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INTRODUCTION.

In the following paper, the determination of Green's function,
for spaces bounded by surfaces of the cylindrical and spherical polar
systems, is effected by what is believed to be a novel process, in
which are utilised the properties of cylindrical and spherical
harmonics, regarded as functions of their parameters.

The functions considered are the cylindrical harmonic

(AeKZ + Be " KZ)Bn(Kp) (Ccosm<

and the spherical harmonic

(Ar" + Br—-1)S"(c

p, z, <f> and r, 6, <j> being the cylindrical and spherical coordinates of
a point in space. Here, as is known, Bm(Kp) or S™(cos0) can be
so chosen that the function in which it occurs as a factor is a
potential function, that is, satisfies Laplace's equation, y'2V = 0.

Taking S,"'(cos0) for example, S must satisfy a certain well-
known differential equation of the second order, in which /i = cos#
is the independent variable. In this order of procedure the para-
meters n, m, the degree and rank of the harmonic, occupy the place
of constants, and the nature of the functionality of S, as depending
on n, m, does not come into question. I t is, however, possible to
define two solutions, in general independent, of the equation for S,
which are, for a given JJ., continuous and indeed holomorphic
functions of the complex variables m and n. For most applications,
it is sufficient to regard one only of the parameters as variable; the
other, along with the geometrical variable /*, is for the moment
constant. Then, supposing for example that //., m are given, the
properties of holomorphic function of n we have to consider are
chiefly those relating to the distribution of the zeros, and the nature
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of the singularity at infinity. The importance of these questions
has in special cases lung been recognised. Thus, for instance,
Laplace's investigation of an approximate formula for the Legendre's
coefficient of high order, clearly essentially belongs to the theory of
the zonal harmonic as a function of its degree.

Of the Bessel functions, a similar view may be taken. We
define two solutions of Bessel's equation, Jm(Kp), Gm(xp); as functions
of the factor K, the properties of these solutions are well known ;
as functions of the rank m, they have received little consideration,
although they possess many simple and elegant properties, which
may be usefully applied in various problems of physical mathematics.

The first part of the paper is occupied with the definitions of
the functions used, and, in the case particularly of the spherical
harmonics, with a short sketch of their leading properties. The
methods here are perhaps to some extent novel, but for general
conceptions I am greatly indebted to a valuable memoir by
Dr Hobson in the Phil. Trans., 1896.

The second part of the paper is devoted to the determination of
Green's function. The problem is, to determine a potential function
which shall be zero at the boundary' of a given space, and discon-
tinuous at only one point within the space, at which point, or pole,
it becomes infinite as 1/r, in the usual mode of expression; that is,
the difference between Green's function and the reciprocal of the
distance from the pole must tend to a definite limit as the variable
point approaches the pole. The method of solving the problem may
be described as direct; the function 1/r is taken as basis, and
Green's function found by adding to this a function, continuous
throughout the space, and neutralising, or balancing, 1/r at the
boundary. For the application of this direct method we require
first of all a representation of the function 1/r in terms of the
appropriate harmonic functions. For the Bessels and spherical
harmonics, two such representations are already well known, and
are immediately available for the purpose of neutralising 1/r at
cylindrical, or parallel plane boundaries, in the case of the Bessels;
at conical, or spherical boundaries in the case of the spherical
harmonics. A third representation, the natural complement of the
other two, is here given ; this involves harmonics of pure imaginary
rank, and serves the purpose of neutralising 1/r at a boundary
consisting of two axial planes.
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When in this way the Green's function has been found for, say,
a space bounded by two spheres, the difficulty of this method
hitherto has been to neutralise this Green's function at additional
boundaries, without disturbing the balance already attained at the
first boundary. This difficulty is here overcome very simply by
means of transformations depending on the use of Cauchy's funda-
mental integration theorem. Thus, just as we find three forms for
the fundamental function 1/r, so also three forms are found for the
Green's function for a space bounded by, say, two spheres. One of
these forms can be immediately applied to neutralise the Green's
function at one or two additional conical boundaries; the other of
the two forms may be similarly used when the additional boundary
consists of two axial planes. For each of these new Green's
functions, three forms are likewise obtained, and so the process can
be continued. In all cases the function is expressed by means of a
double series of harmonics, or the integral of a series, or a double
integral.

The advantage of possessing alternative forms for the functions
does not cease when the analytical transformations are completed ;
each form has, in fact, its own particular region of very rapid
convergence, and hence, from the purely arithmetical point of view,
it is useful to have all.

A totally different and, from many points of view, extremely
beautiful method of dealing with the problem, has been given by
Stokes, who takes the case of a finite space bounded by the six
faces of a rectangular solid. This method consists essentially in
assuming for the function required an expansion in the form of a
triple series of functions, which are not potentials, but each of
which vanishes at every part of the boundary. The coefficients are
determined by differentiation and integration. The triple series can
be reduced to a double series in three different ways. These
correspond to the three forms alluded to above.

There is nothing to prevent the application of this method to all
the cases given below. (For an example, see a paper by Mr H. M.
Macdonald, L.M.S., vol. 26, "The electrical distribution on a con-
ductor, etc.") The advantage of the method of this paper is that it
is independent of any theorem for the expansion of an arbitrary
function.
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THE BESSEL FUNCTIONS.

1. The definition of the Bessel Function of the first kind is firmly
established, having come down, indeed, from Bessel himself, viz.:—

x m + 2 t

J ( ) 2( )' + s)"

(Throughout the paper 2/(«) means, in the absence of a state-
8

ment to the contrary, /(0) +/(1) +/(2) + , and 2/(s) means,

For the Bessel Function of the second kind, various definitions
and symbols are, unfortunately, prevalent. The suggestion of Gray
and Matthews is here adopted, so that we define

If m be a given arbitrary constant, J and G are functions of x,
in general multiform. They become perfectly defined when the
phase of as is restricted to a range of 2ir; this range we usually

take to be from - — to + —. The form of the functions in the
2 2

vicinity of the singular point x = 0 is at once evident from the
definitions, but the case of m an integer is exceptional. In this
case Jm(x) is uniform and J_mx = ( - )mJmx ; the definition of Gma;
becomes illusory. For this special case, we define Gm as the limit
of the function which defines it in the general case. The singularity
at x = 0 is then logarithmic and Gm(sc) = - Jm(x)loga; + a uniform
function of x.

For both J and G, a: = oo is an essential singularity. All the
information necessary as to the form of the functions in the vicinity
of x = » , is obtainable from the very important semi-convergent
expansion of G. We have when x>0

J
+ R,

where if r > m - \, and m be real, R is less in absolute value than
the next, or (r + 1 ) a term of the series.
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The formula holds if < phase of x<— .
2 2

The corresponding formula for 3m{x) is obtained from the
equation iriJm(x) = Gm(x) - elmTGm(xe%*), which follows at once
from the definition of G. If the real part of x is negative, we
replace this by

But whether m be real or not, we have for the limiting forms of
the functions for x infinite,

Jm(x) = A / — cos| x - (m + £)— f , if real part of x is positive;

= emirljm(xe~1*), if real part of x is negative.

At infinity in the upper part of the plane, therefore,

Jm(x) is infinite, GrTO(a;) vanishes, and Qm(ax)3m(bx),
where a, 6 are real positives, vanishes if o>6.

2. As regards the zeros of J and G as functions of x, it is
sufficient to state here the following well-known theorems:—

(a) When m is real and positive, the zeros of Jm(a;) are all
real and simple, but
Gm(x) has no zeros for which the imaginary part of x is
positive or zero.

(6) Jm(ax)Gm(bx) - Jm(bx)Gm(ax), where a, 6 are real and
positive, is a uniform, even function of x, whose zeros are
all real and simple.

3. Passing to the consideration of J , G as functions of their
rank m, we note first that the functions are holomorphic, and
therefore, for instance, expansible in series of ascending powers
of m convergent over the whole plane; the x in Jm(x), Gm(x) is
supposed to have any constant value, but the particular value x — 0
is excluded from consideration.

The forms of the functions for an m of very large modulus are
given at once by the defining expansions.
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Thus, for a very large m, we have approximately

Also Hm= ,J2irmi—I = J'2irm

this formula holds if the phase of m lie between -IT, + jr. For the
succeeding applications the only case of importance is that in which
x is a positive pure imaginary, ia say, where a is real and positive.

We then have modulus of

~ -J- y / --\ x . I ae iMcoaa.Maaina
e ''m\ta)~—/ L w l e >

where w» = Me*°; -7r<a<7r;

or modulus Jm(ia)

Again, we have

.•. e 2 Gm(i6) is an even function of m. Taking 6 to be real
and positive, this function is real for m real, and therefore for m
a pure imaginary; further, for the four values of m, +p ± iq,
where p, q are real, the function has the same modulus.

Consider then an m in the first quadrant.
mri imr

We have e~rGm(ib) = —^—e~~*~J Jbx ' 2sinm7r

approximately.

