n,1) and β̄2 = σ(1,1)σ(1,2) · · ·σ(1,n). Thus

B(β1) =




2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −1
0 0 0 · · · −1 2



, B(β2) =




1 0 0 · · · 0 1
1 1 0 · · · 0 0
0 1 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 1 1



.

Example 2.3 Let β = σ−1
1 σ3σ3σ3σ2σ1σ1σ

−1
3 σ2 ∈ B4. The rewriting word of β is

β̄ = σ−1
(1,1)σ(3,1)σ(3,2)σ(3,3)σ(2,1)σ(1,2)σ(1,3)σ

−1
(3,4)σ(2,2)

and

W 1
1 = σ

−1
(1,1)σ(2,1)σ(1,2), W 1

2 = σ(1,2)σ(1,3), W 1
3 = σ(1,3)σ(2,2)σ

−1
(1,1),

W 2
1 = σ(2,1)σ(1,2)σ(1,3)σ

−1
(3,4)σ(2,2), W 2

2 = σ(2,2)σ
−1
(1,1)σ(3,1)σ(3,2)σ(3,3)σ(2,1),

W 3
1 = σ(3,1)σ(3,2), W 3

2 = σ(3,2)σ(3,3), W 3
3 = σ(3,3)σ(2,1)σ

−1
(3,4), W 3

4 = σ
−1
(3,4)σ(2,2)σ(3,1).

Hence the matrix B(β) is given by

B(β) =




−1 0 −1 0 1
1 1 0 −1 0
0 1 1 −1 0
−1 0 0 1 1 0 0 −1 0
0 0 −1 1 1 0 0 0 −1

0 −1 1 0 0 1
0 −1 1 1 0 0
0 −1 0 1 1 0
1 0 0 0 −1 −1



.

Remark 2.4 A braid b in Bn can be represented by many equivalent braid words β. That
is, B(β) depends on the braid word representation β of the braid b. In particular, by in-
serting extra unnecessary crossings, we can always arrange that β satisfies the hypotheses
of Definition 2.1.
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c

η(c) = +1

c

η(c) = −1

c

Type I

c

Type II

Figure 3.1

3 The Signature and Nullity

Let � be an oriented link in S3 and let L be its link diagram in the plane R2. Colour the
regions of R2−L alternately black and white. Denote the white regions by W0,W1, . . . ,Wk

(we always take the unbounded region to be white and denote it by W0). Assign an inci-
dence number η(c) = ±1 to each vertex c of L and define a vertex c to be of type I or type II
as indicated in Figure 3.1.

Let G ′(L) be the symmetric integral matrix defined by G ′(L) = (gi j)0≤i, j≤k, where gi j =
−
∑

c∈CL(Wi ,W j )
η(c) for i �= j and gii =

∑
c∈CL(Wi )

η(c), here CL(Wi) = {c | c is a vertex

incident to Wi} and CL(Wi,W j) = {c | c is a vertex incident to both Wi and W j}. The
principal minor G(L) = (gi j)1≤i, j≤k of G ′(L) is called the Goeritz matrix of � associated to
L [2], [3], [6].

Let CII(L) = {c1, c2, . . . , cp} denote the set of all crossings of type II in L and let A(L) =
diag
(
−η(c1),−η(c2), . . . ,−η(cp)

)
be the p× p diagonal matrix. Then the modified Goeritz

matrix H(L) of � associated to L is defined as the block sum H(L) = G(L) ⊕ A(L) ⊕ B(L),
where B(L) is the

(
β0(L)− 1

)
×
(
β0(L)− 1

)
zero matrix and β0(L) denotes the number of

connected components of L. The signature σ(�) and the nullity n(�) of an oriented link � in
S3 [9] are given by the formulas: σ(�) = σ

(
H(L)

)
and n(�) = n

(
H(L)

)
+1, where σ

(
H(L)

)
and n

(
H(L)

)
denote the signature and the nullity of the matrix H(L) respectively [11].

Let Bn be Artin’s (geometric) braid group on n-strings and let φ(2)
n : Bn → B2n be the

group homomorphism defined by, for each 1 ≤ i ≤ n− 1,

φ(2)
n (σi) = σ

−2
2i−1σ2iσ2i+1σ2i−1σ2i.

