
Bull. Aust. Math. Soc. 88 (2013), 26–43
doi:10.1017/S0004972713000397

UNIQUENESS OF MEROMORPHIC FUNCTIONS WITH
WEAKLY WEIGHTED SHARING

THAMIR ALZAHARY

(Received 21 May 2012; accepted 22 February 2013; first published online 28 June 2013)

Abstract

In this paper, we introduce the notion of weakly weighted sharing of zeros of meromorphic functions
ignoring multiplicities, which extends the notion of weakly weighted sharing counting multiplicities,
and we also introduce the notion of multiplicity. By using these notions, we prove some results on the
uniqueness of meromorphic functions concerning differential polynomials sharing nonzero finite values.
The results in this paper extend the results of Yang and Hua, Fang, and Dyavanal. In this paper, we
correct defective points in the paper of Wu et al. [‘Uniqueness of meromorphic functions sharing one
value’, Bull. Aust. Math. Soc. 85(2012), 280–294].
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1. Introduction and main results

Let f and g be nonconstant meromorphic functions in the complex plane C. In this
paper we will use the standard notation of value distribution theory of meromorphic
functions, such as T (r, f ), N(r, f ), m(r, f ) and N(r, f ) (see [3, 8]). The notation S (r, f )
is defined to be any quantity satisfying S (r, f ) = o(1)(T (r, f )), possibly outside a set
E of finite Lebesgue measure. We let S (r) denote any term which is both S (r, f ) and
S (r, g) simultaneously. A meromorphic function a is said to be a small function of f
if T (r, a) = S (r, f ).

Let k be a positive integer, and let a be a small function of f . We denote by Nk)(r, f )
the counting function of the poles of f whose multiplicities are less than or equal to
k, by N(k(r, f ) the counting function of the poles of f whose multiplicities are greater
than or equal to k, and by Nk)(r, f ) and N(k(r, f ) the reduced functions of Nk)(r, f ) and
N(k(r, f ), respectively. We let

Nk(r, f ) = N(r, f ) + N(2(r, f ) + · · · + N(k(r, f )
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and

Θ(a, f ) = 1 − lim sup
r→∞

N(r, 1
f−a )

T (r, f )
.

For a ∈ C, we say that f and g share a CM (counting multiplicities) provided that
f − a and g − a have the same zeros with the same multiplicities; if we do not consider
multiplicities, then f and g are said to share a IM (ignoring multiplicities). We say
that f and g share∞ CM (respectively, IM) if 1/ f , 1/g share 0 CM (respectively, IM).

Lin and Lin [4] introduced the notion of weakly weighted sharing for CM, as given
in the following definition.

D 1.1 [4]. Let k be a positive integer or infinity, and let a be a small function
of nonconstant meromorphic functions f and g. We denote by Nk)(r, a, f , g) the
reduced counting function of those a-points of f , whose multiplicities are equal to
the corresponding a-points of g, and both of their multiplicities are less than or equal
to k. We say that f and g share (a, k)∗ CM, if

Nk)

(
r,

1
f − a

)
+ Nk)

(
r,

1
g − a

)
− 2Nk)(r, a, f , g) = S (r).

We generalise the definitions of CM, IM and the weakly weighted sharing for CM
to the weakly weighted sharing for IM as given by the following definition.

D 1.2. Let k be a positive integer or infinity, and let a be a small function of
nonconstant meromorphic functions f and g. We denote by Nk)(r, 1/( f − a), g , a) the
reduced counting function of those a-points of f whose multiplicities are less than or
equal to k, that are not the a-points of g. If

Nk)

(
r,

1
f − a

, g , a
)

and Nk)

(
r,

1
g − a

, f , a
)

= S (r),

we say that f and g share (a, k)∗ IM.

We note that, if f and g share (a, k)∗ IM, then f and g share (a, p)∗ IM, for all
integers 1 ≤ p ≤ k. Also, we note that if f and g share (a, k)∗ CM, then f and g share
(a, k)∗ IM.

In 1997, Yang and Hua [7] proved the following theorem.

T A. Let f and g be two nonconstant meromorphic functions, and n ≥ 11 be a
positive integer. If f n f ′ and gng′ share a CM, where a , 0,∞ is a complex number,
then either f ≡ dg, for some (n + 1)th root of unity d, or f (z) ≡ c1ecz and g(z) ≡ c2e−cz,
where c1, c2 and c are three constants satisfying (c1c2)nc2 = −a.

Note that f n f ′ = (1/(n + 1))( f n+1)′.
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In 2002, Fang [2] proved the following results.

T B. Let f and g be two nonconstant entire functions, and let n and k be two
positive integers satisfying n ≥ 2k + 8. If ( f n( f − 1))(k) and (gn(g − 1))(k) share 1 CM,
then f ≡ g.

T C. Let f and g be two nonconstant entire functions, and let n and k be
two positive integers satisfying n ≥ 2k + 4. If ( f n)(k) and (gn)(k) share 1 CM, then
either f (z) ≡ c1ecz and g(z) ≡ c2e−cz, where c1, c2 and c are three constants satisfying
(−1)k(c1c2)n(nc)2k = 1, or f (z) ≡ tg(z), for a constant t such that tn = 1.

In 2011, Dyavanal [1] proved the following two theorems, by using the notion of
multiplicity.

T D. Let f and g be two nonconstant meromorphic functions, whose zeros and
poles are of multiplicities at least s, where s is a positive integer. Let n ≥ 2 be an
integer satisfying (n + 1)s ≥ 12. If f n f ′ and gng′ share 1 CM, then either f (z) ≡ dg(z),
for some (n + 1)th root of unity d, or f (z) ≡ c1ecz and g(z) ≡ c2e−cz, where c1, c2 and c
are three constants satisfying (c1c2)n+1c2 = −1.

T E. Let f and g be two nonconstant distinct meromorphic functions, whose
zeros and poles are of multiplicities at least s, where s is a positive integer. Let n be
an integer satisfying (n − 1)s ≥ 5. If f n( f − 1) f ′ and gn(g − 1)g′ share 1 CM, then

g(z) =
(n + 2)(1 − hn+1)
(n + 1)(1 − hn+2)

, f (z) = h
(n + 2)(1 − hn+1)
(n + 1)(1 − hn+2)

,

where h is a nonconstant meromorphic function.

