
14
Reggeon field theory

Reggeons turn out to be similar to particles with varying spins not only
in the sense of the ‘pole’ contribution to the asymptotics, but also in the
interaction picture.

We have started with a Regge pole and generated series of non-enhanced
reggeon diagrams characterized by non-singular particle–reggeon ver-
tices N ,

+ . . .++

Angular momentum singularities in reggeon creation amplitudes gave rise
to various enhanced reggeon diagrams,

+ + +  . . .+

We are looking for an effective field theory that would solve the reggeon
unitarity. The usual field theory contains a hypothesis about the form of
the interaction. If I chose three-reggeon, or only four-reggeon, interactions
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14.1 Prescriptions for reggeon diagram technique 355

to build up the theory,

,

or even employed them together, I would be able to fulfil the correspond-
ing reggeon unitarity conditions. But I have no reason to restrict myself to
such vertices. In other words, my ‘theory’ contains in principle an infinite
number of unknown constants.

Everything would have been fine if we had α(0) < 1, that is, σtot de-
creasing with energy. In this case the branchings are separated from the
pole, produce but small controllable corrections to the asymptotics, and
the interaction can be looked upon as being weak.

In the interesting case of α(0) = 1, however, the multi-reggeon inter-
actions are absolutely essential: at t = 0 branchings accumulate to j = 1,
and for t < 0 even move to the right from the pomeron pole. This means
that from a practical point of view we have lost. From the point of view
of the theory, however, the problem, although a complicated one, remains
sensible: the iteration of poles and branchings produced but new reggeon
branchings, and the picture remained self-consistent.

It is somewhat distressing that the interactions of reggeons cannot be
considered as weak ones, so the beauty of reggeons, as objects embodying
strong interaction, apparently disappears. Nevertheless, one can hope that
in certain cases just a finite number of vertices will be relevant. This
being the case, it will allow one to relate different observables and use the
reggeon field theory in order to make quantitative as well as qualitative
predictions.

14.1 Prescriptions for reggeon diagram technique

To construct a field theory we have to start with the bare propagator and
interaction vertices. To describe interacting pomerons it is convenient to
introduce the bare P Green function as

G0(k) =
−1

ω + ε(k)
; ω = j − 1, ε(k) = −α(k2) + 1 � α′k2. (14.1a)

Changing the overall sign of the propagator eliminates the oscillating
factor (−1)n−1 in the n-pomeron contribution to the reggeon unitarity
(all terms in the unitarity condition for −fj enter with positive sign).
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356 Reggeon field theory

For the vertices we choose

1 r λ λ (14.1b)

Let us stress that the two four-particle vertices would have been identical
in a relativistic theory; here they are not, λ �= λ1.

In the expression for the scattering amplitude

A(s, q2) = s

∫
dω

2πi
ξj eωξfj(q2), ξ = ln s,

expanding the signature factor ξj at small ω values,

ξj = − e−iπ
2
j

sin π
2 j

= i
e−iπ

2
ω

cos π
2ω

� i +
π

2
ω,

the real part of the amplitude is conveniently represented by the derivative
of the imaginary part,

A(s, q2) �
[
i +

π

2
∂

∂ξ

]
ImA(s, q2). (14.2a)

Therefore it suffices to know the imaginary part. We will calculate the
function

F (ξ, q2) ≡ 1
s

ImA(s, q2),

whose Fourier transform, f(ω, q2), is given by the sum of diagrams with
reggeon propagators and vertices (14.1)

F (ξ,k2) = −
∫

dω

2πi
eωξf(ω,k2). (14.2b)

14.1.1 Reggeons and branchings in the impact parameter space

We start from the contribution of the non-enhanced branchings,

n
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14.1 Prescriptions for reggeon diagram technique 357

f(ω,k2) = −
∞∑
n=1

∫
dω1 . . . dωn d

2k1 . . . d
2kn

n! [(2π)3i]n
G(ω1,k1) · · ·G(ωn,kn)

·(2π)3 iδ(ω −
∑

ωi)δ
(
k −

∑
ki

)
N2

n(ωi,ki). (14.3)

The fact that this diagram is not enhanced means that the vertex blocks
Nn are not singular and at small ω and k values, they can be replaced by
some numbers, Nn ≈ const.

By using the Fourier transformation to the impact parameter space,

(2π)2δ(k −
∑

ki) =
∫

d2ρ eik·ρ−i
∑

ki·ρ,

we factorize the transverse momentum integrations to get

F (ξ,k2) = −
∞∑
n=1

1
n!

∫
d2ρ eik·ρ

(∫
dω1

2πi
eω1ξ

∫
d2k1

(2π)2
G(ω1,k1) e−ik1·ρ

)n

.

The integrals over ωi run along the imaginary axis,∫
dω1

2πi
eω1ξG(ω1,k1) = −

∫
dω1

2πi
eω1ξ

ω1 + α′k2
1

= − e−α′k2
1ξ.

Integrating over k1 we have

−
∫

d2k1

(2π)2
e−α′k2

1ξ−ik1·ρ = −
∫

d2k1

(2π)2
e−α′ξ

(
k1+

iρ

2α′ξ

)2
− ρ2

4α′ξ

= − 1
4πα′ξ

exp
{
− ρ2

4α′ξ

}
≡ G̃(ξ,ρ).

(14.4)

The function G̃(ξ, ρ) is an important distribution whose physical meaning
we will discuss later in this lecture.

Substituting (14.4) into the n-reggeon branching amplitude,

F (n)(ξ,k2) = −(−1)n
N2

n

n!