This holds except for m a pure imaginary, and therefore, except
for such values of m, Gm(ib) is infinite with m. For a pure
imaginary m, say m = is, s real and positive, we have

and therefore
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Lastly, the function Jm(ka)Gm(kb) - Jm(Xb)Gm(ka),

being equal to ^£—{Jm(Xa)J_m(\b) - Jm(A&)J_m(A«)},

is a uniform even function of m, just as it is of X.
When TO is large, this function

= —sinh(wiloga/6).

It is interesting to compare this formula with its analogue for
m fixed, A very great, namely,

1

4. We require next a few theorems relative to the zeros of the
functions of m, for the proof of which the following definite integrals
are convenient.

Let u, v be any Bessel Functions of ranks m, n, and factors <c, A
respectively;

.. . dru du I „ m\
so that Pl~i+j- + \KP |t« = 0

rdp* dp \ pf
d'v dv / . , n"\

rdp* dp \ p J
Multiply these equations by v, u, respectively, subtract, and
integrate from a to b.

The consequencos which follow from taking m? = v? are familiar;
we obtain results of precisely analogous significance for the theory
of the functions of m, by taking K2 = A*.

(i) Take w = GmAp "I . . . .
_ o v f A a positive pure imaginary.
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Then | ; Gm{XP)Gn(Xpj?£:

J x
so that if Gra(A) = 0,

f°° G (X Ydp-~ °̂A °̂A

(ii) Similarly if the real part of m + n be positive,

dJX\
dmdX dX dm j '

(iii) Take w = JmXp. GmXb - JmXb. GmXp

v = JnXP.GnXb- JnXb. GnXp

Cb dp a I du dv\
Then uv— = — -Av-j- - u— I

J a p n- - m*\ dp dpjp = a.d2uCb
 2dp a f du du

Ja p 2m\dm dp dmdp)p=a.

5. We now prove the few theorems we require relative to the
zeros of the functions of m.

In the following A. is a positive pure imaginary; a and 6 real
and positive.

(a) Jm(X) has no zeros with real part positive or nil.
For i~™Jm(A) is real for m real; therefore for m=p±iq,
the values of •£~">JmA./3 are conjugate complexes;

therefore I 3ml{Xp)3mi(Xp)— cannot vanish,
Jo p

where m-^ =p + iq, wij =p - iq; therefore by the first result of
4 (ii) Jrai(A.), J ^ A ) cannot both vanish, and hence neither
can vanish; that is, JmX has no complex zeros.

It has no real zeros; otherwise we should have a potential
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function, say sinh kz. Jmkp. sinm</> vanishing at the whole of
the external boundary of the space within the cylinder p = 1,

iri
the parallel planes 2 = 0, z = -r-, and the axial planes

A.

<f> = 0, <f> = —. But this is impossible, the case — > 2JT

not excepted. Thirdly, JmX has no pure imaginary zeros;
otherwise we should have, as in the first part of the proof
JmA, J_mA. vanishing simultaneously; that is J, G vanishing
simultaneously, a supposition inconsistent with the funda-
mental relation -

(6) That the functions Gm(A.) and Jnak. GJbk - JmbkGmak have
no complex zeros is proved just as above; that they have no
real zeros follows by considering the potentials

sinhAz. Gmkp. sinm<f>, with p s 1;

and sinh X.z(JmkpGmX.b - GmkpJmkb)siiim<j>, with p between

a and b.
Each function has, however, an infinite number of purely

imaginary zeros; this almost follows from the approximate
formulas for m large which have already been given, or may
be formally proved by the following considerations.

Take GmA. for example: this, as has been shown, is infinite
for an infinite, not pure imaginary, m ; but «i2GmX is infinite
for every infinite in. Now it follows easily from the second

formula of 4 (i) that any zero must be simple, as G,
dm

cannot vanish together. If, therefore, G have only a
finite number of zeros, the uniform function ——- would

m Or
have only a finite number of accidental singularities;
vanishing at infinity as it does, it would therefore be a
rational function, a supposition excluded by the form of G
at infinity.

Hence Gmk and similarly JmkaGmkb - JmkbGmka have an
infinite number of pure imaginary zeros.
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The relation we have made use of in (a) above, namely,

is usually proved by the common method applicable to two solutions
of a linear differential equation of the second order. I t may also
be proved geometrically, by a simple application of Green's Theorem,
a method essentially the same as the former. But it is interesting
to observe that it follows easily from the character of the left hand
expression as a function of m; it is, namely, a holomorphic function

whose form at infinity is — ; the function is therefore -r- for every TO.
A A

SPHERICAL HARMONICS.

6. If the potential function (x + iy)m be inverted from the point
(0, 0, - £) we obtain another potential function

Hence also (« + *) J _ _

is a potential function, if the integral be convergent.

Change to polar coordinates r, 6, <f> and put £ = rA, where A is
the new variable of integration.

The potential becomes

x.m+ndx.

and is therefore, by definition, a spherical harmonic of degree n,
and rank m.

The function of 0 represented by the integral may be expanded
as follows.

We have 1 + 2Acos0 + A* = (1 + A)! - 2A(1 - cosfl)

writing a for £(1 - cos0) or | ( l - p)

•'" J o (1 + 2Acos0 + A2)™+»= J

Am+" / 4X

(1 + X

If modulus a < l , the last factor can be expanded by the Binomial
Theorem, and the series integrated term by term.
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Coefficient of a" will be

£ { t i t /n("»-i)ni»
U(m -

VfJo

~n(tn-l)Up
Coefficient of ap+l is obtained from this by multiplying by

m+p + % (m + n+p + l)(m -n+p)
p+l ' ' (2m + 2p + l)(2m + 2p + 2)

(ro+w+1 +p)(m-n+p)

Hence the integral is

II(m + n ) I I ( m - n - l ) f (w -n)(m + n + 1)
m ^ \ 1 + l ( « + l ) a + -

E r + 1 > -
where we use Euler's Theorem for the hypergeometric function,

F(a, fr y, x) = (l-x)V-a-f}F(y-a, y - fi, y, x).

The function of 0

will be denoted by Pn
m(/*).

When m = 0, the above solid harmonic

For the convergence of the definite integral we have used, the
real parts ofm + n + 1, m-n, must be positive; this restriction still
allows a continuous range of values for the variables m, n. But the
definition of P.TV) clearly defines a function of m, n as well as
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of ix; the solid harmonic is also a function of TO, n, as is likewise
d? cP d?

-J -J + -=-r + —=-y of the solid harmonic ; this being zero for a con-
asr dy^ dz
tinuous range of values of m, n, is zero for all values. P^* is clearly
a holomorphic function both of m and of n.

As a function of p, V™ will here be considered only for real
values of /* from - 1 to + 1 , this being all that is needed for the
physical applications that follow. The definition exhibits sufficiently
the behaviour of the function near /t = 1; a formula showing its
character near //. = - 1 will be found presently.

We note here, as easily derived from the definite integral, the
two formulae

+ (« - m)F?+1 = 0

7. Pr(/1) is a solution of the differentia] equation

Since the equation is unaltered by changing p. into - /*,
or vi into — m, we have three other solutions

The two linear relations connecting the four solutions are found
below. Change of it into — n — 1 does not affect the equation, but
this does not lead to any new solution, since the definition gives at
once P,r(/*) = P-,?_i(/*), an important relation.

EXPRESSION OF THE HARMONICS BY BESSEL FUNCTIONS.
8.

e~ 3m(kp)>Hld^. cosmcf) is a potential function, (n + m> - 1)
J o
Putting 2 = rcos#, p = rsinfl, Kr = K, we change the integral to

- « 1 J f °° -KCO80T / • a\ nj
r'^"~1cosm<f> I e Jm(K&inV)K dK.

Jo
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The function is, then, a solid spherical harmonic of degree — n — 1,
rank m.

Hence f" e ~ KCOsejm(,csin0),<nrf« = AP n "V) + BPn" "fy).
Jo

To find the constants, suppose m > 0; then B = 0, since P~m is
infinite for 6 = 0 ; further dividing by sinm# and putting 0 = 0,

J 0
-d« = A .

| 0 2-IIm

. •. A = H(m + n)

- \ z r x . » , , n ( m + »
and

for all values of »n, n, 6 for which both sides of the equation retain
a meaning.

Also fM e~Xcos^Jm(Xsin6')AMrfA = II(m + w)P™(cos«)
J o

=pn
m(cos^), say.

We hare thus a representation of P by means of J, provided

0<—, W + M > - 1 , (i.e., real part of m + n> - 1).

The restriction upon m, n may at once be removed by taking a
complex path of integration. Thus, supposing the A. plane cut
from 0 to — oo,

r
a n d j e J V A

the path being from — oo, under 0, round 0, back to - oo, and the
only restriction *>0.

We proceed to obtain a representation of P in which there is no
restriction upon 0.