Note that f n( f −1) f ′= (a f n+1( f + b))′, where a=1/(n+2) and b=−(n + 2)/(n+1).
Dyavanal raised the question in his paper whether the differential polynomials in

Theorem D (respectively, Theorem E) can be replaced by the form ( f n)(k) (respectively,
( f n( f − 1))(k)), where k ≥ 1 is an integer, and whether a CM shared valued can be
replaced by an IM shared value in Theorems D and E.

In 2012, Wu et al. [6] claimed to prove the following two theorems to answer
Dyavanal’s question.

T F [6, Theorem 1.1]. Let f and g be two nonconstant meromorphic functions,
whose zeros and poles are of multiplicities at least `, where ` is a positive integer. Let
n ≥ 2k + 1 be an integer satisfying n` ≥ 7k + 12. If ( f n)(k) and (gn)(k) share 1 IM, then
either f (z) ≡ tg(z), for a constant t such that tn = 1, or f (z) ≡ c1ecz and g(z) ≡ c2e−cz,
where c1, c2 and c are three constants satisfying (−1)k(c1c2)n(nc)2k = 1.

T G [6, Theorem 1.2]. Let f and g be two nonconstant meromorphic
functions, whose zeros and poles are of multiplicities at least l < (7k/2) + 7, where
l is a positive integer. Let n be an integer satisfying (n + 1)l ≥ 7k + 17. If ( f n( f − 1))(k)

and (gn(g − 1))(k) share 1 IM, and Θ(∞, f ) > 2/n, then f ≡ g.
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R 1.3. There are some gaps in Wu et al.’s proofs of Theorems F and G. The first
mistake is in the proof of [6, Lemma 2.4]. Wu et al. claimed that ‘Φ(z) has poles, all
simple, only at zeros of f (k+1) and g(k+1) and poles of f and g, and 1-points of f whose
multiplicities are not equal to the multiplicities of the corresponding 1-points of g’.

Indeed, the function Φ(z) may also have other poles, for example, the zeros of f (k+1)

which are the zeros of f with multiplicities less than k + 1, and hence these zeros are
not counted in N(k+2(r, 1/ f ). In other words, the terms N(k+2(r, 1/ f ) and N(k+2(r, 1/g)
in the inequality for N(r, Φ) should be N(r, 1/ f ) and N(r, 1/g), respectively.

The second mistake is in the proof of Theorem F. It is the claim, without proof, that
if f and g satisfy (3.1), then f and g have no poles. In fact, probably f or g has poles.

The third mistake is in the proof of Theorem G and is similar to that in the proof of
Theorem F. Thus Theorems F and G have defects in their proofs.

Q 1.4. Let f and g be two transcendental meromorphic functions, and let α1

and α2 be nonzero small functions of f and g. What happens if (α2 f n( f m + α1))(k) and
(α2gn(gm + α1))(k) share (1, 1)∗ IM or CM? What happens if (α1 f n)(k) and (α2gn)(k)

share (1, 1)∗ IM or CM?

We first introduce the new notion of multiplicity, given by the following definition.

D 1.5. Let f and g be two meromorphic functions, and let α be a finite set of
small functions of f and g. Let S be a set of the poles of f which are not the poles
or zeros of any element in α. If S is nonempty, we denote by nα(∞, f ) the minimal
multiplicity of those poles of f that belong to S , and by nα(∞, f ) = 0 if S is empty.
Define nα(∞, f , g) = min{nα(∞, f ), nα(∞, g)}. We denote the symbol nα(∞, 1/ f , 1/g)
by nα(0, f , g). In particular, if α consists of only complex numbers, then nα(∞, f , g) is
the minimal multiplicity of those poles of f and g.

In this paper, we use the notion of weakly weighted sharing and the notion of
multiplicity to answer Question 1.4 and correct Theorems F and G.

T 1.6. Let α and φ be two nonempty finite sets of small functions of two
transcendental meromorphic functions f and g, and let n, m and k be three positive
integers with n + m > 2k and n ≥ k + 1. Let α1 and α2 be two nonzero elements
in α

⋂
φ. Suppose that (α2 f n( f m + α1))(k) and (α2gn(gm + α1))(k) share (1, 1)∗ IM.

Assume also that the following three conditions hold.

(A1) (n − 4m)t1t2 > (5k + 7)t1 + (4k + 7)t2, where t1 = max{nα(∞, f , g), 1} and t2 =

max{nφ(0, f , g), 1}.
(A2) If (α2 f n( f m + α1))(k)(α2gn(gm + α1))(k) ≡ 1, then

m
n + m − 2k

< lim sup
r→∞

sgN(r, g) + s f N(r, f )

(1 + sg)T (r, f ) + (1 + s f )T (r, g)
,

where sg (respectively, s f ) is the minimal multiplicity of those poles of g
(respectively, f ) which are not the zeros of f (respectively, g).
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(A3) Either mt1t2 ≥ 2, or else if mt1t2 = 1 then

2
n
< max{Θ(∞, g) + Θ(0, g), Θ(∞, f ) + Θ(0, f )}.

Then f ≡ cg, where c is a nonzero constant satisfying cq = 1; here, q = gcd(n, m).

From Theorem 1.6, we correct Theorem G by the following corollary.

C 1.7. Let f and g be two transcendental meromorphic functions, whose
zeros and poles are of multiplicities at least t, where t is a positive integer. Let n
and k be two positive integers satisfying n ≥ 2k and (n − 4)t > 9k + 14. Assume that
the following two conditions hold.

(i) If ( f n( f − 1))(k)(gn(g − 1))(k) ≡ 1, then

1
n − 2k + 1

< lim sup
r→∞

sgN(r, g) + s f N(r, f )

(1 + sg)T (r, f ) + (1 + s f )T (r, g)
,

where sg (respectively, s f ) is the minimal multiplicity of those poles of g
(respectively, f ) which are not the zeros of f (respectively, g).

(ii) Either t ≥ 2, or else if t = 1 then

2
n
< max{Θ(∞, g) + Θ(0, g), Θ(∞, f ) + Θ(0, f )}.

If ( f n( f − 1))(k) and (gn(g − 1))(k) share 1 IM, then f ≡ g.

T 1.8. Let α and φ be two nonempty finite sets of small functions of two
transcendental meromorphic functions f and g, and let n, m and k be three positive
integers with n + m > 2k and n ≥ k + 1. Let α1 and α2 be two nonzero elements
in α

⋂
φ. Suppose that (α2 f n( f m + α1))(k) and (α2gn(gm + α1))(k) share (1, `1)∗ CM

and (1, `2)∗ IM, where `1 and `2 are positive integers with `2 ≥ `1. Assume that the
conditions (A2) and (A3) in Theorem 1.8 hold. Then the conclusion of Theorem 1.6
remains valid if at least one of the following conditions holds.