Let (β1, n1) and (β2, n2) be two braids. If the closures (β1, n1)∧ and (β2, n2)∧ are am-
bient isotopic, then the links

(
φ(2)

n1
(β1), 2n1

)∧
and
(
φ(2)

n2
(β2), 2n2

)∧
are ambient isotopic.

Let � be an oriented link in S3 of µ-components and let (β, n) ∈ Bn be a braid represen-
tative of the link �. Then the 2-parallel version �(2) of � is defined to be the closed braid(
φ(2)

n (β), 2n
)∧

[8].

Theorem 3.1 Let � be a nonsplittable oriented link in S3 and let β = σ
τi1
i1
σ
τi2
i2
· · ·σ

τim
im

(τik = ±1) be a braid word in Bn representing the link � and β̄ as defined in Section 2. Then

the Goeritz matrix of the 2-parallel version �(2) of � associated to
(
φ(2)

n (β), 2n
)∧

is given by the
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W i−1
q +1

W i
p−1

−1

W i+1
q′+1

W i
p

−1

Si
p W i−1

q −1

W i
p−1

+1

W i+1
q′−1

W i
p

+1

Si
p

Figure 3.2

(2m + 1)× (2m + 1) integral matrix of the form:

G(β) =


 W B(β)t O

B(β) Om×m [r]t

O [r] en−1


 ,

where [r] =
(

0 0 · · · 0 − τ (n − 1, 1) − τ (n − 1, 2) · · · − τ (n − 1, sn−1)
)

, en−1 =∑sn−1

i=1 τ (n− 1, i), and W is an m×m symmetric integral matrix.

Proof Let L(2) be the closure of the braid word
(
φ(2)

n (β), 2n
)
. Colour the regions of R2−L(2)

alternately black and white so that the unbounded region is a white region, denoted by W 0
1 ,

and hence the region which meets the braid axis A is also a white region, denoted by W n
1 .

For i = 1, 2, . . . , n − 1, each letter στ (i,p)
(i,p) (p = 1, 2, . . . , si) in β̄ creates one white region

in L(2), denoted by Si
p. All the other white regions in R2 − L(2) can be identified with the

words {W i
p | 1 ≤ i ≤ n − 1, 1 ≤ p ≤ si} in such a way that the vertices incident to the

boundary of the white regions are the letters in the word W i
p and we denote them by the

same notation W i
p.

3.1.1

For 1 ≤ i ≤ n − 1, 0 ≤ j ≤ n, let Xi j = (xi j
pq)1≤p≤si ;1≤q≤s j , where s0 = sn = 1,

xi j
pq = −

∑
c∈CL(2) (Si

p ,W
j

q ) η(c). Note that the white region Si
p (i = 1, 2, . . . , n− 1) is incident

to only four regions W i
p−1, W i

p, W i−1
q , and W i+1

q ′ for some q, q ′ at one and only one vertex
of incidence number−τ (i, p),−τ (i, p), τ (i, p), and τ (i, p), respectively (cf. Figure 3.2).

It is clear that Xi j = Osi×s j for |i − j| ≥ 2, X10 =
(
−τ (1, 1) − τ (1, 2) · · · − τ (1, s1)

)t
,

and Xn−1n =
(
−τ (n− 1, 1) − τ (n− 1, 2) · · · − τ (n− 1, sn−1)

)t
.

For 1 ≤ i, j ≤ n− 1 with |i − j| = 1,

xi j
pq = −

∑
c∈CL(2) (Si

p ,W
j

q )

η(c)

=

{
0 if στ (i,p)

(i,p) is not in the word W j
q

−τ (i, p) if στ (i,p)
(i,p) is in the word W j

q

= bi j
pq.
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Thus Xi j = (xi j
pq)1≤p≤si ;1≤q≤s j = (bi j

pq)1≤p≤si ;1≤q≤s j = Bi j (1 ≤ i, j ≤ n− 1).
For i = j (1 ≤ i ≤ n−1), if si = 1, then Si

1 is incident to W i
1 at two vertices of incidence

number −τ (i, 1). So Xii = (xii
11) =

(
2τ (i, 1)

)
. If si ≥ 2, then xii

pq = τ (i, p) for q = p

or p − 1 (if p = 1, q = 1 or si), otherwise, all xii
pq = 0. Hence Xii = (xii

pq)1≤p,q≤si = Bii

(i = 1, 2, . . . , n− 1).