9. We may conveniently begin by explaining here a notation
which will frequently be used in dealing with complex integrals.
In the plane of any variable A, let E, W be points on the positive
and negative sides respectively of the real axis; N, S points on
the positive and negative sides, of the axis of imaginaries;

4 Vol. 18
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E, N, W, S thus corresponding to the points of the compass. These
points will be supposed at an indefinitely great distance ; and the

ON, for example, will be used to denote ansymbol |"/(A.)dA.

integration over the whole of the upper half of the imaginary axis.

f(X)dX OE is therefore the same as /(X)dX

Consider now the integral

e i Gm(iXsin6)X d\.(i =e~-~).
Jo

This may be written

J % Gm(A.sin0). A. dX. %
.-n-l
% ON

and the path may be deformed into OW, provided cos#>0,
since G,a(Xsin0) vanishes at infinity in the upper part of the plane.

Hence e 1 Gm(iXam0)\ dX
J 0

-J.
= —: . % \ e (i J mXsinw - t J,,1A.sin^)A. dX

2sinmir J o
 V '

-\coad.m~. , , . » , « , . .71 + 1
e 1 Gm( - Asin6)A. dX. 1

0

Similarly e ' c o s imGm(iXsm6)XndX
Jo

-\coa0.m~, ,. . / ^ u , . . - n - l- J Gm(Asin0)A

OE, if cos0>O

ON

From these two relations

(iii) °° sin-! A,cos6> + (m-n- 1)— HmGn(iXsm0)Xnd\
J o >• - }
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This formula extends the representation of the function to

values of 6 greater than —, provided the real parts of both

n + m and n - m be greater than - 1.
In (iii) we may change 6 into IT — 8, or m into - m ; neither

of these changes, it may be observed, affects imGm(iXsin6).
In (i) change 6 into ir - 6 ; the integral becomes the integral

of (ii). Hence

(iv) t"+1-'»jo-"1( - JX) - i«+i+y*( ~/x) = im~"-1p-m(H-) - *"""""" W ) -

Similarly, by changing 6 into IT - 6 in (ii),

(v) .•-—>-•"( - /») _ »-*-»—p«(- /») = i-m+-+1p-'"(^) -- *"M+"+!P."(/*)-

By means of these two equations, any two of the four functions

can be expressed in terms of the remaining two.

10. Eliminating p^m(p) from these equations, we find

/i) = sinnirp™( - /

or returning to the P functions,

(i) IT(?>i + n)simnirP™(ii)
= H(m + w)sinn7rP,™( - /*) + H(n - m)sin(m - n)irP~m(< — fj).

This equation, and that obtained from it by changing JX into
- fi, may be regarded as the linear relations connecting the
four solutions referred to in §7.

Since H(n - wi)sin(w - n)ir = TrjU(ni - n - 1),
we may write (i) in the form

(ii) TrP^m(fi) = U(m + n)Ti(m - n - 1) { sinnurP™( - /*) - sinwirP

The equation (i) or (ii) has many important applications, of
which one or two will be pointed out.

(a) The equation gives the form of Pn""(/̂ ) in the neighbour-
hood of /*= - 1, or of P™( -ix) near /x= + 1.

When m is an integer, the method of limits has to be
applied, as in the case of the Bessel function Gm(x) and
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the expansion will involve a logarithm, unless n also be
an integer.

(5) When n — m is a positive integer p, we have

H(m + w)sin»nn-P,™(̂ ) = H(m + n)( - )*sinni7rP,;"( - p)

so that if m be positive and not integral,

P™+» = (-)PI>.»+p(-M)-
But the two sides of this equation are, for a given p,

continuous functions of TO, SO that this holds for every m.
The function P,™+p(/x) is important; it is the product of

m

(1-ju,2)- by a rational integral function of /x, and for
TO positive vanishes both at /x = 1 and /t = — 1

We have, in fact, by definition,

and the series terminates when m — n is zero or a negative
integer.

(c) When m is an integer, we similarly obtain

n(» + m)Pn"'(/") = ( - )-n(n - w)P-'"(^).

If now n also is taken integral, then if n - T O < 0 , P~m(/x) = O.

SOME FUNDAMENTAL INTEGRALS.

11. Let u, v be two harmonics of degrees, n, p and ranks TO, /,
so that

Multiply these by v, u; subtract, and integrate from h to k.
rk p _

\(n-p)(n+p+l) + —-p)(n+p+l) + ——juvd/x

[
This equation has applications of precisely the same sort as the
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corresponding equation for the Bessel. Into the details of these it
is not proposed to enter, but one or two results will be given.

(i) Take u = ~P^(p), v = ~P-'"(p).

Then (l-p)lu——r3~) = "

i.e., (1 - u?)\u——•u-r-l is independent of M; to find its value,
\ dp dp/

we may take the limit for p = 1.

Now near p= 1, we have w= — (1 -f*2)'-
2'MIm

1

1 -m

Hence we find (1 - ̂

From this again, by means of 10 (ii)

we readily deduce (1 - ^{p."0»)^;P."( - /*) - P«"( - / - O ^ -

2
~ II(OT + n)Yl(m - n - 1) "

(ii) Take M = Pn
ra(/t), t? = P;"( - /*); also suppose real part of

m positive.

Then f P.m(/»)P ™( - /»)rf/x

1 r .,./ c?t' du\\+1

From 10 (ii), near p= 1, we have
•K 1 2 ' "

p ml _ \ _ / 1 _
pK ™ sinm7rIl(m+p)n(ni-p-l)'U(-my '

and therefore
9

= \ U(m + p)U(m - p -

Similarly
du\ I 2
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Hence I P "0*)P-( - /*)<*/*

)U(m-n-

a result interesting as the generalisation of various known
theorems.

In special cases, the value of the dexter has to be found by
limits.

By far the most important case is that where n-m, p — m
are zero or positive integers. Since Pn = P_M_! we may suppose
n + | and p + £ not less than 0.

Then the equation shows that if n, p are different, the
integral vanishes, since U(m -p - 1), U(m - n - 1) are infinite.

In order to find the value of the integral when n=p,
put p = m + q, q zero or a positive integer ;
and find the limit as the single variable n approaches the
fixed m + q.

We have, the integral
1 sin(n - m)ir 2 Tl(n - m)

IT n — q-m n+ q + m+1 H(n + TO)

= ( - )q- ^ . — _ v , in the limit.

But, q being an integer,

Hence we may state the result: when n - TO is a positive integer or
zero,

2 II(n - TO)

12. THE HARMONIC P,l"(/*) AS A FUNCTION OP TO, ITS BANK.

The function is holomorphic ; its form for TO infinite is given by

the definition P„"•(/*) = J - ( i ^ ) W « + 1, - n, m + 1, i

For TO very large, this gives P" = =r— I-—^-JT.

As to the zeros of the function, the important case is that in which
the given n is of the form - \ + Xi, X. real.
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By methods altogether similar to those used for the Bessels, it may
be proved, (n = - -J + \i).

(i) Pj"(/x) has no zeros for which the real part of m is positive
or zero.

(ii) The function

n(m + n)U(m - n - 1) {P^AJP ™( - k) - P?(k)V?( -h)},

which, by 10 (ii), is the same as

and is therefore even and holomorphic, has an infinite number of
purely imaginary simple zeros.

When m is very large, this function has the form
2

—sinh{mlog(tana cot/3)} : A = cosa, & = cos/J.
1th

13. THE HARMONIC P,',"(JU) AS A FUNCTION OF n, ITS DEGREE.

As to the form of the function for n infinite, we have room here
for only a few statements ; for various investigations bearing on the
question, reference may be made to the memoir of Dr Hobson, I.e.,
and to Heine, I. p. 178, II . p. 223.

In the first place, if — < 6<— , we have
6 6

( i ) p - ( B n , f l > i ^

but the series diverge for values of 6 outside the limits specified.
For any value of 6, not 0 or IT, however, it is possible to show
that the limiting form of the function is given by the first
terms of these series, so that for any n with large modulus,
and phase not equal to TT
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It is very curious that if in the equation,

- ~U(m + n)P,r*(cos(9)

= f"
we substitute for G its semi-convergent expansion and integrate
term by term (a process not, of course, defensible) we obtain

(iii) P.-(CO80)>

If n be replaced by —n—1, the bypergeometic series are those
of (i), and the interesting question suggests itself, does the right
hand of (iii) actually represent the function P for the range of
values of 6 for which it has a meaning 1

For a large n, (i) and (iii) give the same limiting form for P,
but on examination it appears that the dexter members are not
really identical, unless m is half an odd integer, in which case, it
may be noticed, the series terminate, like the series for Jm in the
like case.

14. With regard to the zeros of P as a function of n, it is only
necessary to consider the case of in real and positive, or zero. Then

(i) P,J"(cosa) has an infinite number of real, simple zeros, and no
others.

For a large n, we have from (ii) of last paragraph

•<-•»*]}•
(ii) The function

II(»n+n)H (m - n -1) { P0
ra(cosa)P™(- cos/J) - P"(cos)8)P^( - cosa) },

or the same thing,

has also an infinite number of real, simple zeros, and no others.
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For a large w, this function

= —j=JL==sm{(n + i)(« - /?)}.
n Vsinasin/j

15. We have now considered the limiting forms of Pn
m(p) in

three cases when
(i) //. approaches- 1, with n, m fixed
(ii) m approaches oo, with n, fi fixed
(iii) n approaches oo, with m, p fixed.