(B1) (n − m)t1t2 > (k + 4)t2 + 2(k + 2)t1 + `((k + 1)(t1 + t2) + mt1t2).
(B2) (n − m)t1t2 > (k + 4)t2 + 2(k + 2)t1 with `1 ≥ 2, `2 ≥ 3.

Here, t1 and t2 are as defined in Theorem 1.6 and

` =


2 if `1 = `2 = 1,

1
2

+
1
`2

if `1 = 1, `2 ≥ 2,

2
`2

if `1 ≥ 2.

T 1.9. Let α and φ be two nonempty finite sets of small functions of two
transcendental meromorphic functions f and g, and let n and k be two positive
integers with n ≥ 2k + 1. Let α1 and α2 be two nonzero elements in α

⋂
φ such that

α1 f n . α2gn. Suppose that (α1 f n)(k) and (α2gn)(k) share (1, 1)∗ IM and the following
condition holds.
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(C1) nt1t2 > (5k + 7)t1 + (4k + 7)t2, where t1 and t2 are as defined in Theorem 1.6.

Then (α1 f n)(k)(α2gn)(k) ≡ 1, f n ≡ ag−n and N(r, f ) + N(r, 1/ f ) = S (r), where a is a
small function of f and g. If, in addition, α and φ consist of only complex constants
then f and g have no zeros.

From Theorem 1.9, we correct Theorem F by the following corollary.

C 1.10. Let f and g be two transcendental meromorphic functions, whose
zeros and poles are of multiplicities at least t, where t is a positive integer. Let n and
k be two positive integers satisfying n ≥ 2k + 1 and nt > 9k + 14. If ( f n)(k) and (gn)(k)

share 1 IM, then either: (i) f (z) ≡ dg(z), for a constant d such that dn = 1; or else (ii)
f and g have no zeros, and ( f n)(k)(gn)(k) ≡ 1, f n ≡ ag−n and N(r, f ) = S (r), where a is
a small function of f and g.

T 1.11. Let α and φ be two nonempty finite sets of small functions of two
transcendental meromorphic functions f and g, and let n and k be two positive
integers with n ≥ 2k + 1. Let α1 and α2 be two nonzero elements in α

⋂
φ such that

α1 f n . α2gn. Suppose that (α1 f n)(k) and (α2gn)(k) share (1, `1)∗ CM and (1, `2)∗ IM,
where `1 and `2 are positive integers with `2 ≥ `1. Then the conclusions of Theorem 1.9
remain valid if at least one of the following conditions holds.

(D1) nt1t2 > (k + 4)t2 + 2(k + 2)t1 + `(k + 1)(t1 + t2).
(D2) nt1t2 > (k + 4)t2 + 2(k + 2)t1 with `1 ≥ 2, `2 ≥ 3.

Here, t1 and t2 are as defined in Theorem 1.6 and ` is as defined in Theorem 1.8.

R 1.12. The integer `1 or `2 in Theorems 1.8 and 1.11 can be replaced by∞, in
which case if `2→∞, then ` becomes ` = 0 if `1 ≥ 2, and ` = 1/2 if `1 = 1.

2. Lemmas

L 2.1. Let f and g be two nonconstant meromorphic functions such that f g . 1
and f . g. If f and g share (1, 1)∗ IM, then

T (r, g) ≤ N2(r, f ) + N2

(
r,

1
f

)
+ N2(r, g) + N2

(
r,

1
g

)
+ 2N(r, g) + 2N

(
r,

1
g

)
+ N(r, f ) + N

(
r,

1
f

)
+ S (r).

The result holds true if f and g are interchanged.

P. Set H = ( f ′′/ f ′ − 2 f ′/( f − 1)) − (g′′/g′ − 2g′/(g − 1)). Suppose that H . 0. If
z0 is a common simple zero of f − 1 and g − 1, then z0 must be a zero point

of H. Therefore, if we denote by N
1)
E (r, 1/( f − 1)) the counting function of the

common simple 1-points of f and g, then, by the first fundamental theorem, we get

N
1)
E (r, 1/( f − 1)) ≤ N(r, H) + S (r).
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We can easily verify that possible poles of H occur at: (i) multiples poles of f and
g; (ii) multiples zeros of f and g; (iii) zeros of f − 1 which are not the zeros of g − 1;
(iv) zeros of g − 1 which are not the zeros of f − 1; (v) common zeros of f − 1 and
g − 1 such that the multiplicity of the 1-point of f is not equal to the multiplicity of the
corresponding 1-point of g; (vi) zeros of f ′ which are not the zeros of f ( f − 1); (vii)
zeros of g′ which are not the zeros of g(g − 1).

We denote by N(r, 1/( f − 1), g , 1), N(r, 1/(g − 1), f , 1), N∗(r, 1, f , g),
N0(r, 1/ f ′) and N0(r, 1/g′) the reduced counting functions of those points which
correspond to (iii)–(vii), respectively. Then from the preceding explanation, we deduce
that

N
1)
E (r, 1/( f − 1)) ≤ N(2(r, f ) + N(2(r, g) + N(2

(
r,

1
f

)
+ N(2

(
r,

1
g

)
+ N∗(r, 1, f , g) + N0

(
r,

1
f ′

)
+ N0

(
r,

1
g′

)
+ N

(
r,

1
f − 1

, g , 1
)

+ N
(
r,

1
g − 1

, f , 1
)

+ S (r).

(2.1)

By the second fundamental theorem,

T (r, f ) + T (r, g) ≤ N(r, f ) + N(r, g) + N
(
r,

1
f

)
+ N

(
r,

1
g

)
+ N

(
r,

1
f − 1

)
+ N

(
r,

1
g − 1

)
− N0

(
r,

1
f ′

)
− N0

(
r,

1
g′

)
+ S (r, f ).

(2.2)

If we denote by NL1(r, 1/(g − 1)) the reduced counting function of the common points
of the simple 1-points of f and the multiple 1-points of g then, from the hypotheses
that f and g share (1, 1)∗ IM and the first fundamental theorem, it is not difficult to
show that

N
(
r,

1
g − 1

)
+ N

(
r,

1
f − 1

)
≤ N

1)
E

(
r,

1
f − 1

)
+ N2

(
r,

1
f − 1

)
+ NL1

(
r,

1
g − 1

)
+ N

(
r,

1
g − 1

, f , 1
)
− N

(
r,

1
f − 1

, g , 1
)

+ S (r)

≤ N
1)
E

(
r,

1
f − 1

)
+ T (r, f ) + NL1

(
r,

1
g − 1

)
+ N2

(
r,

1
f − 1

)
+ N

(
r,

1
g − 1

, f , 1
)
− N

(
r,

1
f − 1

, g , 1
)

− N
(
r,

1
f − 1

)
+ S (r).