∫
d2ρ eik·ρ

1
(4πα′ξ)n

e−
nρ2

4α′ξ

=
N2

n

nn!
(−1)n−1

(4πα′ξ)n−1

∫
d2ρ eik·ρ · −n

4πα′ξ
e

−nρ2

4α′ξ ,

we observe that the integrand here is the one we have just calculated
above, i.e. the Fourier transform of the Green function G(ξ,k), with the
only difference that α′ is substituted by α′/n. Hence, we obtain

F (n)(ξ,k2) =
(−1)n−1N2

n

nn!(4πα′ξ)n−1
e−

α′
n

k2ξ. (14.5)
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358 Reggeon field theory

In the particular case of n = 1 we recover the pole expression, F (1) =
e−α′k2ξ. What is the magnitude of the nth branching contribution like?
Is it large or small?

j

ω = 0 

The (modulus of the) exponent in
(14.5) is at its maximum for n = 1, i.e.
the contributions of the branchings,
n ≥ 2, are larger than that of the pole,
in the sense of the position of the
singularity in the j-plane. On the other
hand, the first term is larger owing to the

suppression of the higher terms by the pre-exponential factor F (n) ∝
1/ξn−1. Thus one cannot state a priori that n → ∞, jn → 1 are the most
important contributions.

14.1.2 Qualitative estimate of the series

Let us try to estimate the sum

F =
∑
n

F (n)(ξ,k2). (14.6)

Our estimate is going to be rough since the we don’t know the dependence
of the vertex functions Nn on n, and other – enhanced – diagrams are
important too. Nevertheless, just for curiosity’s sake, let us look at which
n are relevant in the series (14.6).

If k2 = 0, everything is very simple: all singularities are at the same
point j = 1 and the pole dominates:

F (ξ,k2) = g2 − N2
2

4πα′ξ
+ O

(
ξ−2

)
.

This is true not only for k2 = 0, but in an interval of momenta where the
condition α′k2ξ 
 1 is satisfied.

In the opposite case, when α′k2ξ � 1, the far terms of the series become
important. How can we estimate the sum? It is clear that one has to find
n = nmax which marks the maximal contribution, maxn{Fn} = Fnmax .
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Since the number of relevant terms is large, we can write

F �
∑
n

eϕ(n) �
∫

dn eϕ(n) ,

and attempt to apply the steepest-descent method to the exponent

ϕ(n) = −α′k2ξ

n
− (n− 1) ln(4πα′ξ) − n lnn + iπn, (14.7)

where −n lnn originated from the combinatorial 1/n! factor. There is one
delicate point here; the series has alternating signs, therefore the term
iπn in (14.7). This is not a very sensible way to estimate oscillating series
but is good enough to illustrate the key feature of the answer.

The saddle-point equation,

dϕ(n)
dn

=
α′k2ξ

n2
− ln(4πα′ξ) − lnn− 1 + iπ = 0,

determines the scale of n at which the terms of the series are large:

α′k2ξ

n2
max

= ln(α′ξnmax) + O(1) , n2
max ≈ α′k2ξ

ln(α′ξnmax)
∼ 2α′k2ξ

ln(ξ3k2)
,

where we omitted the constant in the argument of the logarithm. Now we
approximate ϕ(nmax),

ϕ(nmax) ∼
√

2α′k2ξ ln(ξ3k2),

and obtain the scale of the answer in the region α′k2ξ � 1:

F (ξ,k2) ∼ F (nmax) ∼ e−c
√
α′k2ξ. (14.8)

Here we have dropped the ln factor in the exponent, since our estimation
is rough anyway. The decrease of (14.8) with ξ is fast, but slower than
any exponent, exp(−γξ), γ > 0.

What is the correct way of calculating the sign-alternating series? One
has to write down the representation of the Sommerfeld–Watson type,

∑
n

(−1)n−1fn =
1
2i

∫
dn

sinπn
fn ,

and include ln sinπn into the exponent ϕ(n). Its presence produces a pair
of complex conjugate points as the saddle-point solution. As a result, in
addition to the exponent of

√
α′ξk2, the answer also acquires a factor

cos(α′ξk2) which leads to oscillations in the scattering amplitude.
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360 Reggeon field theory

Let us see, what we obtain by fixing ξ and increasing k:

F(ξ,k2)

e −c√α ξk2

k2

e −α ξk2

We have here a curious result, just like in classical diffraction: the pole
term leads to a diffraction cone; taking into account the branchings, the
slope of the amplitude falloff decreases, and oscillations appear.

We can conclude that in the region of small momentum transfers non-
enhanced branchings do not alter the pole picture. With the growth of
k2, however, the angular distribution changes drastically; due to the al-
ternating signs of the multi-reggeon branching contributions, maxima and
minima appear naturally in the differential scattering cross section.

This would have been the answer, and a rather simple one, if not for
enhanced reggeon diagrams.

14.2 Enhanced diagrams for reggeon propagator

To write down everything is impossible, so we restrict ourselves to the

simplest interaction . The exact reggeon Green function is

given by the sum of diagrams with various reggeon loops the bare reggeon
can mix with, and their repetitions,

+ . . .

r

r

++G =
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14.2 Enhanced diagrams for reggeon propagator 361

14.2.1 Reggeon loop in the reggeon propagator

Consider the first correction to the propagator:

G(1) =
1

ω + α′k2
Σ(ω,k2)

1
ω + α′k2

, (14.9)

Σ(ω,k2) = r2

∫
dω′ d2k′

(2π)3 i
1

ω′ + α′k′2

1
ω − ω′ + α′(k − k′)2

. (14.10)

To calculate the ‘self-energy’ insertion (14.10) it is natural to take the ω′

integral first. The integration contour lies between the two poles; closing
the contour around one of them we obtain

Σ(ω,k2) = r2

∫
d2k′

(2π)2
1

ω + α′k′2 + α′(k − k′)2
. (14.11)

This is a typical expression for the two-reggeon branching. The first thing
we observe is that this integral diverges at k2 → ∞. There is nothing
strange nor terrible in this, since we treated all the vertices as constants
and expanded ε(k2), being interested in region of small transverse mo-
menta. The integration has to be carried out up to a certain value k2

max.
In any case, not this is the source of our problems. More important is

the strong singularity in ω: taking ω = 0, the integral tends to infinity
in the limit of small momentum transfer, k2 → 0. This is a logarithmic
divergence corresponding to a branch-cut singularity.