Two important cases remain, in which one only of the variables
is held fast, while the other two vary, subject to a constant relation.

First, let n tend to infinity, 6 to zero, while the product nO
remains constant = A., suppose.
Then from the definition of P, we obtain, in a well-known way,

Limit »mP£(cos0) = Jm(A).
Supposing now, that not merely modulus n, but the imaginary
part of n tends to infinity (remaining positive), we have from
10 (ii)

)H(m - n - 1 )sinmn-Pn
m( - /*)

Ti(m + n)U(m - n - 1 )P„*"(/*)

or since U(n + m) — nmHn approximately
n-mn(m + n)U(m -n- l)Pn*"(-/i)

sinnwr

or Limit n-"TI(m + n)II(m - n - 1 )Pj"( -

sinm7rv

= 2G.(X),
where the imaginary part of A. is positive.

Second, while 0 remains fixed, let m and n tend to infinity, so that
n-m=p, a given positive integer.

Since P»(/*) = ̂ n ^ ( l - ^ F ( m - n , m + n + 1, m+1,
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we have, in this case

approximately.

So that Limit Pm™+»

-Metc}

ADDITION THEOHEM.

16. The distance D between two points (r, a, </>), (r', /3, <£') is
given by D2 = r2 — 2rr'cosy + r's, where

cosy = cosa cos/? + sino sin/? cos(<£ - </>').

Pn( — cosy) is, if y > 0 , a continuous periodic function of <£ - <f>',
which by Fourier's Theorem can be expanded in the form

~Pn( - cosy) = Ao + A,cos(<£ -<f>')+ ...+ Amcosm(<£ - <f>') + ...

1 f 2JT
with Amcosm(j> = — P,,( - cosy)cosm<^d^).

T Jo

The definite integral may be determined as follows.

Consider the potential V, given by

V = r"cosra<£ P ™(cos0) P *( - cosa); 0 < 6 < a

V = rncosm<£ P "(cosa) Pn
m( - cos0) ; a < 6 < v

where TO is a positive integer, and n = - £ + At, X real.

This potential can be produced by a distribution of matter on
the cone 0 = a, whose density at r, a, cf> is <r,

given by iircr = —
dd

6--

' sina' II(TO + n)H(m - n - 1)

from 11 (i).
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The potential of this distribution a t (r', /3, <f>') is

1 f 2"" ("•» 2 r"dr
= — COSmcbd(j> — -=r ; — ; ; —

47rJ o Jo n ( m + n)II(m - n - 1) ^(r-2 - 2rr cosy + r s )

1 n(n)n(-n-l)(r')n f 2T

= 2T n(m + n)n(m-n-l) J o ^ ^ " P"( ~ C ° S 7 ) # 1

from 6 (i).

But the potential is, if a > 0 , r'ncosm<jl>'P™(cos^)P™( - cosa)

1 f 2>r
. •. Am = — costruf) P,,( - c

T J o

or half of this, if m = 0.
Hence

(1) P n ( -cosy)

= Pn(cos/3)Pn( - cosa) + 2 2 cmP,;"(cos/?)P,;"( - cosa)cosjn(^> - </>').
l

where a > ^ ; cw V l l ( - n - l )

= ( - )'"(« + »n)(n + wi - l)...(n - »n + 1).

For m very large,

r( - cosa) = 1 ( - i |

The series therefore converges absolutely if o > j 8 ; it still con-
verges if a = /?, provided <f> - <f> is not zero.
The series represents a function of n, which for a continuous
range of values of n, has been proved equal to the function
Pn( - cosy); the series therefore represents this function for
all values of n.

(2) Now change a into ir — a, <j> - <j> into IT - (<j> - $ ' ) ; we obtain

Pn{cosacos/3 + sina sin/3 cos<£ - <f>'}

= 2 2'( - )mcmP™(cosa)PB
ra(cos^)cosOT(^> - <#>'),

m

the restriction becoming ir>a + /3.
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(3) A g a i n c h a n g e /3 i n t o IT - /3, <f> - <f>' i n t o TT - (<f> - <j>) ;

hence P,,{cosa cos/3 + sina sin/3 cos<£ - <j>'}

= 2 2'( - )-^.P,»( - cosa)P »( - cosp)cosm(<t> - </>') ;
m

with the restriction ir<a + /3.
Of these three forms, the one originally obtained is the most
important.

It is to be observed that when n is a positive integer,

and m>n, cm = 0.
Many formulas are shortened by the introduction of an additional
function S, defined by the equation

S™(/*) = Il(m + n)XL(m-n- l)¥?( - ^ )

The equation (1), for instance, may be written
(4) S,(cosy) = 2 2 ' S™(cosa) . Y?(cos/3)cosm(<l> - <£').

17. ADDITION THEOREMS INVOLVING HARMONICS OF PORE

IMAGINARY RANK.

The well-known addition theorem for the Bessel function G is

(1) G0(XR) = G0Xo. J0A& + 22GmXa. JmXb. cosm(</> - <j>')

= 2 2 ' GmXa. Jmkb . cosm(<f> - <j>') ;
m

where R = J{a? + b*-2abcos(<f>-<(>')}; and a, b are real and
positive with a>b.

The series converges absolutely, and the theorem holds, what-
ever be the phase of X. Hence taking the increment of the two
members of the equation when the phase of A increases by 2-TT,
we deduce the addition theorem for J,

(2)

The series for G0(iXR) may be transformed into an integral
as follows.

Consider the function of m,

cosm(7r - <
^

in which we suppose a, b, A. real and positive, and
0 «f> -</>'< 2r.
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Then cosm(7r - <t> + <f>')j&mmrr vanishes for m infinite, unless
m is real. Also (§ 3) for a large m,

Hm/ 2 Vm

im Gmika = ——I — I , if real part of m be positive,
2m \Ao/

l / it'
and therefore G,,.ika. JmiX6 = ——I —

For a pure imaginary m, modulus Gmi\a. JmtA.6 = I/modulus m.
Hence GmiXa. Jni\b . cosrra(7r - <f> + <f>')/sinmir vanishes for m
infinite with real part positive or zero. (The vanishing is
effective, by which we mean, that, even when multiplied by m,
the function tends to zero ; a condition sufficient to ensure the
evanescence of the integral of the function taken over any part
of the circle at an infinite distance. But in cases like this, we
often, for the sake of brevity, omit to call attention to this
point explicitly, as it cannot fail to be observed.)

Take now a path of integration from S to N in the m plane.
This path must not pass through O, which is a pole of the
function ; we therefore describe a small circle about O as centre,
and take a path from S to N along the axis of imaginaries, but
passing O by the semicircle, first, on the eastern side, second,
on the western side.

The first integral
= ( - 2-n-i) (sum of residues at poles to the right of O).

The second integral
= ( - 2iri) (sum of the same residues + residue at O).

Since i"lGmiA.a is an even function of m, we may write the
sum of the integrals over the straight portions in the form

(*COSWl(7T — <̂ > -f* <f>')

— ^ -(imGmika)(i~mJmiXb - i">J_mtA.6)cfw,

path from the north point of the small circle to N. We now
diminish the small circle indefinitely, so that its contributions
to the integrals neutralize each other, and obtain

2

J
, imr. 2sinwi7i-

mi\a( - e ) GmiXbdm

o
= - 2wi. — . 2 ' cosm((f> - <f>')GmiXa JmiXb

ON
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or
2 r*> „

(3) G0(iAR) = — coshs(?r - <f> + <f>')e s GJXa. GJXb. ds.
T J O

o < (f> - <j>' < 2ir ; X, a, b real and positive.

Similarly may be treated the expansion of Sn(cosy), 16 (4).

For, when m is large
. 1 / j8 / a \

S,rcosa. PM
mcos/3 = — I tan— / tan—

which vanishes when the real part of m is positive, and a>/3.
We find, just as above,

(4) Sn(cosy)
coshs(7r -

J
(Sn"cosa. Pn*cos/3 - S-"cosa. P-"cosfiWs

0 sinns7r
o < (j> — <fi < 2ir.

The factor of the integrand involving the S and P functions
does not appear to be expressible in the form of the product
of a function of a by the same function of (3; but it is important
to observe that this factor is really symmetrical in a and /8.

For (§ 12) Sn
m& . P,;"/i. - S,™/t. Pn"*A; is even in m,

that is, equal to S~mk Y~mh - a~mh F~mk.
Hence, transposing, we have

o,J"«; irB ft — on tc rn h = o n li rn k — an h x n "A.

GREEN'S FUNCTION.

We proceed now to obtain Green's function in terms of harmonic
potentials, for spaces bounded by surfaces of the cylindrical and
spherical polar systems.

The bounding surfaces are complete, or, at any rate, if they be
supposed completed, they do not intersect the space considered. I t
has not been thought necessary to give the solution for every variety
of space satisfying this condition, but the cases omitted can easily
be treated after the same manner as the others.