It follows, from this, (2.1) and (2.2) that

T (r, g) ≤ N2(r, f ) + N2

(
r,

1
f

)
+ N2(r, g) + N2

(
r,

1
g

)
+ Jg(r), (2.3)
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where

Jg(r) =N∗(r, 1, f , g) + NL1

(
r,

1
g − 1

)
+ 2N

(
r,

1
g − 1

, f , 1
)
− N

(
r,

1
f − 1

)
+ N2

(
r,

1
f − 1

)
+ S (r).

(2.4)

Since f and g share (1, 1)∗ IM, we see that

N∗(r, 1, f , g) + N
(
r,

1
g − 1

, f , 1
)
≤ N

(
r,

f ′

f

)
+ N

(
r,

g′

g

)
+ S (r)

= N(r, g) + N
(
r,

1
g

)
+ N(r, f ) + N

(
r,

1
f

)
+ S (r).

(2.5)

In the same manner,

NL1

(
r,

1
g − 1

)
+ N

(
r,

1
g − 1

, f , 1
)
≤ N(r, g′/g) + S (r) = N(r, g) + N

(
r,

1
g

)
+ S (r).

From this inequality and (2.3)–(2.5), we obtain the inequality stated in the lemma. In
the same way, we can get an inequality similar to that stated by interchanging f and g.
This proves Lemma 2.1 when H . 0. In the next lemma, we will prove that Lemma 2.1
is clear when H ≡ 0. �

L 2.2. Suppose, in addition to the assumptions of Lemma 2.1, that f and g share
(1, `1)∗ CM and (1, `2)∗ IM, where `1 and `2 are positive integers with `2 ≥ `1. Then

T (r, g) ≤ N2(r, f ) + N2

(
r,

1
f

)
+ N2(r, g) + N2

(
r,

1
g

)
+ `

(
N(r, g) + N

(
r,

1
g

))
+ S (r),

(2.6)

where: (i) ` = 2, if `1 = `2 = 1; (ii) ` = 1/2 + 1/`2, if `1 = 1, `2 ≥ 2; (iii) ` = 2/`2, if
`1 ≥ 2. Inequality (2.6) holds true, if f and g are interchanged. Moreover, if `1 ≥ 2 and
`2 ≥ 3, then

1
2

(T (r, g) + T (r, f )) ≤ N2(r, f ) + N2

(
r,

1
f

)
+ N2(r, g) + N2

(
r,

1
g

)
+ S (r).

P. We repeat the same steps as in the proof of Lemma 2.1, and suppose that H . 0.
Since f and g share (1, 1)∗ IM, the proof of Lemma 2.2 follows from (2.3) and (2.4).
From the assumptions of Lemma 2.2, we deduce that NL1(r, 1/(g − 1)) = S (r).

Since `1 ≥ 1, we deduce from (2.4) that Jg(r) ≤ 2N(r, g′/g) + S (r); and if we
suppose that `2 ≥ 2 and `1 = 1, then N(r, 1/(g − 1), f , 1) ≤ (1/`2)N(r, g′/g) + S (r)
and

Jg(r) ≤ N
(
r,

1
g − 1

, f , 1
)

+
1
2

N
(
r,

g′

g

)
+ S (r),

which implies Jg(r) ≤ (1/2 + 1/`2)N(r, g′/g) + S (r).
However, it is evident that Jg(r) ≤ (2/`2)N(r, g′/g) + S (r), if `1 ≥ 2 (in view of

`2 ≥ `1).

https://doi.org/10.1017/S0004972713000397 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713000397


34 T. Alzahary [9]

From the preceding illustration, (2.3) and (2.4), we get inequality (2.6). In same
way, we can prove that inequality (2.6) is clear, by interchanging f and g.

We now prove the last part of Lemma 2.2 when `1 ≥ 2 and `2 ≥ 3. From (2.4), Jg(r)
can be rewritten as

Jg(r) = N∗(r, 1, f , g) + 2N
(
r,

1
g − 1

, f , 1
)
− N

(
r,

1
f − 1

)
+ N2

(
r,

1
f − 1

)
+ S (r).

Similarly,

J f (r) = N∗(r, 1, f , g) + 2N
(
r,

1
f − 1

, g , 1
)
− N

(
r,

1
g − 1

)
+ N2

(
r,

1
g − 1

)
+ S (r).

We aim to prove the last part of Lemma 2.2; and that will follow if Jg(r) + J f (r) ≤
S (r). Since f and g share (1, `1)∗ CM and (1, `2)∗ IM, we see that

2N∗(r, 1, f , g) + 2N
(
r,

1
g − 1

, f , 1
)

+ 2N
(
r,

1
f − 1

, g , 1
)

≤ N
(
r,

1
f − 1

)
− N2

(
r,

1
f − 1

)
+ N

(
r,

1
g − 1

)
− N2

(
r,

1
g − 1

)
,

which implies Jg(r) + J f (r) ≤ S (r). This proves Lemma 2.2 when H . 0.
Suppose that H = ( f ′′/ f ′ − 2 f ′/( f − 1)) − (g′′/g′ − 2g′/(g − 1)) ≡ 0. Then

f =
(α + 1)g + β − α − 1

αg + β − α
and g =

(α − β) f + β − α − 1
α f − (α + 1)

, (2.7)

where α and β are complex numbers. We check Lemmas 2.1 and 2.2 in the case H ≡ 0.
To show that, it suffices to prove

max{T (r, f ), T (r, g)} ≤ N2(r, f ) + N2

(
r,

1
f

)
+ N2(r, g) + N2

(
r,

1
g

)
+ S (r). (2.8)

We now consider the following cases. �

Case 1. Let α = 0. Since f . g, β , 1. Consequently, from (2.7), N(r, 1/ f ) =

N(r, 1/(g + β − 1)) + S (r), and N(r, 1/g) = N(r, 1/( f − (β − 1)/β)) + S (r). It follows
from this and the second fundamental theorem that

T (r, g) ≤ N(r, g) + N
(
r,

1
g

)
+ N

(
r,

1
g + β − 1

)
+ S (r)

≤ N(r, g) + N
(
r,

1
g

)
+ N

(
r,

1
f

)
+ S (r).