Let us calculate the integral (14.11). Introducing a symmetric integra-
tion variable q such that k′ = q + 1

2k (k − k′ = q − 1
2k) we derive

Σ(ω,k2) = r2

∫
d2q

(2π)2
1

ω + 1
2α

′k2 + 2α′q2
=

r2

8πα′ ln
Λ

ω + 1
2α

′k2
, (14.12)

where parameter Λ limits from above the q-integration, q2 ≤ Λ/2α′. The
position of the singularity, ω = −1

2α
′k2 ≡ ω2 is just that of the two-

reggeon branching, cf. (11.36).
Let us imagine that we sum up the series of ‘self-energy’ corrections to

the propagator:

G(ω,k2) = G0 + G0ΣG0 + G0ΣG0ΣG0 + · · · = G0 + G0Σ ·G

=
1

G−1
0 − Σ(ω,k2)

= − 1
ω + α′k2 + Σ(ω,k2)

. (14.13)

We obtained an expression not having any pole at ω � 0 at small k2 val-
ues; the correction (14.12) is huge (infinite at ω ∝ k2 → 0). What hap-
pened could have been foreseen: when the pole is on the cut, in the same
point as the branchings, one cannot expect to get anything nice.
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362 Reggeon field theory

m2 4m2 9m2

k2

Fig. 14.1 The particle pole and multi-particle branch cuts in QFT with m �= 0.

14.2.2 Analogy with m = 0 infrared singularity in QFT

What phenomenon in the field theory could correspond to this catastro-
phe? Recall the usual φ3 field theory. What sort of singularities did we
have there? The bare Green function contained the mass parameter m0;
the corrections lead to the appearance of the renormalized mass m enter-
ing observable phenomena. In the momentum transfer plane the particle
pole is separated from threshold branchings as shown in Fig. 14.1.

In order to feel the analogy, let us imagine that the intercept of our
pomeron is not exactly unity: αP(0) �= 1.

j � α(0) + α′k2 , ω = α(0) − 1 − α′k2 = Δ − α′k2.

In this case the multi-pomeron branchings would be in the points

ωn = nΔ − α′k2

n
.

If Δ < 0, higher branchings move away from the pole, and the struc-
ture of singularities displayed in Fig. 14.2 is analogous to that in particle
theory (Fig. 14.1). In terms of particles Δ → 0 means that the mass of
the particle is approaching zero. What would happen in field theory then?
The same trouble as in our pomeron problem.

Take m0 = 0 in the particle propagator,

G0 = −−−−− =
1

−k2
;

the first self-energy correction gives G = −(k2 + Σ(k2))−1.
Generally speaking, the pole at k2 = 0 would disappear – the particle

ω

Fig. 14.2 Regge pole α(0)−1 = Δ < 0 and corresponding branchings.
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14.3 σtot � const as an infrared singular point 363

acquires a mass, if only one does not take special measures to prevent it
from doing so. We have met such a situation in electrodynamics:

D0
μν(k) =

gμν
k2

=⇒ Dμν(k) =
gμν

k2 + Π(k2)
.

Making use of the conservation of electromagnetic current we have shown
that the polarization operator vanishes in the origin, Π(k2) ∝ k2 at k2 →
0. In this sense we can say that the photon did not acquire a mass owing
to the symmetry – to gauge invariance in this case.

We see that our situation with αP(0) = 1 is just the same; taking
the bare Green function with zero mass, the corrections diverge. This is
actually the main problem of the theory of interacting pomerons. We do
not know, have not formulated any reason why the total cross sections are
asymptotically constant. Having not understood this, having not imposed
the additional condition, we will always face the problem that the pole
does not ‘hold’ at α(0) = 1.

Can it go to the right? No, since we took into consideration the branch-
ings and respected the Froissart theorem which forbade the power growth
of the total cross section. However, there is no way to prevent it from
decreasing with energy.

Indeed, it is easy to see that the pole bounces to the left, since, owing
to the anti-hermiticity of the theory, the correction to the position of the
singularity comes with a negative sign,

δω0 = − r2

8πα′ ln
Λ
ω0

< 0.

Consequently, without understanding why the cross section is constant,
we cannot ensure the self-consistence of the theory.

14.3 σtot � const as an infrared singular point

We have come to two conclusions, namely that

(1) the pomeron pole does not stay at αP = 1; and

(2) taking into account the simplest interactions, it shifts to the left.

Nevertheless the question arises what Green function and interaction ver-
tices do we have to use in order to have the renormalized pole at 1.
Evidently, the initial position of the pole has to be chosen to the right

https://doi.org/10.1017/9781009290227.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.015


364 Reggeon field theory

from unity:

G0 =
−1

ω − Δ + α′k2
, Δ = α(0) − 1 > 0.