The coordinates of the pole are expressed by accented, and of
the variable point by unaccented letters; these two points may, it
is well known, be interchanged without altering the value of the
function.
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The reciprocal of the distance between the points is denoted
by T, and the Green's function by V.

CYLINDRICAL COORDINATES.

z, p, <j>; R = Jp2+ p'2-2pp'cos(<f> -</>').

18. Whole of space. The Green's function is simply T.

(1) From 8

T= [%-^-^J.XR.rfX
Jo

= 2 f°° e ~ X(z " z>)d\ 2' Jnkp. Jn\p'. cosm{<f> - <j>').
Jo m

z>s'
(2) From 9 (iii)

T = — f"0 cosX(z - z')G0UR . dX

4 ("oo
= — cosX(« — z')d\ 2 ' GmiA/3. Jmi\p'. cosm(<f) - <̂ >').

T Jo m

(3) The above forms for T are familiar; the first, which we may call
the z form, is formally discontinuous at the z surface through the
pole, the second, or p form, at the p surface through the pole.
The third, or <£ form, does not seem to have been given before.
It is, from 18 (3)

T = — r°°cosX(« - 2')G0UR . tf A
T Jo

= —^\ ca&\(z - z')dk\ coshs(7r - <f> + <j>')e ~ QuiXp . GuiX.p ds.
i"J o Jo

19. Space bounded by' turn parallel planes

(1) The Green's function is obtained by adding to T a potential
non-singular throughout the space, and equal to ( - T) on the
boundary.
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Using the z form for T, we see that this complementary
potential must take the values

J.
-J:

e
0

l o

Such a potential is

* J0ARrfA on z = c, and

- ^ J0AR<fA on z = 0.

- J
°/sinhAz ,-x(e-g ' ) , sinh A(c - z) Xz'-|

o *• s inh Ac sinh Ac J

for .the integral converges absolutely so long as

z + z — 2c < 0, 2 + z > 0, conditions necessarily fulfilled.

To obtain V, add T, which when z>s', is

Jo
T , , 7 f=° sinh A(c - z)sinh Az
Thus V = 2 -^—r{ J0AR . dX ; z >g .

J o sinh Ac

For z<z', interchange z and z'.

There may seem to be a certain loss of simplicity in uniting
the part of the Green's function which contains the singularity,
namely, T, to the other part of the function (often, by itself,
with sign changed, called the Green's function) which is non-
singular. This, however, is an essential step in the transforma-
tions we propose to make. Moreover, the form given for V
has the advantage of showing at a glance that V vanishes for
z = c, and (since for z<z\ we interchange z and z') for z = 0.

(2) Since J0(AR) = i,{G0(AR) -G,( - AR)}, R > 0 ,

we may write
v = ^ r smhA(c -z ) sinhAg' ^

TTIJ sinh Ac

the function multiplying G0AR being odd in A.
The integrand effectively vanishes in the upper part of the

A plane, and therefore the integral equals 2iri into sum of
residues at the poles on ON.

Hence V = — 2 suywrz/c. smpTrz'jc. Goip7rR/c.
e p

R > 0 .
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This series converges with striking rapidity, except very near
the pole, the rapidity increasing with R.

Since G0to; = >Jir/2x e~~* for a large real x we have, for the
limiting form

4 . TTZ . ITZ' I C

a sufficient approximation if .ft is not less than, say, four or
five times c.

Using the p form for GotA.R, 17 (2),
V = 8/c 2 sinA.2 sinXz' 2' Gmikp. Jmikp'. cosm(4> - </>').

p m

\=pirjc, p>p'.

(3) Using the <$> form for GoiA.R, 17 (3),

V = 8/irc. 2 sinX«sin\«' e " sircosh S(JT - <f> + cf>')Gui\p. GJXp'ds.
P Jo

20. Space bounded externally by a cylinder

p = a.
(1) The p form for T is

4 r°°
T = — cosA(z - z')d\ 2' GmiXp. Jmi\p'co8tn(4> - <£').

"• J o m
p>p

Hence

""Jo 1» « m* ™*

A.p - Jmi\p Gmika)cosm(<t> - </>').

(2) In the p form for T we may interchange the order summation,
integration; or, in other words, integrate term by term. The
proof is in this case easy, for

GJ\p JJkp' = (t*GMt V)(*~"J»» V ) .
the product of two factors constantly positive, so that the
modulus of the elementary term

cosA.(z - z')GmiXp JmiXp'cosm(<ji - <f>')

is not greater than GmiX.p JmiX.p'.

5 Vol.18
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But \ dkl'GJkpJJkp
Jo m
r°°

= d\. GotA(p-p), which is finite, so that the sutn-
Jo

integral converges absolutely,
The same applies to the sum-integral that has been added to

T to obtain V.
Hence V = ijir 2'cosm(<£ - <£').

m

cosA(2 - z')
Jf^-(Jmika Gmikp - JJkp GJXa)dk.f"

J0
0

The integrand here is a uniform, even, function of X, so that
the integral may be written

Yi\e SN.

If z>z' and p>p, the integrand vanishes at infinity in the
eastern half of the A. plane. The infinities are simple poles at
the zeros of Jmka. The integral therefore equals - 2iri (residues
to right of O), and

V = 4/a 2'cosm(<£ - <£') 2 e ~ X{z " z']Jm\P Jmkp' Gm\a/J'mka
m X

using the relation GmXa J'mka — JmA.a G'm\a = l/\a.

Here the X's are the positive zeros, in ascending order, of

Jmka, and z>z'.

(3) The <£ form for V is deduced from the form (1) by a process
similar to that used in proving 17 (3).

Take the complex integral

fcosm(7r -
tt

fcJ
along the two paths from S to N used in 17.
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For a very large m, the factors of the integrand involving
the Bessels approximate to

±\m_(p\m) i
p) \a 1 )Hm . II( -aF2smnnr\\p) \a 1 )Hm . II( - m)

which vanishes on the eastern side of the plane if p > p'.
The other factor vanishes if 0 < <f> — <f> < 2TT.
Under these conditions, the sum of the two integrals is

—( — 2iri) 2 ' m —(JmiX.a Gmi\p — J,ni\p Gmi\a)cosm(<f> — <f>').

But that sum is

•-<)> + <f>')/Jmi\p' J_mi\p')/JmiXp' J_mi\p'\
\Jmi\a 3_miXa1

[JmikaGmiX.p - 3miKpGmiXa\dm

the function in square brackets being even in m.
Hence, from (1) and using the definition of G,

ON,

4 r»
' = —̂  cosX(z - z')dX

" • J or» (cosh S(TT — <f> + <t>')(Juika GltiX.p' — 3iti\p Gui\a).

.. o I (Jui\a Giti\p — 3uiXp Gui\a)ds/(Ji,i\a J_iti\a)

21. Space bounded by two axial planes

(1) Starting with the <£ form for T, 18 (3),

and observing that the factor of the integrand involving <f> is

coshs(7r-<£ + <£') when </>><]>',

b u t cosh s(ir -<!>'+ <f>) when <f> < <j>',

we proceed as in 19 (1), and obtain

V = — I cosA(2 - z')d\.
"•Jo

I e ST(sinh «7r/sinh sa)sinh s(a — <̂ >)sinh s<f> GuiXp Gui
o

4»<l>'.
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(2) Bearing in mind that i'G, is an even function of s, we write
the second integral

(sin«7r/sinsa)sins(a - <f>)sins<t>(i'G,iXp)(i'GtiXp')ids ON

vi |"sins(a - >̂)sin«<#>' .

sinsa
G,iXp J,iXp'ds SN

= ( - 2iri) (residues to right of 0), if p>p.

Hence

-.7- 8 f" w /
V = — COSA(z - 2

a J o

81D Sin

(3) The sum-integral just written converges absolutely, and we
may put (writing 8 for wwr/a)

8 f«>
V = — 2 sins<£. sins<f> cosA.(z - z')G,iXp JjXp'dX.

<*• m Jo

If &>z', p>p', the integral is

ON

OW

OE

OE

(§1.)

Substitution in the form (2) gives

V = — 2 sin rsin — \ e K

a m « « Jo
> • JmrXp'. dX.
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22. Space bounded externally by two parallel planes, and a
cylinder, 2 = 0, z = c, p — a.

(1) From 19 (2)
g

V = — 2 sin Az. sinX«'.
0
 P

(2) From 20 (2) by the same work as in 19 (1),
_ 8 v , . _sinh k(c - z)sinh kz' .

a~ m ^ s inh Ac m

The A's are the positive zeros of Jmka, z > z.