3.1.2

For 1 ≤ i, j ≤ n− 1, let Si j = (si j
pq)1≤p≤si ;1≤q≤s j , where

si j
pq =

{
−
∑

c∈CL(2) (Si
p ,S

j
q) η(c) if i �= j or p �= q∑

c∈CL(2) (Si
p) η(c) if i = j and p = q.

It is obvious that Si j = Osi×s j (1 ≤ i, j ≤ n− 1).
Now the matrix G ′(L(2)) associated to L(2) is given by

G ′(L(2)) =

(
W Xt

X S

)
,

where X = (Xi j)1≤i≤n−1,0≤ j≤n, S = (Si j)1≤i, j≤n−1, and W = (Wi j)0≤i, j≤n, where Wi j =

(wi j
pq)1≤p≤si ;1≤q≤s j , here s0 = sn = 1 and

wi j
pq =

{
−
∑

c∈CL(2) (W i
p ,W

j
q ) η(c) if i �= j or p �= q∑

c∈CL(2) (W i
p) η(c) if i = j and p = q.

By (3.1.1), (3.1.2) and by deleting the first row and the first column of U G ′(L(2))U t ,
where U is a permutation matrix, we obtain the result.

Corollary 3.2 Let � be a nonsplittable oriented link in S3 and let β = σ
τi1
i1
σ
τi2
i2
· · ·σ

τim
im

(τik = ±1) be a braid word in Bn representing the link �. Then the modified Goeritz ma-

trix of the 2-parallel version of �(2) of � associated to
(
φ(2)

n (β), 2n
)∧

is given by

H(β) = G(β)⊕ A(β),

where G(β) is the Goeritz matrix of �(2) given in Theorem 3.1 and A(β) =
diag(τi1 , τi2 , . . . , τim )⊗ I2 ⊕ diag(−τi1 ,−τi2 , . . . ,−τim )⊗ I2.

Proof Let L(2) =
(
φ(2)

n (β), 2n
)∧

. Then the modified Goeritz matrix �(2) associated to L(2)

is H(L(2)) = G(L(2)) ⊕ A(L(2)) ⊕ B(L(2)). By Theorem 3.1, G(L(2)) = G(β). Now each
vertex corresponding to σ∓2

2i−1 of φ(2)
n (σ±1

i ) is a vertex of type II of incidence number ∓1
and each letter of the braid word β produces two vertices of type II in L(2) whose incidence
numbers are equal to the exponent of the letter. So A(L(2)) = diag(τi1 , τi2 , . . . , τim )⊗ I2 ⊕
diag(−τi1 ,−τi2 , . . . ,−τim )⊗ I2 = A(β). Since the diagram L(2) is connected, B(L(2)) is the
empty matrix. The result follows.
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Corollary 3.3 Let k be a knot in S3 and let k(2) be the 2-parallel version of k. Then σ(k(2)) =
0 and n(k(2)) = 2.

Proof Let u2 be the trivial link of 2-components contained in an unknotted solid torus T
in S3 such that each component is parallel to the core of T and let f : T → S3 be a faithful
embedding such that f (T) is a tubular neighborhood of the knot k. Then it follows that the
link f (u2) in S3 is the 2-parallel version k(2) of the knot k. By Theorem 12 [3], we obtain
that σ(k(2)) = σ(u2) = 0. Now let β = σ

τi1
i1
σ
τi2
i2
. . . σ

τim
im

(τik = ±1) be a braid word in

Bn representing the knot k and let H(β) be the modified Goeritz matrix of k(2) given by
Corollary 3.2. Then we have that σ

(
H(β)

)
= 0. Since H(β) is a (6m + 1) × (6m + 1)

matrix and (6m + 1) is an odd integer, the nullity n
(
H(β)

)
must be odd. By Lemma 6.1

[9], n(k(2)) ≤ 2. Thus n
(
H(β)

)
= 1 and so n(k(2)) = 2.

The following Example 3.4 shows that in general Corollary 3.3 is not true for the 2-
parallel versions of links.