(2.9)
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In the same way,

T (r, f ) ≤ N(r, f ) + N
(
r,

1
f

)
+ N

(
r,

1
g

)
+ S (r). (2.10)

From (2.9) and (2.10), we deduce (2.8).
Case 2. Let α , 0. From (2.7),

N(r, f ) = N
(
r,

1
αg + β − α

)
+ S (r) and N(r, g) = N

(
r,

1
α f − (α + 1)

)
+ S (r).

If α , −1 and α , β then, by proceeding in the same manner as in Case 1, we will
arrive at (2.8).

Subcase 2.1. α = β. Since f g . 1, we deduce that α , −1, and then from (2.7)
we conclude that N(r, 1/ f ) = N(r, 1/((1 + α)g − 1)) + S (r) and N(r, g) = N(r, 1/(α f −
(α + 1))) + S (r). In the same manner as in Case 1, we get (2.8).

Subcase 2.2. α , β and α = −1. Consequently, from (2.7), we have f = β/(−g + 1 + β)
and g = ((β + 1) f − β)/ f . In the same way as in Case 1, we get (2.8). This proves that
Lemmas 2.1 and 2.2 are clear when H ≡ 0.

L 2.3 [5]. Let f be a transcendental meromorphic function, and let t, k be two
positive integers. Then

Nt

(
r,

1
f (k)

)
≤ T (r, f (k)) − T (r, f ) + Nt+k

(
r,

1
f

)
+ S (r, f ),

Nt

(
r,

1
f (k)

)
≤ kN(r, f ) + Nt+k

(
r,

1
f

)
+ S (r, f ).

3. Proofs of Theorems 1.6, 1.8, 1.9 and 1.11

3.1. Proof of Theorems 1.6 and 1.8. Set F = α2 f n( f m + α1) and G = α2gn(gm + α1).
Suppose that F(k) .G(k) and F(k)G(k) . 1, and condition (A1) in Theorem 1.6 holds.
Then, by applying Lemma 2.1,

T (r,G(k)) ≤ N2(r, F(k)) + N2

(
r,

1
F(k)

)
+ N2(r,G(k))

+ N2

(
r,

1
G(k)

)
+ 2N(r,G(k)) + 2N

(
r,

1
G(k)

)
+ N(r, F(k)) + N

(
r,

1
F(k)

)
+ S (r).

https://doi.org/10.1017/S0004972713000397 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713000397


36 T. Alzahary [11]

From this, and by applying Lemma 2.3 with t = 2,

T (r,G) ≤ T (r,G(k)) − N2

(
r,

1
G(k)

)
+ Nk+2

(
r,

1
G

)
+ S (r)

≤ 3N(r, f ) + 4N(r, g) + N2

(
r,

1
F(k)

)
+ 2N

(
r,

1
G(k)

)
+ N

(
r,

1
F(k)

)
+ Nk+2

(
r,

1
G

)
+ S (r)

≤ (2k + 3)N(r, f ) + 2(k + 2)N(r, g) + Nk+1

(
r,

1
F

)
+ Nk+2

(
r,

1
F

)
+ 2Nk+1

(
r,

1
G

)
+ Nk+2

(
r,

1
G

)
+ S (r)

≤ (2k + 3)N(r, f ) + 2(k + 2)N(r, g) + 2mT (r, f ) + 3mT (r, g) + Nk+1

(
r,

1
f n

)
+ Nk+2

(
r,

1
f n

)
+ 2Nk+1

(
r,

1
gn

)
+ Nk+2

(
r,

1
gn

)
+ S (r).

(3.1)

By the assumption n ≥ k + 1, it is easy to show that Nk+2(r, 1/ f n) ≤ (k + 2)N(r, 1/ f ) +

S (r) and Nk+1(r, 1/ f n) ≤ (k + 1)N(r, 1/ f ) + S (r). Since T (r,G) = (n + m)T (r, g) +

S (r), we deduce from (3.1) that

(n − 2m)T (r, g) ≤ (2k + 3)N(r, f ) + 2(k + 2)N(r, g) + 2mT (r, f )

+ (2k + 3)N
(
r,

1
f

)
+ (3k + 4)N

(
r,

1
g

)
+ S (r).

(3.2)

We observe that

N(r, f ) ≤
1
t1

N(r, f ) + S (r) ≤
1
t1

T (r, f ) + S (r), N
(
r,

1
f

)
≤

1
t2

T (r, f ) + S (r)

and

N(r, g) ≤
1
t1

T (r, g) + S (r), N
(
r,

1
g

)
≤

1
t2

T (r, g) + S (r).

It follows from these inequalities and (3.2) that(
n − 2m −

2k + 4
t1

−
3k + 4

t2

)
T (r, g) ≤

(2k + 3
t1

+
2k + 3

t2
+ 2m

)
T (r, f ) + S (r).

In the same way, we deduce that(
n − 2m −

2k + 4
t1

−
3k + 4

t2

)
T (r, f ) ≤

(2k + 3
t1

+
2k + 3

t2
+ 2m

)
T (r, g) + S (r).

The last two inequalities give us (n − 4m)t1t2 ≤ (5k + 7)t1 + (4k + 7)t2, which
contradicts condition (A1). By the same method, if F(k) and G(k) share (1, `1)∗ CM
and (1, `2)∗ IM, and condition (B1) or (B2) holds, then, by using Lemma 2.2, we will
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arrive at a contradiction. Therefore, we conclude that either F(k) ≡G(k) or F(k)G(k) ≡ 1.
Suppose that

F(k)G(k) ≡ 1. (3.3)

We see that m(r, 1/F) ≤ m(r,G) + S (r), which gives us

(n + m)T (r, f ) + S (r) = T (r, F) ≤ T (r,G) + N
(
r,

1
F

)
− N(r,G) + S (r)

≤ T (r,G) + nN
(
r,

1
f

)
+ mT (r, f ) − (n + m)N(r, g) + S (r).

(3.4)

We define the following sets:
V1 = {z : f (z) = 0 of order i( f , z) such that α1(z) ,∞, α2(z) ,∞};
V2 = {z : f (z) = 0 of order i( f , z), α1(z) ,∞, α2(z) =∞ of order i(α2, z) such that
i(α2, z) < i( f , z)};
V3 = {z : f (z) = 0 of order i( f , z), α2(z) ,∞, α1(z) =∞ of order i(α1, z) such that
i(α1, z) < i( f , z)};
V4 = {z : f (z) = 0, α1(z) = α2(z) =∞ of order i( f , z), i(α1, z), i(α2, z) respectively, such
that i(α1, z) + i(α2, z) < i( f , z)}.