(3) From (1), utilizing the work of 20 (3), we write down at once

V = — 2 sinAa. sinAs'.
ire p

P cosh g(ff - 4> + <t>'V(p) ./(p')dsl(Juika. 3_Jka),
J o

where f(p) = Juika Guikp - Juikp Guika,

23. Space bounded by two parallel planes, and two axial planes
Z = 0, Z = c, tf> = 0, <f> = a.

(1) Starting from 19 (3), the process of 21 (1) gives
1 P

V = — 2 sinAz. si
ire „

e *T(sinh «7r/sinh «a)sinh »(a - <&)sinh «</>'. Guikp. GJ-kp. ds
Jo A.=p?r/c,

(2) From 21 (3),
„ 87T . . f« sinh A.(c - z)sinh Xs'
V = — 2 sins<£ sins<£ \ -; J,

a m
 r ^ J o sinh kc

8 = mir/a, z>z'.
(3) From (1) as in 21 (2),

V = 2 sinA»sinA.«'.
CO. p

in8<£' G,ikp 3,i\p.

r!a, p>p'-
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24. Space bounded by two axial planes and a cylinder
<f> = 0, <(> = <*, p = a,

(1) From 21 (2),

8 r»°
V = — cosX(s - z')dX.

a J 0
— sms(j> sms<f>'(3liXp'/3,iXa)(3.iXa G,iXp - 3,iXp G,iXa),

s = rmrja, p > p'.
(2) From 20 (3),

V = — I cosA(s - z')d\.

-r- sinhs(a - ij>)smhs<j>' .f(p)f(p) . -p-rr—^ r r - .
Jo sinhsa ' J M/J \r , JutXaJ_,,tKa

f(p) as in 22 (3),
(3) From (1) as in 20 (2),

V = —— i)

X

s = w7r/a, X a positive zero of 3,Xa, z>z.

25. Space bounded by two axial planes, two parallel planes, and
a cylinder

(1) From 24 (3)

V = -r— 2 sins<f> si

sinhX(c - z)sinhA.z'
k — J

s = trnrja, X a positive zero of JaXa, s > s'.

(2) From 23 (3),
1 /*

V = 2 sinA« sinXs'.
ca j,

2 sins</> sias<f>'(3aiXp'j3,ika)(3,iXa G,iXp - 3,iXp G,iXa).
m

X = pTrjc, s = rmr/a, p>p'-

(3) In 22 (3), instead of coshs(7r -<j> + <f>'),
write 2(sinhs?r/sinhsa)sinhs(a — <f>)sixihs<f>'.
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26. Space bounded by two parallel planes, two axial planes, and
two cylinders

2 = 0, z = c, <f> = 0, <f> = ai P~a> P = b, b>a.

Since this is the first occurrence of a boundary partly composed
of two cylinders, we can deduce from preceding results only one of
the forms for V. From this the other two are derived directly.

(1) Taking the function of 23 (3) we subtract from it a potential
taking the same value on the cylinders and vanishing on the
planes.

This potential is clearly obtained by writing for G,iXp J,iXp
in 23 (3),

n • T • \ > ^Aa G,iXp - J,ikp G,iXa
^'M • JMp • J,iXaG.iXb-J,iXbG,iXa

T .. „ .. , 3 ,iXp GtiXb - J,i\b G,ikp
+ J.iX* GAP • jiiXaGjiXb_j:jikbQii)M'

for this expression is

G,iX° J.iXp for p = b, and J,iXa GJ,Xp for p = a.

A slight reduction gives

V = 2 sinXz sinXz' 2 si

(J.iXa G,iXp - 3,iXp G,iXa)(J ,iXt> G.ikp - 3,lXp VjXb)

-r (J,iXa G,iXt> - J .^6 G,iXa)-

X — pirjc, s = nnr/a, p>p.

(2) To deduce the z form from this, suppose z>z', change the order
of summation, and consider the function of A.

sinhA.(c-z)sinhA.s' (J,XaG,Xp' - J.Xp'G,Xa)(J,X6G.Ap - J.XpG.Xb)
sinh Xc J.Xa G,X6 — J,Xb GtXa

This is a uniform, odd function of X which, if z>z', p>p',
vanishes for every infinite X. Hence the total sum of the
residues of the function vanishes. The infinities of the function
are simple poles, namely, the (pure imaginary) zeros of sinh Xc,
and the (real) zeros of J.Xa G,X6 - J.X6 G.Xa.
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Substituting one series of residues for the other in (1) gives

167r ,̂ . , . ,, „ sinh X(c - z)sinh As'
V = i sms<£ sins*. z, . , : .

a m x S l n " Ac

(J,Xa G,XP' - J,Xp' G»Aa)(J,X& G,Xp - J.Xp G.A6)

+ At jj,a G.A.6 - J,Xb G.Xa)-
aA

s = rrnr/a, the X's are the positive zeros in order of

J,Xa G,kb - J,A6 G,Xa, s>«'.

(3) By a similar process, (1) yields the <j> form also.

Consider the function of s

sins(a — <£)sins<£' (J,iXa G,iXp'-3,i\p G,i\a)(J,ikbG,iXp - JJ,XpG,iXb)
sinsa J,iXa G,iXb - J.iXb G,iXa

This is a uniform, odd function of s, vanishing for every
infinite s if <£>$', p>p'- The infinities are simple poles at
the (real) zeros of sinsu, and the (pure imaginary) zeros of
J,iXa G,iXb — J,iXb GtiXa. Hence, as before,

16JT „ . , . . , ., sinh s(a - <i)sinh s6'
V = isinAzsinAs i . , - .

c p 3 sinh sa

(Ji.iXa G,,iXp' - J,,iXp Gj,iXa)(J J,Xb GitiXp - J\,iXp GjXb)

-. (JuiXa GuiXb — JuiXb G^iXa).

its

X=pTrjc, the s's are the positive zeros of

Jt,iXa GuiXb — J^iXb GuiXa, <f> > <$>'.

In the forms (2) and (3) it should be noticed that the
expression for V is unaltered when p, p are interchanged, on
account of the equation defining X or s.

These forms show very strikingly how the Bessels of real
factor and rank bear the same sort of relation to the parallel
planes as the functions of pure imaginary factor and rank bear
to the axial planes.

From the solutions of this paragraph all those that precede
may, of course, be deduced, but the reduction is not always
easy, nor its validity obvious.
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SPHERICAL HARMONICS.

The spherical polar coordinates of the variable point are r, 6, </>;
of the pole r, ff, <j>.

We write r = aep, r' = aef, so that p runs from - » to + «
as r runs from 0 to » , and p = 0 when r = a.

Also, as in 16, we write cosy = cos0 cos#' + sin# sin0' cos(<£ -<£'),
and, as usual, cos# = p, cosS' = fi.

27. Whole of space.

T = l / J(ri-2rr'cosy+r'-), which if r>?-'

1 ( r' lr'\- 1
= --|P,(cosy) + — P,(cosy) + y—J P2(cosy) +, etc. j

Multiplying by *Jrr\ this may be written

T J7r' = 2 e " (" + ̂  ~ ')')Pn(cosy)

The point w = - J in the plane of n we shall always denote by C ;
the path SCN is the straight path through C from

— i — oo t to — ^ + oo i.

The approximate form of P,,( - cosy) for a very large n is

HenCe 2^lJ SCN

= ( - 2iri) (residues to right of C), if p>p,

= T Jrr, or putting n + J = iA

(-„ cosX(p - p')P _ , + iK( - cosy)c?A.
?V = r—;

cosh ATTJ o

(Heine I I p. 219.

i r«>
— J o
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In expanded form

(1) Tv/7V = 22e

the m summation stopping, of course, at m = n, r>r'.

(2) T Jrr' = —\ cos\(p - p')d\ 2 ' S n > . P n > ' . cosm(<j> - <f>').
T J 0 m

n= -l/2 + i\ 6>$:

(3) T JW = — f00 cosXC/o - />'WX.
T JO

from 18 (4). n = - 1 / 2 + tX, 0<<^>-</>'<2TT.

28. <S]pace bounded by two spheres

(1) FromTN/iy = 2 e - ( n + iK')~')')Pncosy, p>p\ precisely as in 19,
n

V JW' = 2 2 8iDh(w + *Xf - ^ S | f <" + *^ PnCOsy.
sinh(« + ^)c " '

(2) The function of n (odd in w + J),

sinh(w + ^)(c - p)sinh(w
sinh(w + J)c. cos(w + \y nK 7)>

where p>p', y>0 , vanishes for every infinite n, and the total
sum of its residues is nil, that is,

_ 2_ 3 sinh(W + Me- p)sinh(n + W _ _
ir „ sinh(n + i)c \ / «\ u

2 _sinXosinXp'
+ — 2 P (2 • , Pc p cosh An-

where X=pjr/c.
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Therefore from (1)

TT /—i *^ ^ sinAp sinAp _
V *Jrr = — z — P , .. ( - cosy),

c p coshA;r - i + 8Av ' "

.— 4
or V Jrr' = — 2 sinAp sinAp' 2' S,|"p. P,™//. cosm(<£ - </>').

A=j97r/c, w = - l / 2 + i A , e>&.

If c is a small fraction, that is, if the thickness of the spherical
shell is small in comparison with its radius, the first term of
the unexpanded form for V Jrr' will be a good approximation,
y not being a very small angle.