This, however, does not solve the problem. Indeed, inside the two-reggeon
loop Σ we have to use the renormalized poles, in order to avoid the self-
energy corrections to the loop propagators,

Σ = r2

∫
d2ω d2k′

(2π)3i
G(ω′,k′)G(ω − ω′,k − k′). (14.14)

The exact Green functions, however, are supposed to have poles in the
origin, ω ∝ k2 → 0, and the loop integral acquires singularity at the point
where the two poles pinch,

−α′k′2 = ω + α′(k − k′)2;

ω

ω   + α ( k − k  )2

The condition for the pinch in k′ gives ω + 1
2α

′k2 = 0, and we get

G(ω,k2) = −
(
ω − Δ + α′k2 +

r2

8πα′ ln
Λ

ω + 1
2α

′k2

)−1

. (14.15)

We see that Δ > 0 did not help: the infrared singularity is too strong to
be taken care of by mere introduction of a constant shift in the position
of the bare pole. One has to look deeper, to take into account more com-
plicated diagrams, to address the question of the possible behaviour of
the renormalized vertices, etc.

We face the following problem: what the Green function has to be in
order to ensure that the theory contains a massless excitation?

This is a general question which appears also in the condensed matter
physics context. In our case it is about P in 1.

14.3.1 Corrections to the vertex part

Before we start summing the diagrams, let us see what is the scale of
the correction to the vertex (as we will discover shortly, it is actually the
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14.3 σtot � const as an infrared singular point 365

vertex that plays a determining rôle).

Γ ≡ + ...= +

In terms of renormalized reggeon Green functions, the first correction
takes the form

Γ2 =

ωk

ω2k2ω1k1

ω k � r3

∫
dω′ d2k′

(2π)3 i
1

ω′ + α′k′2

· 1
ω − ω′ + α′(k − k′)2

· 1
ω′ − ω1 + α′(k′ − k1)2

. (14.16a)

Now at large k′2 values everything is all right. We will estimate this ex-
pression by simply counting the powers. Let all the external variables be
of the same order of magnitude, ω1 ∼ ω2 ∼ α′k2

1,2 ∼ α′k2 ∼ ω. Then

Γ2 ∼ r3

ω
,

Γ2

r
∼ δΓ

Γ
∼ r2

ω
. (14.16b)

For ω > r2 the correction is small, and we can use perturbation theory all
right. However, at small values of ω, ω < r2, we face a rather catastrophic
situation: the correction becomes large, and diverges in the ω → 0 limit.

What happens here is almost identical to the problem of the second-
order phase transitions (‘almost’ because our specific problem is marked
by the anti-Hermiticity of the effective Hamiltonian). Normally, corre-
lation functions in a thermodynamical system fall exponentially with
the distance, ∫

d3k
eik·r

k2 + Δ2
∼ e−Δr

r
. (14.17)

If at a certain temperature T the value of Δ turns to zero, the correlation
radius goes to infinity, and the system undergoes the phase transition. At
temperatures close to the critical, T ≈ Tc, the excitations interact strongly
and the perturbation theory becomes divergent.

Historically, the understanding of the problems of interacting pomerons
and of the second order phase transitions in condensed matter physics was
being gained practically simultaneously. The two problems turn out to be

https://doi.org/10.1017/9781009290227.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.015


366 Reggeon field theory

very similar; the only difference is that, let us stress it again, the pomeron
dynamics corresponds effectively to an anti-Hermitian Hamiltonian.

14.3.2 Equations for the renormalized vertex and
the reggeon propagator

What can be said about the exact vertex? It can be shown that all the dia-
grams for the corrections to the vertex part can be combined into skeleton
diagrams built of exact Green functions and vertices. (Skeleton diagrams
are those which contain no block that would represent a correction to an
internal vertex.)

. . .++ + += (14.18)

This is one equation for two quantities, the propagator and the vertex. A
second equation seems to be easy to write – the Dyson equation,

G(ω,k) = G0(ω,k) +
G 

G 
G 0 

Γ G . (14.19)

The impression that this equation may be more informative than that
for the vertex function (14.18), containing an infinite number of terms, is
deceiving. In fact, (14.19) is not an equation: the loop integral diverges,
and the expression contains G(q) and Γ(q,q,k) in the region of large
momenta q about which we do not know anything.

One usually performs the renormalization. This, however, does not solve
the problem but rather hides it. At the same time, there is a simple
way to derive the second equation we need. Indeed, the divergence is a
consequence of the fact that G is a ‘dimensional’ quantity: [G] ∼ 1/ω. It
is sufficient therefore to take a derivative and write down an equation for
the ‘dimensionless’ quantity ∂G−1(ω,k)/∂ω.

Imagine one of the diagrams participating in Σ, ω . The

external ‘energy’ ω flows through some of the internal lines. Differentiation
over ω leads to doubling one of these internal lines,

∂

∂ω

1
(ω − ∑

k ω
′
k + · · · ) = − 1

(ω − ∑
k ω

′
k + · · · ) · 1

(ω − ∑
k ω

′
k + · · · ) ,
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14.4 Weak and strong coupling regimes 367

and resembles the vertex with zero ‘energy–momentum’ transfer,

∂

∂ω =  −( ) .

Indeed, it can be checked that the equation for the derivative of the inverse
reggeon Green function looks diagrammatically exactly the same as the
equation for the exact vertex:

∂G−1

∂ω
≡ ⊗ = −1 + + . . .+ (14.20)

Unfortunately, equations (14.18) and (14.20) are represented in the form
of infinite series. Therefore, there is always a danger that, owing to the
possible divergence of the series, conclusions that one would derive from
these equations may turn out to be wrong.

14.4 Weak and strong coupling regimes

Leaving aside the problem of the convergence of the series, we can guess
the structure of the solution. But first, having expressed the equations
for the vertex (14.18) and the propagator (14.20) in terms of exact ,
renormalized quantities, we have to re-examine the size of corrections. In
other words, we have to estimate the magnitude of the effective expansion
parameter.