Example 3.4 Let β = σ1σ1. Then the closure � = β∧ of β is the Hopf link and
B(β) =

(
1 1
1 1

)
. Now the modified Goeritz matrix H(β) of the 2-parallel version �(2) =

(σ−2
1 σ2σ3σ1σ2σ

−2
1 σ2σ3σ1σ2)∧ of � is the matrix:

H(β) =



−4 0 1 1 0
0 −4 1 1 0
1 1 0 0 −1
1 1 0 0 −1
0 0 −1 −1 2


⊕ I4 ⊕−I4.

Hence n
(
B(β)
)
= 1, σ(�(2)) = σ

(
H(β)

)
= −1, and n(�(2)) = n

(
H(β)

)
+ 1 = 3. On the

other hand, σ(�) = n(�) = 1. Thus by Corollary 3.3, the Hopf link is not the 2-parallel
version of any knot.

Theorem 3.5 Let � be a nonsplittable oriented link in S3 of µ-components and let �(2) be the
2-parallel version of �. Let β be a braid word representing the link �. Then

(1) 0 ≤ n(B(β)) ≤ µ and

(i) If n
(
B(β)
)
= 0, then 1 ≤ n(�(2)) ≤ 2.

(ii) If n
(
B(β)
)
= µ, then µ ≤ n(�(2)) ≤ 2µ.

(iii) If 1 ≤ n
(
B(β)
)
≤ µ− 1, then n

(
B(β)
)
≤ n(�(2)) ≤ 2

(
n
(
B(β)
)

+ 1
)

.

In particular, we have, in all cases, n
(
B(β)
)
≤ n(�(2)).

(2) If n
(
B(β)
)
= 0, then 0 ≤ |σ(�(2))| ≤ n(�(2)) ≤ 2 and if n

(
B(β)
)
�= 0, then 0 ≤

|σ(�(2))| ≤ n
(
B(β)
)
≤ n(�(2)) ≤ 2µ.

Proof Let β = σ
τi1
i1
σ
τi2
i2
· · ·σ

τim
im

(τik = ±1) be a braid word in Bn representing the link �.

It follows from Corollary 3.2 that n(�(2)) = n
(
H(β)

)
+ 1 = n

(
G(β)

)
+ n
(
A(β)
)

+ 1 and
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σ(�(2)) = σ
(
H(β)

)
= σ
(
G(β)

)
+ σ
(
A(β)
)
. Since n

(
A(β)
)
= σ
(
A(β)
)
= 0, n(�(2)) =

n
(
G(β)

)
+ 1 and σ(�(2)) = σ

(
G(β)

)
.

Now we suppose that the matrix B(β) has the rank r(0 ≤ r ≤ m), i.e., n
(
B(β)
)
= m− r.

Then there are unimodular rational matrices U and V satisfying UB(β)V =
(

S O
O O

)
, where

S is a nonsingular r × r rational matrix. Let P = V t ⊕U ⊕ (1). Then P is an unimodular
rational matrix, det(P) = ±1, and

PG(β)Pt =


 V tWV

(
UB(β)V

)t
O

UB(β)V O U [r]t

O [r]U t en−1


 .

Let us write V tWV =
(

E1 Et
2

E2 E3

)
and [r]U t = (X1 X2), where E1 is an r × r symmetric

matrix, E3 is an (m − r)× (m− r) symmetric matrix, X1 is an 1× r row matrix, and X2 is
an 1× (m− r) row matrix. Let Q be the unimodular rational matrix defined by

Q =




Ir O O O O
O O Ir O O
O Im−r −E2S−1 O O

−X1(S−1)t O X1(S−1)t E1S−1 O 1
O O O Im−r O


 .

Denote M = Q
(
PG(β)Pt

)
Qt . Then

M =

(
E1 St

S O

)
⊕


 E3 −E2S−1Xt

1 O
(−E2S−1Xt

1)t en−1 + X1(S−1)t E1S−1Xt
1 X2

O Xt
2 O


 .

Notice that the signature and the nullity of the matrix
(

E1 St

S O

)
are zero.