Let NVi (r) (i = 1, 2, 3, 4) denote the corresponding counting functions of the sets
Vi (i = 1, 2, 3, 4), respectively, and each point in these counting functions is counted
according to its multiplicity of f . Obviously,

N
(
r,

1
f

)
= NV1 (r) + NV2 (r) + NV3 (r) + NV4 (r) + S (r). (3.5)

We need to estimate NVi (r), i = 1, 2, 3, 4.
(1) Let z ∈ V1, and let i( f , z) = i( f ) for short. We have the following cases.

(1-1) α2(z) , 0 and α1(z) = 0 with multiplicity i(α1) < i( f ). Then z must be a
zero of F(k) with multiplicity i(F(k)) = ni( f ) + i(α1) − k > 1. From (3.3), it follows
that z must be a pole of g with multiplicity i(g), and then z will be a pole of G(k)

with multiplicity i(G(k)) = (n + m)i(g) + k. Equation (3.3) tells us that i(G(k)) = i(F(k)),
which is ni( f ) = (n + m)i(g) + 2k − i(α1).

(1-2) α1(z) , 0 and α2(z) = 0 with multiplicity i(α2) < i( f ). Then z must be a zero of
F(k) with multiplicity i(F(k)) = ni( f ) + i(α2) − k > 1. From (3.3), it follows that z must
be a pole of g with multiplicity i(g), and then z will be a pole of G(k) with multiplicity
i(G(k)) = (n + m)i(g) + k − i(α2). Equation (3.3) tells us that i(G(k)) = i(F(k)), which is
ni( f ) = (n + m)i(g) + 2k − 2i(α2).

(1-3) α1(z) = 0 and α2(z) = 0 with multiplicity i(α1), i(α2), respectively, such that
i(α1) + i(α2) < i( f ). Then z must be a zero of F(k) with multiplicity i(F(k)) = ni( f ) +

i(α1) + i(α2) − k > 1. From (3.3), it follows that z must be a pole of g with multiplicity
i(g), and then z will be a pole of G(k) with multiplicity i(G(k)) = (n + m)i(g) + k −
i(α2). Equation (3.3) tells us that i(G(k)) = i(F(k)), which is ni( f ) = (n + m)i(g) + 2k −
2i(α2) − i(α1).
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(1-4) α1(z) , 0 and α2(z) , 0. Then, from (3.3), we deduce that z must be a pole of
g with multiplicity i(g) and ni( f ) = (n + m)i(g) + 2k.

Consequently, from cases (1-1)–(1-4),

nNV1 (r) ≤ (n + m)NV1,g(r) + 2kNV1,g(r) + S (r), (3.6)

where NV1,g(r) is the counting function of the poles of g which belong to V1, and
NV1,g(r) is the reduced counting function of NV1,g(r).
(2) Let z ∈ V2, and let i( f , z) = i( f ) and i(α2, z) = i(α2) for short. We have two cases.

(2-1) Suppose that α1(z) = 0 with multiplicity i(α1) < i( f ). We observe that

ni( f ) − i(α2) = (n − 1)i( f ) + i( f ) − i(α2) ≥ (n − 1)i( f ) + 1 ≥ n ≥ k + 1,

which means that z is a zero of F with multiplicity ni( f ) − i(α2) + i(α1) > k + 1, and
then z is a zero of F(k) with multiplicity i(F(k)) = ni( f ) − i(α2) + i(α1) − k. Then (3.3)
tells us that z is a pole of G.

If g(z) ,∞, then z is a pole of G(k) with multiplicity less than or equal to i(α2) + k;
from this and (3.3) it follows that ni( f ) ≤ 2i(α2) − i(α1) + 2k. If g(z) =∞ with
multiplicity i(g), then z is a pole of G(k) with multiplicity i(G(k)) = (n + m)i(g) + k +

i(α2); from this and (3.3) it follows that ni( f ) = (n + m)i(g) + 2k + 2i(α2) − i(α1).
(2-2) Suppose that α1(z) , 0. In the same way as in case (2-1), we get that z is

a zero of F(k) with multiplicity i(F(k)) = ni( f ) − i(α2) − k ≥ 1. Also, if g(z) ,∞, then
ni( f ) ≤ 2i(α2) + 2k, and if g(z) =∞ with multiplicity i(g), then ni( f ) = (n + m)i(g) +

2k + 2i(α2).
Consequently, from cases (2-1) and (2-2),

nNV2 (r) ≤ (n + m)NV2,g(r) + 2kNV2,g(r) + S (r), (3.7)

where NV2,g(r) is the counting function of the poles of g which belong to V2, and
NV2,g(r) is the reduced counting function of NV2,g(r).
(3) Let z ∈ V3, and let i( f , z) = i( f ) and i(α1, z) = i(α1) for short. We have two cases.

(3-1) Suppose that α2(z) = 0 with multiplicity i(α2) < i( f ). In the same way as in
case (2-1), we get that z is a zero of F(k) with multiplicity i(F(k)) = ni( f ) + i(α2) −
i(α1) − k ≥ 1. Also, if g(z) ,∞, then ni( f ) ≤ 2i(α1) − 2i(α2) + 2k. Suppose that
g(z) =∞ with multiplicity i(g).

If i(α1) < mi(g), then z is a pole of G(k) with multiplicity i(G(k)) = (n + m)i(g) + k −
i(α2); from this and (3.3) it follows that ni( f ) = (n + m)i(g) + 2k − 2i(α2) + i(α1).

If mi(g) ≤ i(α1), then z is a pole of G(k) with multiplicity i(G(k)) and

i(G(k)) ≤ ni(g) + k − i(α2) + i(α1) ≤
( n
m

+ 1
)
i(α1) − i(α2) + k.

Thus, ni( f ) ≤ (n/m + 2)i(α1) − 2i(α2) + 2k.
(3-2) Suppose that α2(z) , 0. In the same way as in case (2-1), we get that z

is a zero of F(k) with multiplicity i(F(k)) = ni( f ) − i(α1) − k ≥ 1. If g(z) ,∞, then
ni( f ) ≤ 2i(α1) + 2k. Suppose that g(z) =∞ with multiplicity i(g).
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If i(α1) < mi(g), then z is a pole of G(k) with multiplicity i(G(k)) = (n + m)i(g) + k;
from this and (3.3) it follows that ni( f ) = (n + m)i(g) + 2k + i(α1).