Each subsequent term on the r.h.s. of the equation contains, compared
to the previous one, three reggeon Green functions, two vertices and an
additional integration over the reggeon loop:

δΓ
Γ

∼ δΣ
G−1

∼
∫

d2k′ dω′ G3Γ2 ∼ e2. (14.21a)

We may represent this parameter as

e2 ∼
〈
k2

〉
ω

·
(
ωG

)3 · Γ2

ω
, (14.21b)

with
〈
k2

〉
the characteristic transverse momentum in the integral. If

renormalization effects were moderate and did not drastically change the
behaviour at small ω, so that Γ ∼ r, ωG ∼ 1,

〈
k2

〉
∼ ω, this would lead

us back to the original estimate (14.16b), e2 ∼ r2/ω.
The quantity e2 depends on the external variables ω, k2 and can be

looked upon as the ‘invariant charge’ – the true measure of the ‘interaction
strength’ in the theory of interacting pomerons. Our theory may have a
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self-consistent solution in two regimes, characterized by the magnitude of
the ‘invariant charge’ in the ω → 0 limit:

� Weak coupling, e2 
 1. This regime is possible if the interaction
modifies the interaction vertex so that Γ vanishes when k2 → 0,
ω → 0. Given a small effective interaction strength, one can use per-
turbative expansion to control the corrections.

� Strong coupling, e2 ∼ 1. In this case all terms in the equations are of
the same order, and perturbation theory is not applicable.

14.4.1 Scaling solution. Strong coupling

We have seen that having taken the bare quantities and having started
the iterations of the equation, we have obtained the growing corrections.
How can we, nevertheless, make the l.h.s. and the r.h.s. of the equation
equal?

Since correction terms appear to be singular in the origin, let us sup-
pose that the bare terms could be neglected in the equations. If so, we
would arrive at a homogeneous non-linear integral equation for the sin-
gular quantities (while the constant bare terms may be cancelled by non-
singular pieces of the skeleton diagrams on the r.h.s.).

When we search for a self-consistent solution, not only the matching of
numerical values of the l.h.s. and r.h.s. of the equation is required, but also
that of the singularities. If the singularity is weak, then the perturbation
theory can be used. If, on the contrary, the singularity is strong, then the
Born terms drop out and we get a homogeneous equation.

Bearing in mind the second case, let us look for a solution in the fol-
lowing form:

G(ω,k2) = ωμg

(
k2

ων

)
, (14.22a)

Γ(ω,k2;ω1,k2
1;ω2,k2

2) = ωργ

(
k2

1

ων
1

,
k2

2

ων
2

,
k2

ων
,
ω1

ω

)
. (14.22b)

This is a statement of the ‘scaling’ type: we extracted the overall powers
of ω and introduced the functions g and γ depending only on the ratios
of all other variables. We have to substitute this scaling solution in the
equation (omitting the finite bare terms) and see if it reproduces itself
under iterations.

It is clear that the ‘homogeneous matching’ can be achieved only if
e2 ∼ 1. Substituting (14.22) into, for example, the equation for Γ, the
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first diagram in (14.18) gives

Γ �
∫

dω′

ω′
d2k′

ω′ν · (ω′)ν+1
(
ω′μg

)3(
ω′ργ

)3
. (14.23)

Due to the scale invariance of the functions g and γ in (14.22) under the
transformation

ω → λω, k2 → λνk2,

the integral (14.23) will behave as λ3(ρ+μ)+ν+1. This means that it can
always be written in the form

Γ � ω3(μ+ρ)+ν+1F (ratios)

(provided the integral is convergent). Now, equating the exponents, our
only requirement is that the relation ρ = 3(μ + ρ) + ν + 1 should be
satisfied:

3μ + 2ρ + ν + 1 = 0.

Let us note that this condition actually means e2 = O(1). Indeed,

e2 ∼
∫

d2k dω G3Γ2 ∼ ων+1ω3μω2ρ Φ(ratios) = const.

This shows that in the scaling solution the ‘effective charge’ e2 does not de-
pend on the small quantity ω. Hence, e2 ∼ 1, corresponding to the strong
coupling regime.

It can be easily verified that in all diagrams in the equations for the
Green function and the vertex, the scaling solution (14.22) reproduces
itself.

Our equations in the strong coupling regime do not contain parame-
ters at all. The phase space volume d2k dω ∼ (d3k) is the only quantity
which reflects the specific features of the theory. K. Wilson suggested
an interesting method for the investigation of such equations, namely,
the continuation in the number of dimensions. By treating the deviation
(ε) from the actual number of dimensions (three in our case) as a small
parameter, one can approximate the solution by series in ε.

14.4.2 The cross section seems to change inevitably

Let us demonstrate that the scaling (‘strong coupling’) solution is in-
compatible with the σtot → const asymptotic behaviour. Evaluating the
imaginary part of the reggeon Green function to get the total cross section
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we obtain

σtot(ξ) ∝ ImA(ξ,k2 =0) ∼
∫

dω eωξ · ωμ ∝ ξ−(μ+1) . (14.24)

Consider first the case μ + 1 > 0 corresponding to the total cross section
decreasing with energy. In this case,

∂G−1

∂ω
→ ∞ (ω → 0),

so that the bare term (−1) in (14.20) for the derivative of the inverse
pomeron Green function can be neglected. But then my equations would
not know that the Hamiltonian of my theory was actually anti-Hermitian:
with the Born terms dropped, the equations become insensitive to the
sign of G. A solution with G > 0 would not satisfy us, since in this case
the contributions of the branchings would be of the same sign, and the
unitarity condition would be not of the reggeonic type. The series must be
alternating, corresponding to G < 0. As a more detailed analysis shows,
there is no satisfactory solution for μ + 1 > 0.

Now we take μ + 1 < 0:

∂G−1

∂ω
→ 0 (ω → 0).