3.5.1

If m = r, i.e., n
(
B(β)
)
= 0, then S = B(β)(U = V = Im) and so the matrix E3 and X2 in

M are the empty matrix. Hence

M =

(
W B(β)t

B(β) O

)
⊕
(

en−1 + [r]
(

B(β)−1
)t

W B(β)−1[r]t
)
.

Thus σ(M) = 0 or ±1 according as [r]
(
B(β)−1

)t
W B(β)−1[r]t ) is equal to −en−1 or

not. If σ(M) = 0, then n(M) = 1 and so n(�(2)) = 2. If σ(M) = ±1, then n(M) = 0 and
so n(�(2)) = 1. Thus 1 ≤ n(�(2)) ≤ 2 and |σ(�(2))| ≤ n(�(2)) ≤ 2.

3.5.2

If X2 = O, then it is obvious that m− r ≤ n(M) ≤ 2(m− r) + 1 and |σ(M)| ≤ m− r + 1.

Since n(�(2)) = n(M) + 1, n
(
B(β)
)

+ 1 ≤ n(�(2)) ≤ 2
(

n
(
B(β)
)

+ 1
)

. Since n(�(2)) ≤ 2µ

[9, Lemma 6.1], 0 ≤ n
(
B(β)
)
≤ µ−1. On the other hand, |σ(�(2))| = |σ(M)| ≤ n

(
B(β)
)

+
1 ≤ n(�(2)) ≤ 2µ.
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3.5.3

If X2 �= O, then n
(
B(β)
)
≥ 1 and there exists an unimodular rational matrix R and

a(�= 0) ∈ Q such that

RMRt =

(
E1 St

S O

)
⊕


E3 O O

O 0 a
O a 0


⊕ Om−r−1.

So m − r − 1 ≤ n(M) ≤ 2(m − r) − 1 and |σ(M)| = |σ(E3)| ≤ m − r. Hence
n
(
B(β)
)
≤ n(�(2)) ≤ 2n

(
B(β)
)

and 1 ≤ n
(
B(β)
)
≤ µ. Furthermore, |σ(�(2))| =

|σ(M)| ≤ n
(
B(β)
)
≤ n(�(2)) ≤ 2µ. Combining (3.5.1), (3.5.2) and (3.5.3), we obtain

the result.

Corollary 3.6 Let � be a nonsplittable oriented link in S3 of µ-components and let �(2) be the
2-parallel version of �. Let β be a braid word representing �.

(1) If n
(
B(β)
)
> 1, then∆�(2) (−1) = 0, where∆�(2) (t) is the reduced Alexander polynomial

of �(2).
(2) If n

(
B(β)
)
= 0, then

(i) n(�(2)) = 1 if and only if∆�(2) (−1) �= 0 if and only if |σ(�(2))| = 1.

(ii) n(�(2)) = 2 if and only if∆�(2) (−1) = 0 if and only if σ(�(2)) = 0.

(3) If n
(
B(β)
)
= 1, then

(i) n(�(2)) = 1 or 3 if and only if |σ(�(2))| = 1.

(ii) n(�(2)) = 2 or 4 if and only if |σ(�(2))| ∈ {0, 2}.

Proof (1) It follows from (4.9) in [9] that n(�(2)) = 1 if and only if ∆�(2) (−1) �= 0. By
Theorem 3.5(1), n

(
B(β)
)
≤ n(�(2)) and so n(�(2)) > 1. Thus∆�(2) (−1) = 0.

(2) If n
(
B(β)
)
= 0, then n(�(2)) = 1 or 2. By (3.5.1), we have that∆�(2) (−1) �= 0 if and

only if n(�(2)) = 1 if and only if σ(�(2)) = ±1. Also∆�(2) (−1) = 0 if and only if n(�(2)) = 2
if and only if σ(�(2)) = 0.

(3) If n
(
B(β)
)
= 1, then 1 ≤ n(�(2)) ≤ 4 and the matrix E3 and X2 in M, in the proof of

Theorem 3.5, are 1× 1 matrices. So M is equal to the matrix of the form: for a, b, c, d ∈ Q ,

M =

(
E1 St

S O

)
⊕ N, where N =


a b 0

b c d
0 d 0


 .