The limiting form, as c diminishes more and more, is

, , :. sina-p'/c,
/2esiny

an extension of the result of 19.

(3) Substituting the <£ form of P( - cosy) in (2), we get

V Jrr' = 2i/c 2 sinAp sinAp'

sinh STT
k-prrlc, n = - 1 / 2 + iA, 0 < </> - <f> < 2ir.

29. Space bounded by a single cone

(1) From the 0 form of T

V Jrr' = — cosA(p - p')d\
T J 0

2' -—^ (P ™/J S ™/x - P ™/xSn"
1/3)cosm(<̂  - <£').

n= - 1 / 2 + iA, 6>6'.

(2) In (1) we may change the order of summation, integration.
(Cf. 20.) Then

2 r» P '
— cosA(p - p') —
T Jo P

- PB> SB-j SCN

= ( - 2iri) (residues to right of 0), if 6>ff, p>p'.

The poles of the integrand are the (real) zeros of P^*/?.
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Hence

The n's are the zeros > - £ of P^"/3, and r>r.

(3) I t has been shown in §12, 2 that
]?»*/* B"fi - P "̂/x' Ŝ */u is an even function of JR.

Hence from (1), by a process quite similar to that of 20 (3),
and using the equation of 12 (2) we find

- p)d\ |"°°coshS(x -
Jo""Jo

where / (0) = P*j8. S,;> - P>S*j8,

30. Space hounded by two axial planes

(1) From 27 (3), as in 21 (1),

"V Jrr' — — cosX(p - p')d\.
T JO

> sinh s(a - <&)sinh sd> _ . ,
sinh saJ"

Jo

(2) The second integral can be expressed as

- I SmW(a7<P)SlnWI<PSm # p » ',
J sinma

m SON

which if 4>><t>> 0>0' equals 2iri (residues of integrand to right
of O). Thus

V Jrr' = — cosA.(/r - p')d\ 2 sins<£ sms<f> S^
a J o HI

n = -1 /2 + iX, s=mirja, 0>ff.

(3) We may write (2)
4

V V ' 2 in«<£'
Jo
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The integral is equivalent to

s + n ) n ( 8 - „ - i)p,-( - ^>py. SON.

The integrand vanishes at infinity to the right of C, provided

p>p', 0>ff.

Since s is a real positive, the infinities to the right of C are the
poles of II(« - n - 1); for these,

n = s + p, p zero or a positive integer.

Now n ( - / > - l ) = - 7r/(sinpir. Up), so that the residue of
II( -p - 1) when p is an integer is ( - Y^jTlp.
Also when p is an integer, P,'+p( -/*) = ( - )PP,'+P/*.
Hence the above integral equals

and

V \/rr' = — 2 i

s = mtrja, r>r .

Cf. Lord Kelvin and Tait, Nat. Phil, Vol. I. App. B. (m).

31. Space bounded by two spheres and a cone

(1) From 28 (2),

V ^ ' = - 2 sinty-sin\p' 2'~i(Pr/3S> - P>
c p m rn P

\=PTT/C, n=-l/2 + i\, 6>d'.

(2) From 29 (2),

V Jr? = 4 2' cosm(<£- (j>).

The n's are the zeros > - i of P^"/3; r > / .
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(3) As, in 29, (3) is obtained from (1), so here from (1)

V Jr7' = — SsinApsinV f°°cosh8(jr - </> + <j>-)f(d)f(

« p Jo
A-yir/e, n = - 1/2 + ik, f(6) = P,?/3S.V-P>8*j8,

32. Space bounded by two spheres and two axial planes
p = 0, p = c, <f> = 0, 4> = a.

(1) From 28 (3),

V sjrr' = — - sinXp sinAp'
C j>

(2) From 30 (3),

V

s = mtrja., r>r'.

(3) From (1) as in 30 (2),

V \/rT' = — 2 sinA.o sinAp',
caca

2 si

33. Space bounded by two axial planes and cone

(1) From 30 (2),

V Jrr' = — cosA(p - p')dX.
a Jo

2 sin**,. sinsf .

n= -1/2 + tA,
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(2) In 29 (3) replace cosh S(TT - <£ + <£') by

2sinh s(a - <£)sinh s<ft. sinh sir/sinh sa

(3) From (1) as in 29 (2),
4,r

V <Jrr' — — 2 sins<f). sins</>'.

s = mir/a, n a zero > - £ of P.J/J, r>r'.

34. Space bounded by two spheres, two axial planes, and a cone

p = 0, p = c, <£ = 0, c£ = a, cosO = fi.

(1) In 33 (3) change e ~(?i'+i)(-p ~ p'] into

2sinh(n + i)(c - p)sinh(n + i)/o'/sinh(n + i)c.
r>r'.

(2) In 32 (3) change S > P > ' into

(3) In 31 (3) change coshs(ir-<f> + <f>) into
2sinh s(a - <̂ >)sinh s<f>' sinh w/sinh sa.

35. Space bounded by two spheres, two axial planes, and two cones
p = 0, /> = c, <£ = 0, <£ = a fi = /3, n = 8, f$>8.

(1) Start from the 6 form of 32. Comparison with the correspond-
ing case of the cylindrical system enables us to write down at
once

V Jrr' = — 2 sin\p sinX/j' 2 sins<f> sins<f>.
ca p m

(P/8S/x' - P/*'S/J)(P8S/x - PAiSS)/(Py3. SS - PSS0).

Here the harmonics are of degree - 1/2 + i\ and rank s ;

\=pir/c, s = mirja
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(2) In order to deduce the r form, change the order of summation,
and consider the function of n,

sinh(n + ¥)(c - p)sinh(n + i)p'/si-nh(n + ^)c

• (P0S/*' - F/x'Sj8)(PSSfl - P,iS8)/(P/3S8 - PS. S/J),

the harmonics being of degree n and rank s.

If p>p', 0>6', this function, which is odd in n+ 1/2, vanishes
for every infinite n; the total sum of its residues is therefore
nil. The infinities are simple poles, namely, the (pure imaginary)
zeros of sinh(« + l/2)e and the (real) zeros of P/3 SS - PS S/?.

Hence from (1)

, r /— 8TT sinh(n + £)(c - p)sinh(« + i)p
V -Jrr = 2 sinsA sins<i 2 > =P-—!-!• =^-.

h( + ^)
a

/J-(P/JS8 - PSS/3).

The harmonics are of degree n, rank s ;

B = rmrja ; n is a zero > — 1/2 of the function of n,

; r>r'.

(3) Taking (1) as it stands, consider the function of s,

sins(a - (j>)sins<f>'jsmsa

• (P/SS/i' - P/A'S/3)(PSS/Z - P^SS)/(P/3SS - PSS/3),

the harmonics being of degree — 1/2 + iX, rank s.

If <jb ></>', 6>0', this function, which is odd in s, vanishes for
every infinite s, and has simple poles at the (pure imaginary)
zeros of P/3SS - P8S/J, and at the (real) zeros of sinsa.

We thus find, as before,

__ /—, 8x . , sinh s(a -
V sjrr = 2 sinAp sin\p 2 r-

c sin
2 sinAp sin\p 2 r

c v , sinhsa

- PSS/3).

The harmonics are of degree - 1/2 + iX, rank is ;

X = pir/c ; s a positive zero of the function of s

P/3S8-P8S0; <t»<p'
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36. Relation of solutions in the two coordinate systems.

The reader has doubtless observed the pronounced analogy
between the forms of the solutions of allied cases in the two systems
of coordinates, This similarity is indeed no more than might have
been expected, seeing that the cylindrical is a special limiting case
of the spherical system, namely, when the centre of the spheres has
gone to infinity.

In the equation r = aef, we suppose a to become infinite while
r - a remains finite ; then

the spherical p becomes the cylindrical z/a
i) >> 0 ,, ,, ,, pja

„ <j> remains „ £.
With the aid of these limits, and those of 15 (1), the reduction of
the spherical solutions to the others can easily be made.

(Cf. Lord Kelvin and Tait, Nat. Phil, Vol. II., §783. In this
paragraph, which appeared in the first edition of 1867, the relation
of cylindrical to spherical harmonics is clearly pointed out, and
methods are indicated for arriving at formulae given explicitly, but
apparently afterwards, by Neumann, Mehler, and Heine.)

Similarly from the cylindrical solutions it is possible to deduce
solutions in ordinary rectangular coordinates, by sending the centre
of the cylinders to infinity. The reductions are not quite so easy as
in the former case, some rather troublesome limits being required,
particularly the limits of J m V and GmXp when m and p become
infinite, but in a finite ratio.

For the case of JmA./> with m and A. real and positive, see Graf und
Gubler, "Theorie der Bessel'schen Funktionen," Bern 1898; s. 96.

Of course the rectangular solutions can easily be found by a
direct process.

37. Semi-convergent symmetrical solutions, or Stokes' forms.
Reference has been made in the introductory paragraph to the

solution given by Stokes for a space bounded by six planes of the
rectangular coordinate system.* Now for each of the functions
considered in the present paper, it appears that there are two
distinct forms, analagous to that obtained by Stokes, involving
harmonics of real, and of purely imaginary rank respectively. These

* "On the Critical Values of the Sums of Periodic Series." (Collected
Work*, vol. I., p. 301.)