Now the unity can not be thrown away in the equation. In this case a
solution exists corresponding to G < 0. This means that the total cross
sections might grow logarithmically with energy.

Neither of the two cases is what we have been looking for. The scaling
solution does not allow us to have a constant cross section, μ + 1 = 0. In
fact, all negative integer μ values are forbidden by the strong coupling
equations.

How can this be seen? If μ = −1, in the ω → 0 limit we have

∂G−1

∂ω
∼ ω0 = const. (14.25)

Will this constant be reproduced by the equation (14.20)?
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Let us consider the simplest diagram,

Δ
∂G−1

∂ω
= ∼

∫
dω′ d2k′∂G

−1

∂ω
G3Γ2,

and rewrite the integrand as follows,∫
dω′

ω′
∂G−1

∂ω

[
d2k′ · ω′ ·G3Γ2

]
∼

∫
dω′

ω′
∂G−1

∂ω
· e2. (14.26)

Since e2 = O(1), substituting the constant for the derivative of G leads
to a logarithmic divergence,

Δ
∂G−1

∂ω
� const

∫
dω′

ω′ ∝ lnω,

incompatible with the assumption (14.25). This is a general feature of
dimensionless integrals.

14.4.3 How to enforce σtot � const? Weak coupling

The question arises, whether, in fact, the cross section can be still asymp-
totically constant? What would be necessary to achieve such a behaviour?
We have to force the corrections to be small, despite the divergence of the
perturbation corrections.

We have supposed that the three-reggeon vertex is finite, Γ = O(1), and
estimated the contribution of the reggeon loop in (14.16) as δΓ ∝ ω−1 –
this is, obviously, not suitable. However, if we took for the renormalized
vertex Γ an expression that vanishes with ω,k → 0,

= aω + b
(
k2

1 + k2
2

)
+ ck2, (14.27)

we might achieve the matching.
If the increasing solution is analogous to that in phase transitions, the

present – weak coupling – situation corresponds to quantum electrody-
namics: the photon does not acquire a mass because its emission vertex
contains momenta in the numerator:

Πμν = (kμkν − gμνk
2)Π(k2) =⇒ mγ = 0.

Up to now we have considered only the three-pomeron vertex. For the
self-consistence of the weak-coupling picture it is necessary and sufficient
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that the four-reggeon interaction vertices in (14.1b) also vanish in the
origin, λ, λ1 → 0 with ωi,ki → 0.

It can be shown that all possibilities for the solutions of the interacting
pomeron problem are exhausted by the described above cases of ‘strong’
and ‘weak’ coupling.

A few words about the structure of the j-plane in the two regimes.

Weak coupling. The pomeron Green function,

G(ω,k2) = − 1
ω + α′k2 − Σ(ω,k2)

, Σ(ω,k2) ∼ Γ Γ
, (14.28a)

acquires a small but complex self-energy term, Σ ∝ k4. Owing to the
complexity of the correction, the initial pole transforms into two conjugate

ω
poles. (If the theory were Hermitian,
these poles would have had to move onto
an unphysical sheet.) Apart from these
poles, we have a family of branch cuts
accumulating to ω = 0.

Strong coupling. Here the Green function contains branch point singular-
ities embedded from the start, due to its complicated structure,

G(ω,k2) = ωμg

(
k2

ων

)
. (14.28b)

For t > 0 all singularities are on the right of, and condensing to, ω = 0;
at t = 0 they form a continuous cut starting at ω = 0. In the physical
region, t < 0, this cut is accompanied
by a strong accumulation of branch
cuts, whose presence strongly affects the
angular dependence of the scattering
amplitude. We made the hypothesis that

ω
the

vacuum Pomeranchuk pole (pomeron P) exists and studied the total cross
section, and amplitudes of elastic and quasi-elastic processes of production
of a small number of particles with large rapidity gaps between them.
From this study a picture has emerged in which one has to include, apart
from the pole P, also branchings, both non-enhanced,

+ . . .++
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and enhanced

+ + +  . . .+

We have found two scenarios that may lead to a self-consistent solution
of the problem of interacting pomerons.

(1) If we insist on σtot → const in the s → ∞ asymptotics, then we
need to consider the weak coupling regime (14.28a) characterized
by vanishing three- and four-pomeron vertices, see (14.27).

(2) If we release the asymptotic constancy condition and allow the
total cross section to increase logarithmically, σtot ∼ lna s with
a ≤ 2, then we may turn to the strong coupling regime (14.28b).

One may think that in both scenarios it is the simplest graph that mainly
determines the cross sections, while the multi-pomeron diagrams provide
controllable corrections.

14.5 Weak and strong coupling: view from the s channel

Now we are going to formulate our results in terms of rapidities and impact
parameters. Then we will turn to the main question: how the picture of
interacting pomerons manifests itself in the s-channel. For example, what
s-channel processes correspond to G in the strong coupling regime?

Let us make, first of all, a technical remark. Recall representation (14.2)
for the scattering amplitude,

A(s,k2) = s

(
i +

π

2
∂

∂ξ

) ∫
dω

2πi
eωξf(ω,k2), (14.29)

where f(ω,k2) is the sum of reggeons diagrams. Recalling that ω lies on
the imaginary axis, this integral can be considered as the transition from
the frequency to the time representation. In this representation, the image
of the pomeron propagator,

G(ξ,k2) = −e−α′k2ξθ(ξ),
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374 Reggeon field theory

resembles the Green function G(t) = exp(−i(k2/2m)t)θ(t) describing a
free non-relativistic particle, with ξ = ln s the analogue of (imaginary)
time.