If mi(g) ≤ i(α1), we proceed as in case (3-1) to get ni( f ) ≤ (n/m + 2)i(α1) + 2k.
Consequently, from (3-1) and (3-2),

nNV3 (r) ≤ (n + m)NV3,g(r) + 2kNV3,g(r) + S (r), (3.8)

where NV3,g(r) is the counting function of the poles of g which belong to V3, and
NV3,g(r) is the reduced counting function of NV3,g(r).
(4) Let z ∈ V4, and let i( f , z) = i( f ), i(α1, z) = i(α1) and i(α2, z) = i(α2) for short. We
see that

ni( f ) − i(α1) − i(α2) = (n − 1)i( f ) + i( f ) − i(α1) − i(α2) ≥ (n − 1)i( f ) + 1 ≥ k + 1,

that is, z is a zero of F with multiplicity ni( f ) − i(α2) − i(α1) ≥ k + 1, and then z is
a zero of F(k) with multiplicity i(F(k)) = ni( f ) − i(α2) − i(α1) − k. If g(z) ,∞, then
ni( f ) ≤ 2i(α1) + 2i(α2) + 2k.

Suppose that g(z) =∞ with multiplicity i(g).
If i(α1) < mi(g), then z is a pole of G(k) with multiplicity i(G(k)) = (n + m)i(g) + k +

i(α2); from this and (3.3) it follows that ni( f ) = (n + m)i(g) + 2k + i(α1) + 2i(α2).
If mi(g) ≤ i(α1), then we proceed as in case (3-1) to get

ni( f ) ≤ (n/m + 2)i(α1) + 2i(α2) + 2k.

Consequently,

nNV4 (r) ≤ (n + m)NV4,g(r) + 2kNV4,g(r) + S (r), (3.9)

where NV4,g(r) is the counting function of the poles of g which belong to V4, and
NV4,g(r) is the reduced counting function of NV4,g(r).

By using the estimates (3.5)–(3.9),

nN
(
r,

1
f

)
≤ (n + m)N(r, g) − (n + m)N f,0(r, g) + 2kN

(
r,

1
f

)
+ S (r), (3.10)

where N f,0(r, g) is the counting function of those poles of g which are not zeros of f .
Let z be a zero of f of order q such that z is not any zero or pole of α1 or α2.

We deduce from (3.3) that z must be a pole of g of order p with nq = (n + m)p + 2k.
We see that n(q − p) = mp + 2k ≥ n, and we deduce that q ≥ p + 1 ≥ 1 + ((n − 2k)/m).
Therefore, N(r, 1/ f ) ≤ m/(m + n − 2k)N(r, 1/ f ) + S (r); from this, (3.4) and (3.10), it
follows that

nT (r, f ) + (n + m)sgN f,0(r, g) ≤ (n + m)T (r, g) + 2kN
(
r,

1
f

)
+ S (r),

where N f,0(r, g) is the reduced counting function of N f,0(r, g).
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From the last inequality,

nT (r, f ) + (n + m)sgN(r, g) ≤ (n + m)T (r, g) + (((n + m)sg) + 2k)N
(
r,

1
f

)
+ S (r)

≤ (n + m)T (r, g) + m
2k + (n + m)sg

n + m − 2k
N
(
r,

1
f

)
+ S (r)

≤ (n + m)T (r, g) + m
2k + (n + m)sg

n + m − 2k
T (r, f ) + S (r),

which implies that(n − 2k − msg

n + m − 2k

)
T (r, f ) ≤ T (r, g) − sgN(r, g) + S (r).

Similarly, (n − 2k − ms f

n + m − 2k

)
T (r, g) ≤ T (r, f ) − s f N(r, f ) + S (r).

The last two inequalities lead to

lim sup
r→∞

sgN(r, g) + s f N(r, f )

(1 + sg)T (r, f ) + (1 + s f )T (r, g)
≤

m
n + m − 2k

,

in contradiction to condition (A2), and this contradiction comes from the hypothesis
F(k)G(k) ≡ 1. Suppose that F(k) ≡G(k).

Consequently, F + δ = G and T (r, f ) = T (r, g) + S (r), where δ is a polynomial. On
the other hand, if δ . 0, by applying Nevanlinna’s three small functions theorem (see
[8, Theorem 1.36]), we see that

(n + m)T (r, f ) ≤ N(r, f ) + N
(
r,

1
α2 f n( f m + α1)

)
+ N

(
r,

1
α2gn(gm + α1)

)
+ S (r)

≤

( 1
t1

+
2
t2

+ 2m
)
T (r, f ) + S (r),

giving us (n − m)t1t2 ≤ 2t1 + t2, which contradicts condition (A1) (condition (B1) or
condition (B2)). Hence, δ ≡ 0, and F ≡G.

Let n = qn1, m = qm1, f /g = h and hq = H, where q = gcd(m, n). Then

gm = −α1
Hn1 − 1

Hn1+m1 − 1
and f n( f m + α1) ≡ gn(gm + α1). (3.11)

Suppose that H is a nonconstant meromorphic function. Since n > m (from
conditions (A1), (B1) and (B2)), we have n1 ≥ 2. However, from (3.11) and the
Valiron–Mokhon’ko lemma,

mT (r, g) = (n1 + m1 − 1)T (r, H) + S (r). (3.12)
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Let λ1, . . . , λn1+m1−1 be the distinct complex numbers satisfying λi , 1 and λn1+m1
i =

1 (1 ≤ i ≤ n1 + m1 − 1), and let ξ1, . . . , ξn1−1 be the distinct complex numbers satisfy-
ing ξi , 1 and ξn1

i = 1 (1 ≤ i ≤ n1 − 1). We note that λ1, . . . , λn1+m1−1, ξ1, . . . , ξn1−1 are
distinct; it follows from (3.11) and (3.12), and by applying the second fundamental
theorem, that

(2n1 + m1 − 3)T (r, H) ≤
n1+m1−1∑

i=1

N
(
r,

1
H − λi

)
+

n1−1∑
i=1

N
(
r,

1
H − ξi

)
+ N(r, H) + S (r, H)

≤ N(r, g) + N
(
r,

1
g

)
+ S (r) ≤

1
t1

N(r, g) +
1
t2

N
(
r,

1
g

)
+ S (r) ≤

2
t

T (r, g) + S (r),

(3.13)

where t = 2t1t2/(t1 + t2).
From (3.12) and (3.13) we deduce mt(2n1 + m1 − 3) ≤ 2(n1 + m1 − 1), which can

be written as

2(n + m − q)(mt − 1) ≤ mt(m + q). (3.14)