Hence if n(�(2)) = 1, then a, d �= 0 and so σ(M) = ±1, i.e., σ(�(2)) = ±1. Also if
n(�(2)) = 3, then rank(N) = 1 and so σ(M) = ±1, i.e., σ(�(2)) = ±1. Conversely, if
σ(�(2)) = ±1, then rank(N) = 1 or 3. So n(M) = 0 or 2, i.e., n(�(2)) = 1 or 3. The case (ii)
follows from the fact that σ(M) = 0 or 2 if and only if rank(N) = 0 or 2.

Corollary 3.7 No torus link T(n, q) (n, q > 1) with n = q or 2q ≤ n is the 2-parallel version
of a knot or link.
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Proof Let T(n, q) be the torus link of type (n, q) and let d be the greatest common divisor
of n and q (n, q > 1). Then T(n, q) is a link of d-components. By Theorem 5.2 [4] we have
that |σ

(
T(n, q)

)
| > d for any n, q > 1 with n = q(�= 2) or 2q ≤ n. Since n

(
T(n, q)

)
≤ d,

the result follows from Theorem 3.5(2) and Example 3.4 for n = q = 2.

4 The Minkowski Units

Two integral matrices A1 and A2 are said to be R-equivalent if they can be transformed
into each other by a finite number of the following two types of transformations and their
inverses:

Q1 : A→ RARt , where R is a nonsingular rational matrix,
Q2 : A→ A⊕

(
0 1
1 0

)
.

Any n×n nonzero symmetric rational matrix A can be transformed by Q1 into a matrix
of the form: (

B O
O O

)
,

where B is a nonsingular matrix. In particular, if A is an integral matrix, then B may be an
integral matrix. The matrix B is called a nonsingular matrix associated to A.

Let A be an n×n symmetric integral matrix of rank r and B a nonsingular integral matrix
associated to A. Then there is a sequence B1,B2, . . . ,Br , called the σ-series, of principal
minors of B such that

(1) Bi is of order i and is a principal minor of Bi+1,
(2) No consecutive matrices Bi and Bi+1 are both singular (i = 1, 2, . . . , r − 1).

Let us denote Di = det(Bi). Then for any prime integer p, we define [5]

cp(B) = (−1,−Dr)p

r−1∏
i=1

(Di ,−Di+1)p,

where (a, b)p denotes the Hilbert symbol. If Di+1 = 0, then (Di ,−Di+1)p(Di+1,−Di+2)p

is interpreted to be (Di ,−h)p(h,−Di+2)p, h being an arbitrary nonzero integer. Note that
cp(B) is independent of the choice of σ-series of B.

Definition 4.1 Let B be an r × r nonsingular integral matrix. Then the Minkowski unit
C p(B) for B is defined as follows: for any odd prime integer p,

C p(B) = cp(B)
(

det(B), p
)α

p
and C2(B) = c2(B)(−1)λ,

where α denotes the exponent of p occurring in det(B) and

λ =
[ r

4

]
+
{

1 +
[ r

2

]} (d + 1)

2
+

(d2 − 1)m

8
,

where [ ] denotes the Gaussian symbol, m the exponent of 2 occurring in det(B), and
d = 2−m det(B).

Finally, for p = ∞, C∞(B) =
∏

C p(B), where the product extends over all prime
integers p.
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Remark 4.2 Let ν denote the number of odd primes of the form 4s + 3 occurring with
odd powers in the prime factor decomposition of det(B), then C∞(B) = (−1)γ , where
γ = [σ(B)−2ν

2 ] + [σ(B)−2ν
4 ] [10].

Let A be a symmetric integral matrix and let B be a nonsingular matrix associated to A.
Then we define δ(A) to be the square free part of | det(B)| and the Minkowski units C p(A)
of A to be C p(B) for any prime integer p, including p =∞. Now let � be an oriented link in
S3 and let L be a link diagram of �. Let H(L) be the modified Goeritz matrix of � associated
to L. Then δ(H(L)) is an invariant of the link type �, denoted by δ(�), and the Minkowski
units C p

(
H(L)

)
for any prime integer p, including p = ∞, are invariants of the link type

�, denoted by C p(�), which is equal to the Minkowski units for knots or links defined by
K. Murasugi [7], [10].

Theorem 4.3 Let � be a nonsplittable link of µ-components in S3 and let �(2) be the 2-parallel
version of �. If n(�(2)) = 2µ and � has a braid representative β such that n

(
B(β)
)
= µ − 1.