Since there is a full analogy with time,
an arbitrary diagram can be written with-
out any calculations, using the rules of non-
relativistic field theory. For example, for a
semi-enhanced diagram with the transition
of one reggeon into two, we introduce inte-
gration over the transition ‘time’ ξ2 to write

ξ1 

ξ2 

k1 

k 

− k − k1

ξ 3 

g

∫ ξ1

ξ3

dξ2 G(ξ1 − ξ2,k)
∫

d2k1

(2π)2
rG(ξ2 − ξ3,k1)G(ξ2 − ξ3,k − k1)N.

14.5.1 Diffusion in the impact parameter space

One can go even further, moving to the transverse coordinates, see (14.4):

G̃(ξ,ρ) =
∫

d2k
(2π)2

e−ik·ρG(ξ,k) = −e−ρ2/4α′ξ

4πα′ξ
.

Once again, this is the Green function of a non-relativistic particle prop-
agating in imaginary time t = iξ, or, better to say, the Green function of
an equation describing two-dimensional diffusion.

Let us consider in these terms the simplest non-enhanced branching:

= g2G̃(ξ1 − ξ2,ρ1 − ρ2), (14.30a)

= N2G̃2(ξ1 − ξ2,ρ1 − ρ2). (14.30b)

In this language, the expression for the two-reggeon branching (14.30a)
is no more difficult to put down than that for one reggeon, (14.30a). This
also makes it immediately clear, why the branching contributes less than
the pole.

Consider the contribution to σtot, which corresponds to setting k = 0.
Then in the impact parameter space representation we need to evaluate

https://doi.org/10.1017/9781009290227.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.015


14.5 Weak and strong coupling: view from the s channel 375

the integral

∫
G̃2(ξ,ρ) d2ρ =

∫
d2ρ

e−2·ρ2/4α′ξ

(4πα′ξ)2
.

In the pomeron propagation, characteristic impact parameters grow with
‘time’, ρ2 ∼ α′ξ, but the normalization in (14.30) is chosen such that∫
G̃(ξ,ρ) d2ρ = −1 (by the very nature of the Green function). So,

∫
G̃2(ξ,ρ) d2ρ =

1
4πα′ξ

·
(

1
2

) ∫
e−2·ρ2/4α′ξ

4πα′ξ
· 2 d2ρ =

1
8πα′ξ

. (14.31)

The two-pomeron branching contribution falls with ‘time’ as 1/ξ. What
is the meaning of this smallness?

In (14.30a), a certain source produces a diffusive distribution (in our
case, δ(ρ− ρ1) at ξ = 0). With the increase of ξ, the integral over ρ of
the distribution stays constant; the total probability to find a particle
anywhere in space is determined solely by the power of the source and
does not depend on time.

In (14.30a) we create two diffusion waves (with N their emission am-
plitude). If at time ξ > 0 I measured them independently, the probability
conservation would have been intact, as in the one-pomeron case.

However, the amplitude we are interested in is given by the probability
to find the two particles in the same point ρ2, ξ2. Such probability is
inversely proportional to the typical area the distribution spreads over in
time ξ, that is 1/

〈
ρ2

〉
∼ 1/α′ξ.

Investigating the flow coming from the centre, at large distances a single
particle (P) gives the leading contribution ∝exp(−ρ2/4α′ξ). The correc-
tions (PP) fall faster with the distance, ∝exp(−2 · ρ2/4α′ξ), although
they may be significant at large times (and finite ρ2). Such an interpre-
tation looks quite satisfactory. Recall, however, how the same situation
looked in the momentum representation:

G(P)(ξ,k2) ∼ exp
(
− α′ξk2

)
, G(PP)(ξ,k2) ∼ exp

(
−1

2 · α′ξk2
)
.

Now, when ξ is large, the second contribution is larger than the first one!
The picture in the impact parameter space turned out to be intuitively
more satisfactory than that in the momentum representation.
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Similarly, we can ‘spell out’ any diagram in the language of diffusion.
For example, the enhanced graph shown in
(14.32) corresponds to the creation of one
particle at the impact parameter point ρ1

at time ξ1, which splits into two particles
at ρ2, ξ2. These particles then combine at a
space–time point ρ3, ξ3 into one, which one
is then registered at time ξ4 in ρ4.

(14.32)

14.5.2 Energy dependence of σtot

We are ready to make an important general statement about the energy
behaviour of σtot.

Consider the weak coupling regime and collect all relevant leading
corrections:

f � + + − −  − .

(14.33)

Let us examine the semi-enhanced diagram. Taking k = 0 and using the
expression (14.27) for the three-pomeron weak coupling vertex, for the
third graph on the r.h.s. of (14.33) we have

g · 1
ω
·
∫

d2k1 dω1

(2π)3i
aω + 2 · bk2

1

(ω1 + α′k2
1)(ω − ω1 + α′k2

1)
·N ∼ lnω . (14.34)

But if we take the Fourier transform of lnω,∫
dω

2πi
eωξ lnω →

∫ 0

−∞
eωξ dω → 1

ξ
,

we get the same 1/ξ behaviour as we had for the PP branching above.
We see that the P pole 1/ω in (14.34) has cancelled, and the contribu-
tion of the semi-enhanced diagram reduced to that of the non-enhanced
one:

.
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Analogous cancellation of both P poles occurs also in the enhanced dia-
gram (14.32) P → PP → P, the last term in (14.33). There is, however, a
subtle point, namely the signs. Assembling all contributions to the r.h.s.
of (14.33), for the total cross section we derive

σtot = g2 − (N − g · c)2
8α′ξ

, (14.35)

where we denoted by c the constant that emerges from the P → PP vertex
in (14.34). This shows that if the cross section tends to a constant, then
it approaches this limit from below.