6 Vol.18
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Stokes' forms, though arithmetically much less simple than the
forms already given, are of considerable analytical intertest, for
this reason among others, that they are explicitly symmetrical in
the accented and unaccented coordinates. They can be derived
with little trouble from the expressions already found, the trans-
formations in a large number of instances being most easily effected
by means of a theorem of Cauchy's, which it may be useful to state,
namely :—If the finite singularities of a uniform function f(z) are
all simple poles, and if, for an indefinitely increasing z, f(z) tends
to zero (except at the poles, if these extend to infinity, and, it may
be, for certain values of the phase of *, for which f(z) remains
finite), then the function is equal to the sum of its polar elements,
a polar element of the function being A/(z - a), where a is a pole,
and A the residue at that pole.

The theorem, which includes many well-known formulae of
analysis, is proved at once on applying the fundamental residue
theorem to the function of a, f(a)j(z — a).

As examples, take the function of A.,

sinh A(c - z)sinh Az'/sinh \c, 0 < z' < z < c.

The conditions are satisfied, and the function is equivalent to

— 2 sinrwrz/c. sinpirz'/c . I : + - : I
c p \k-%pTrje X + tp-rrjcJ

Again, the function of n,

S»> PnV = n("» + n)U(m - n -
satisfies the conditions if 6 > 8'.
Its poles are those of II(m + n) and of II(m - n - 1),
that is n = m+p, n= -m-p-\, with p zero or a positive integer.
The residue of II(m - n - 1) when n = m +p is ( - ^jlip, §30, (3).
Hence residue of the function when n = m +p is

T j . . p

Also since the function is even i n « + | ,

the residue atw=— m— p — 1 is the same as this, except for sign.

Hence

Sn / . . Pn ,* -
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Some special cases of this are interesting, e.g., when m — 0,

and putting 8' = 0 in this

so that, changing 6 into ir - 6,

nKr' jr p\n-p

The two last formulae evidently give the expansions of P,,/J, P,,(
in terms of Legendre's functions.

38. As specimens of Stokes' forms, and of the methods by which
they may be found, we take the Green's function for a space bounded
by two axial planes, §21.

In 21 (1) we replace sinh s(a - </>)sinh s<£7sinh sa by

a
and find

2s . rmr<f} . rmr<f> 1
— 2 sin - s i n — - . - j - ^ — , , §37 ,

(4) V = -^ - f°° cos\(s - z')d\ f" e ~ ST sinh sx GJXp Gui\p'. scU:

2J sin sin .
a a

Again in 21 (3), for <Tx(*-z') write

2 r«° A.COSK(Z - z')d,K2 Too

""Jo
and (for convenience of comparision) interchange the symbols k, K.
Hence

Jo
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In (4) we may integrate with respect to s before summing with
respect to n, provided, as appears from 21 (2),

A °° *. •>, ,e ~ S?rsinh mr GJkp GJX

riXP> P>P-

Also in (5) we may first integrate with respect to K, then sum
with respect to m, and lastly integrate with respect to A., provided

These two theorems are true and can easily be proved by the method
of Cauchy, already exemplified so often. The second theorem is
given by Sonine, Math. Annalen XVI.

If we were to go through the other functions in like manner, we
should find suggested many interesting theorems, easy to prove,
and indirectly verifying the legitimacy of altering the order of
summations and integrations in the Stokes' forms.

39. Continuation of Green's function beyond the bounded space
containing the pole.

The close analogy between Newtonian potential theory and the
theory of functions of a complex variable has often been remarked.
In each theory one of the most important ideas is that of the
continuation or extension of a function beyond a limited region for
which alone it is, in the first instance, analytically defined.

Now the transformations by which in this paper one form for
a Green's function has been deduced from another have all this
interesting characteristic that they carry on the function to a
region in some way more extensive than that for which the original
form is valid. This extension is valuable for various reasons,
particularly as an aid to the determination of the singularities of
the complete function.

Thus in §19, the form (1) defines a potential function for the
space «'<«<2c -%'; the form (2) extends the function to the space
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p>p, for all values of *. Moreover, this second form, with the
cognate form for p<p', shows that the function is odd and periodic
in z, with period 2c. Hence knowing the one singularity of the
function between the limits o<z<c, we can infer the position and
nature of the singularities of the complete function, and obtain the
results of the method of images. When the boundary is cylindrical
or conical, the singularities are of a more complex character, but
they may be investigated from the materials given here, as I hope
to show later.

40. SommerfelcCs Function,

Not the least interesting cases are those in which the boundary
consists in part of two axial planes, the special feature being that
the extended function, as a function of <f>, has the period 2a instead
of 2ir, so that it does not in general return to its original value
when the variable point makes a complete circuit about the axis of
z. In order to obtain a quasi-geometrical representation of such a
function, Professor Sommerfeld introduces the conception of a
Riemann's space winding about the axis of z, a space in which we
may consider functions not necessarily periodic in <f>, whose value is
supposed to range from - « to + oo.

[Proceedings of the London Mathematical Society, Vol. 28,
"Uber verzweigte Potentiale im Raum." See also in Vol. 30 of
the same Proceedings, "Some multiform solutions of the Partial
Differential Equations of Physical Mathematics," by Dr H. S.
Carslaw, and compare Lord Kelvin and Tait, Nat. Phil., Vol. I.,
App. B (c) ].

In such a space the function 1/ distance or T is not the simplest
conceivable potential, for it has a singularity of the first order, not
for cf> = <f> only but for </> = <)>' + 2nir where n is any integer.

The fundamental potential, or Sommerfeld's function, as we may
call it, will have but one singularity in the whole space, namely, at
some point whose <f> = <f>. (The axis of z is supposed excluded from
the space by a very fine winding cylinder.)

Expressions for this function in terms of cylindrical and spherical
harmonics may be found without difficulty. The easiest way, from
our present standpoint, is to take one of the solutions for a space
bounded by two axial planes, say <j>— +o/2, and find its limiting
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form as a increases indefinitely. Thus in 21 (1), when the plane
from which <f> is measured is turned through an angle a/2, so that
the factor involving a becomes

sinh si — - <£lsinh sl<j> + — I/sinh sa,

we may, as it is easy to show, find the limit of V by writing its

limit instead of this factor; this limit is \& ~ *'* ~ ^ ' . Hence

(1) V = — ["coaXtz -z')dXP°e" ^sinhsx.e"8^"^ ' 'G- iXpG- iXp'ds.
T J O JO

(2) The second integral here is

ON

ON

ON.

- f eimTsintnir eimi<f>" *'}GmiXp GJkp'dm

= JL J eM* - 0>'\^GmaP)(i - mSJkP')dm

- y j eiml*-*>'»(imGmiX J_J\p)dm

If p>p, <j> ><t>\ the path of integration in the former integral
may be changed to OE, in the latter to OW. Expressing these as
teal integrals, and collecting, we find

4 |"<K f«;
V = — cosA(z - z')dX cosm(<f> - <f>')GmiXp JmiXp'dm.

"•Jo Jo
P>P

(3) The z form is deduced from this as in 21 (3),

V = 2 P" cosmU - <\>')dm |"°° e ~ X(s ~ z']JmXp JmXP'dX.
J o Jo

z>z'.
The Stokes' forms may now be written down as in 38 (4), and

the corresponding expressions in spherical harmonics may easily be
obtained in the same way.

41. If we denote the above function by V(<£), then a function
having singularities of the first order at <£, <£ + 2a, <f> ± 4a, etc, is
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The form 40 (1) is convenient for calculating this series. We
obtain

(1) W = 4 i f " cos\(»-z')dk
1" J 0

sir • . COsJWa+ <£'-<£) .. „ .. ,
e sinhs7r V-; 'Gj,iApGi,tAp ds

sinhsa

f"°°
J 0

(2) From this we deduce as usual
4 P°o 77177

W = — cosA(s - s')(/A. 2' cos (<£ - <f>')G i\p 3 iXp,
a. JO m a — —

a a
P>P-

(3) W = ?I f % - ^ - *'>dA 2' cos^(<^ - f ) JmT\P. J m r V .
a a

The functions T and W coincide when a = ir.

42. The relation of the solution of Green's problem to the general
problem of determining a potential function taking an arbitrary
value at a given boundary is well known. "When this paper was
commenced, it was intended to consider in some detail, and to
illustrate from the foregoing solutions, certain questions arising in
this connection, particularly with reference to modes of expansion
of an arbitrary function. Since, however, the paper is already
sufficiently long, these questions must be left over for the present,
but I propose to deal with them in a future paper, which I hope to
have the privilege of reading to the Society at one of next session's
meetings.

On the Discriminant of the General Homogreneous Quadric.

By OHAS. TWEEDIE, M.A., B.Sc., F.R.S.E.

A note on change of Coordinate Axes.

By Prof. STEGGALL.
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