Then

(1) σ(�(2)) = 0.
(2) δ(�(2)) = 1.
(3) C p(�(2)) = 1 for any prime integer p, including p =∞.

Proof Let β = σ
τi1
i1
σ
τi2
i2
· · ·σ

τim
im

(τik = ±1) be a braid word in Bn representing the link �

with n
(
B(β)
)
= µ − 1. By Corollary 3.2, the modified Goeritz matrix of �(2) associated to

the closure of the braid word
(
φ(2)

n (β), 2n
)

is given by H(β) = G(β) ⊕ A(β). It is easy to
see that A(β) = J(I2m ⊕−I2m) Jt for some permutation matrix J.

If n(�(2)) = 2µ, then the matrix M = QPG(β)Pt Qt in the proof of Theorem 3.5 becomes
M =

(
E1 St

S O

)
⊕O2µ−1, where S is a nonsingular (m−µ+ 1)× (m−µ+ 1) rational matrix.

So σ(�(2)) = σ
(
H(β)

)
= σ(M) + σ(I2m ⊕−I2m) = 0.

Now we define R =
(

1
2 I+ 1

4 E1
1
2 I− 1

4 E1
1
2 S − 1

2 S

)
⊕ I2µ−1. Then R is a nonsingular and M =

R(2Im−µ+1 ⊕ −2Im−µ+1 ⊕ O2µ−1)Rt . Consequently, the diagonal matrix D = (2Im−µ+1 ⊕
−2Im−µ+1) ⊕ (I2m ⊕ −I2m) is a nonsingular matrix associated to H(β). Since | det(D)| =
22(m−µ+1), δ(�(2)) = 1.

To prove (3) it is sufficient to show that C p(D) = 1 for any prime integer p, including
p = ∞. For each i = 1, 2, . . . , q (q = 2(3m − µ + 1)), define Bi = diag(d1, d2, . . . , di),
where dk(1 ≤ k ≤ i) is the (k, k)-diagonal entry of D and let Di = det(Bi). Then the
sequence B1,B2, . . . ,Bq is a σ-series of D and Di = ±2ai (ai ∈ N, 1 ≤ i ≤ q). By using the
properties of the Hilbert symbol [5, p. 27], cp(D) is expressed as a product of finite number
of (−1,−1)p and (−1, 2)p.

If p is an odd prime, then (−1,−1)p = (−1, 2)p = 1 and the exponentα of p occurring
in det(D) = 22(m−µ+1) is zero. Hence C p(D) = cp(D)

(
det(D), p

)α
p
= 1.

If p = 2, then (−1,−1)2 = −1, (−1, 2)2 = 1 and so

C2(D) = c2(D)(−1)λ =

{
(−1)6m−2µ+2 if m− µ + 1 is odd

(−1)6m−2µ+4 if m− µ + 1 is even.

https://doi.org/10.4153/CMB-2000-022-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2000-022-7


156 Jae-Ho Chang, Sang Youl Lee and Chan-Young Park

Thus C2(D) = 1.
Finally, since the signature σ(D) of D and the number ν of all odd primes of the form

4s + 3 occurring with odd powers in the prime factor decomposition of det(D) =
(−1)3m−µ+122(m−µ+1) are both zero, C∞(D) = (−1)γ = (−1)0 = 1 due to Remark 4.2.
This completes the proof.

Remark 4.4 Let k be a knot in S3 and let k(2) be the 2-parallel version of k. By Corol-
lary 3.3, n(k(2)) = 2. If k has a braid representative β such that det

(
B(β)
)
�= 0, it follows

from Theorem 4.3 that δ(k(2)) = 1 and C p(k(2)) = 1 for any prime integer p, including
p =∞.

On the other hand, K. Murasugi [9], [10] showed that if � is a slice link, then σ(�) = 0,
δ(�) = 1 and C p(�) = 1 for any prime integer p, including p =∞. Therefore Theorem 4.3
gives us the question: Is the 2-parallel version of a knot which has a braid representative β
such that det

(
B(β)
)
�= 0 a slice link? For the case of links, this is not true in general (cf.

Example 3.4 and Corollary 3.6).
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