In the strong coupling case we do not need to calculate anything, since
we know already that the cross section grows logarithmically with s.

We may thus conclude that at sufficiently high energies the total cross
sections should slowly grow with s, at least temporarily (weak coupling),
if not forever (strong coupling).

14.5.3 Experimental situation

What is the experimental situation?
Up to s ∼ 30 GeV2 all the cross sections decrease (but for σpp

tot and σK+p
tot

that stay nearly constant) (Fig. 14.3). Between 70 and 2000 GeV2 a new
phenomenon takes place: the cross sections flatten off and start to slowly
increase.∗ The fact that σpp

tot has a minimum, means that there exists a
definite energy at which the matter is maximally transparent.

For the first time the ‘complication’ of the theory reveals itself; without
branchings nothing of this kind would happen.

14.5.4 Would one ever reach the true asymptotics?

An impressive body of predictions of the theory has been experimentally
confirmed. Among them are the following statements.

(1) Factorization of scattering amplitudes and cross sections.

(2) Universal nature of particle production in the plateau region.

(3) High-mass inelastic diffraction in the three-pomeron limit, whose
mass distribution is spectacularly different from expectations based
on the statistical model of the hadron production.

(4) Shrinkage of the diffractive cone.

∗ From the RFT perspective, growing total cross sections (Fig. 14.3) may shift ones preference
towards the strong coupling regime (ed.).
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Fig. 14.3 Sketch of the total hadron cross sections σtot(s). Hadron accelerator
data that appeared after middle-1970s are shown by dashed lines.

(5) Increase of the total cross sections with ln s, which signals either
an approach to asymptotic constant values (weak coupling) or a
steady growth characteristic of the strong coupling regime.

Many attempts were made to describe also the angular distributions.
Qualitatively, it has become apparent that the branchings play an es-
sential rôle here. At the same time, quantitative description of the t-
dependence has not been achieved.

At first sight, the procedure seems well defined and simple; one has to
substitute known expressions into given formulae, calculate the effect and
compare the prediction with the data. Strangely enough (accidentally or,
may be, for a deep reason beyond our understanding) this happens to be
an impossible task.
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We assume ξ to be large. The true parameter of the problem is, however,
α′ξ. The easiest way to see this is by recalling the two-pomeron branching,

ρ2

ρ1

= G̃2(ξ,ρ1 − ρ2)N
2. (14.36)

Dealing with this diagram, a number is substituted for the reggeon emis-
sion amplitude N . My motivation was that I am close to the singularity
in ω. If so, ξ is large, and so is, consequently, the transverse distance
|ρ1 − ρ2| due to diffusive nature of the pomeron, G ∼ exp(−|Δρ|2/4α′ξ).

In fact, the hadron projectile has its own transverse size R, so that
inside the vertex part N there are various diagrams in which impact
parameters of participating particles vary within |Δρ| <∼ R. Therefore we
should have introduced separate transverse coordinates for the reggeons
and should have written a multiple integral over the impact parameters,

ρ′1 ρ″1

ρ′2 ρ″2
ρ2 

ρ1

N 

N  

∼
∫

N(ρ1;ρ
′
1,ρ

′′
1)G̃(ξ,ρ′

1−ρ′
2)G̃(ξ,ρ′′

1−ρ′′
2)N(ρ2;ρ

′
2,ρ

′′
2).

From the point of view of an asymptotic behaviour, we have acted
correctly by treating N as a constant. This is, however, justified only
if R2 
 4α′ξ so that |ρ1 − ρ2| � |ρ1 − ρ′

1| ∼ R. And just here lies the
catastrophe.

Strictly speaking, it is difficult to estimate the radius of a hadron; I
would say that R ∼ 1/2mπ. At the same time, the value of α′ is measured
from the shrinkage of the diffractive cone. It turns out to be rather small,
α′ ≈ 1/4m2

N , about four times smaller than the slopes of non-vacuum
Regge trajectories, α′

R � 1 GeV−2. Hence, our inequality becomes

4α′ξ � R2 =⇒ ξ � ξcrit ≡
R2

4α′ ∼
m2

N

4m2
π

� 10.

Obviously, the condition ξ � ξcrit can by no means be satisfied, ever. At
best we may reach ξ ∼ ξcrit (s = 2.000 GeV2 corresponds to ξ ≈ 8).

For reasons we do not understand, there is no way to reach the true
asymptotic regime.

Examining the parameters in the strong coupling regime, the situation
is even worse: the corresponding diffusion coefficient (effective α′) turns
out to be even smaller.
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The appearance of a new small parameter, 1/ξcrit = 4α′/R2 
 1, on the
other hand, suggests certain simplifications for the region of moderately
high energies, ξ <∼ ξcrit. Since in the α′ → 0 limit the impact parameter
diffusion disappears and parallel showers do not separate but keep in-
teracting with each other; employing α′ as a small parameter leads to
a picture of ‘heavy pomeron’, whose image is no longer a two-particle
‘ladder’ but a more complicated t-channel state of many re-interacting
particles (Gribov, 1976).

To conclude, our object diffuses in unit time at a typical transverse
distance |Δρ|2 ∼ 4α′ (the diffusion coefficient). Why did this distance turn
out to be much smaller than the size proper of the hadron? Qualitatively,
this phenomenon may be due to the fact that hadrons are composite. If
the true fundamental objects – quarks – are more compact, their smaller
size would introduce a relatively large mass scale parameter that might
explain the smallness of the slope α′ of the t-channel vacuum exchange.

It is just the smallness of α′ which impairs quantitative description of
the t-dependence of hadron–hadron scattering amplitudes. There is, how-
ever, a whole complex of problems not related to the angular distributions,
like multi-particle production processes, and it is necessary to understand
the physics which corresponds to them.
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