We claim that n > 2q. This argument is clear when condition (A1) holds. Suppose
that n ≤ 2q under condition (B1) or (B2). If n = 2, then m = q = 1, and then (3.14)
becomes t1t2 ≤ t1 + t2, but from condition (B1) or (B2) we have t1t2 > 6t1 + 5t2, which
is impossible. Thus, n > 2, and we get n1 = 2 and m = q (because n > m). This means
that n = 2q, and inequality (3.14) implies qt1t2 ≤ t1 + t2, and from this and condition
(B1) (or condition (B2)) we see that

(k + 4)t2 + 2(k + 2)t1 < (n − m)t1t2 < nt1t2 ≤ 2(t1 + t2),

which is impossible. This shows that n > 2q.
We note that m + q < n + m − q; if mt ≤ 2(mt − 1) then mt(m + q) < 2(n + m −

q)(mt − 1), which contradicts (3.14). Therefore, we have mt < 2, which implies
mt1t2 < t1 + t2; from this inequality we deduce that m = 1 and t1t2 < t1 + t2, and from
the last inequality we get that either t1 = 1 or t2 = 1. Suppose that t1 = 1. Therefore,
inequality (3.14) becomes n(t − 1) ≤ t, which means that n(t2 − 1) ≤ 2t2. We observe
that if condition (A1) holds then n ≥ 5, which is impossible unless t2 = 1. Suppose
that t2 ≥ 2 and condition (B1) or (B2) holds. Therefore, from condition (B1) or (B2)
we have 6 + 5t2 < (n − 1)t2; if we compare this inequality with n(t2 − 1) ≤ 2t2, we will
arrive at a contradiction. Therefore, we have m = t1 = t2 = 1, and condition (A3) holds.
It follows from (3.12) and (3.13) that

2n − 2
n

T (r, g) ≤ N(r, g) + N
(
r,

1
g

)
+ S (r). (3.15)
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By the same method,

2n − 2
n

T (r, f ) ≤ N(r, f ) + N
(
r,

1
f

)
+ S (r). (3.16)

Then inequalities (3.15) and (3.16) will give a contradiction with condition (A3).
Therefore, we conclude that H must be a constant; it follows from (3.11) that
Hn1 ≡ Hn1+m1 ≡ 1, which means that H ≡ 1, which means in turn that h is a constant,
and hence f = cg, where c is a nonzero constant satisfying cq = 1. This finishes the
proofs of Theorems 1.6 and 1.8.

3.2. Proof of Theorem 1.9. Set F = α1 f n and G = α2gn. Suppose that F(k) .G(k)

and F(k)G(k) . 1. We proceed as in the proof of inequality (3.2) to get

nT (r, g) ≤ (2k + 3)N(r, f ) + 2(k + 2)N(r, g)

+ (2k + 3)N
(
r,

1
f

)
+ (3k + 4)N

(
r,

1
g

)
+ S (r),

which implies that(
n − 2

k + 2
t1
−

3k + 4
t2

)
T (r, g) ≤

(2k + 3
t1

+
2k + 3

t2

)
T (r, f ) + S (r).

In the same way, we deduce that(
n − 2

k + 2
t1
−

3k + 4
t2

)
T (r, f ) ≤

(2k + 3
t1

+
2k + 3

t2

)
T (r, g) + S (r).

These two inequalities give us nt1t2 ≤ (5k + 7)t1 + (4k + 7)t2, which contradicts
condition (C1). Therefore, from Lemma 2.1, we conclude that either F(k) ≡G(k) or
F(k)G(k) ≡ 1.

Suppose that F(k) ≡G(k). Consequently, F + δ = G and T (r, f ) = T (r, g) + S (r),
where δ is a polynomial. On the other hand, if δ . 0, by applying Nevanlinna’s three
small functions theorem we get

nT (r, f ) ≤ N(r, f ) + N
(
r,

1
α1 f n

)
+ N

(
r,

1
α2gn

)
+ S (r) ≤

( 1
t1

+
2
t2

)
T (r, f ) + S (r),

leading to nt1t2 ≤ 2t1 + t2, which contradicts condition (C1). Hence, δ ≡ 0, and then
α1 f n ≡ α2gn, which is also a contradiction. Therefore,

F(k)G(k) ≡ 1. (3.17)

If z is a zero of f of multiplicity q such that z is not any pole or zero of any element in φ
or α then, from (3.17), that z must be a pole of g of order p with nq − k = np + k, which
means that n(q − p) = 2k ≥ n, which is impossible. This proves that N(r, 1/ f ) = S (r).
Similarly, N(r, 1/g) = S (r).

https://doi.org/10.1017/S0004972713000397 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713000397


[18] Uniqueness of meromorphic functions 43

Let z0 be a pole of f with multiplicity p ≥ t1 such that z0 is not any zero of G or any
function in α or φ. Consequently, from (3.17), we deduce that z0 is a zero of G(k) with
multiplicity np + k ≥ nt1 + k. Therefore, by the lemma of the logarithmic derivative,
we observe that

N(r, f ) ≤
1

nt1 + k
N
(
r,

G(k)

G

)
+ S (r)

≤
1

nt1 + k

(
kN(r,G) + Nk

(
r,

1
G

))
+ S (r) ≤

k
nt1 + k

N(r, g) + S (r).

Similarly, N(r, g) ≤ (k/(nt1 + k))N(r, f ) + S (r). Consequently, we conclude from
the last two inequalities that N(r, f ) ≤ (k/(nt1 + k))2N(r, f ) + S (r), which leads to
N(r, f ) = S (r) and N(r, g) = S (r).

We take the kth derivative of F and G to get F(k) = λ1 f n and G(k) = λ2gn, where λ1

and λ2 are small functions of f and g. It follows from this and (3.17) that f n = ag−n,
where a = (λ1λ2)−1.

We now turn to the last part of Theorem 1.9 when α and φ consist of only complex
constants. Then α1 and α2 are constants. As noted in the paragraph after (3.17), if z is
a zero of f of multiplicity q, then z must be a pole of g of order p with nq − k = np + k,
which means that n(q − p) = 2k ≥ n, which is impossible. Therefore, f has no zeros,
and in the same way we get that g has no zeros. This proves Theorem 1.9.

In the same manner as in the above proof and by using Lemma 2.2 we prove
Theorem 1.11.
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