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Abstract

Let G be a finite group of order n, and let C, be the cyclic group of order n. For g € G, let o(g) denote
the order of g. Let ¢ denote the Euler totient function. We show that 3’ ,ec, ¢(0(8)) = X oec #(0(8)), with
equality if and only if G is isomorphic to C,. As an application, we show that among all finite groups of a
given order, the cyclic group of that order has the maximum number of bidirectional edges in its directed
power graph.
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1. Introduction
Our main result is a group-theoretic inequality, which we apply to power graphs.

DeriniTion 1.1. Let G be a finite group. For g € G, let o(g) denote the order of g. Let
¢ denote the Euler totient function. Define

$(G) = ) ¢(o(2)). (1)

geG

TuEOREM 1.2 (Main theorem). Let G be a finite group of order n, and let C, be the
cyclic group of order n. Then

#(Cy) = ¢(G), (1.2)
with equality if and only if G is isomorphic to C,,.

Our motivation for (1.2) lies in our interest in power graphs of finite groups.

Derinition 1.3. The directed power graph ?(G) of a group G has vertex set G and

directed edge setTE)(G) ={(g,h) | g, heG,he{g)\{g}}. The set of bidirectional edges
- = -

of P(G)is E(G) = {{g,h}| (g, h),(h,g) € E(G)}.
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Power graphs are among the various graphs related to algebraic structures. They
were introduced in [5-8] in connection with groups and semigroups. For more
information about power graphs, the reader is referred to the survey [ 1], which contains
a full review of the literature to date.

Counting bidirectional edges in the directed power graph of a group is
straightforward. By Definition 1.3, there is a pair of oppositely directed edges between
two distinct group elements precisely when they generate the same subgroup. Recall
that the number of generators of a cyclic group of order m is ¢(m).

Levmma 1.4. With reference to Definition 1.1, each g € G is a vertex in ¢(o(g)) — 1
—>
bidirectional edges of P(G), and

1 G)-1G
EG)1= 5 3 @) -1 = 22 (13)

2
geG

It was shown in [2] that among directed power graphs of groups of a given finite
order, that of the cyclic group has the maximum number of edges. In [4], we showed
that the same is true for undirected power graphs. In light of Lemma 1.4, Theorem 1.2
is equivalent to the following related result.

THeEOREM 1.5. Among all groups of a given finite order, the cyclic group of that order
has the maximum number of bidirectional edges in its directed power graph.
2. A criterion for a normal cyclic Sylow subgroup

We develop a criterion for the existence of a cyclic normal Sylow subgroup.
Throughout this section we use the following notation.

Notation 2.1. Let n > 1 be an integer. Write n = p{'p3* - - p;* for primes p; < p, <
.-+ < pi and positive integers ay, @, ..., a;. Abbreviate p = p; and @ = q;. Let
£ pn+1
h
0= . (2.1)
hot P 1

An elementary exercise in the same vein as [3, Exercise 5, page 143] gives two
expressions for ¢(C,,) derived from 7 (see also [4, Lemma 2.5]).
Lemma 2.2. With Notation 2.1, let C,, be the cyclic group of order n. Then

k

2q,
"pp—1) +2
o(C= Y o) = | T 2.2)

din h=1 prtl

Subtracting the 2 from the numerator of each factor of (2.2) gives the lower bound

2
C)>—. 23
$(Cp) > 0 (2.3)
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TaBLE 1. Some special values of Q.

4 1 2 3 4 5 6 7 8 9
v(0) 2 3 5§ 7 11 13 17 19 23
oFry 3 6 9 12 72/5 84/5 189/10 21 252/11
oSy 2 92 8 545 14 815 56/3 1134/55 *

When k > 2, we may write

1 +1 o+ 1lpi+1
_ (Pl . Di2 Pik-1 )(pk + 1), (2.4)
pi—-\pp=1  pey—=1 pe—1
Observe that if (pj—1, pr) # (2,3), then for2 < h <k,
1+ 1
Pl ® oy, (2.5)
pn—1
This immediately gives the following lemma.
Lemma 2.3. With Notation 2.1, assume n is odd. Then
+1
<P (2.6)
p1—1

In Table 1 above we record data concerning some sets of primes which require
special treatment. Let v(i) denote the ith prime number. For each positive integer ¢, let
Fe={@)|1<i<and S, ={v() |1 <i< -1} U (£ + 1)}. Write Q(X) to denote
the value of Q when the set of distinct prime factors of n is X.

Lemma 2.4. With Notation 2.1, Q < p+ 1 unless {p; |1 <i <k} =F; with2 <k <8.
Moreover, Q < p whenever n is odd.

Proor. If nis odd, then by (2.6), 0 <(p+ 1)/(p1 — 1) < (p + 1)/2 < p since p;, p > 3.
By (2.1), 0 < p+ 1 when k = 1. Table 1 shows that Q > p + 1 when the set of prime
divisors of n is 7 (2 < k < 8) and that Q < p + 1 when the set of prime divisors of
nis F9 or S (1 <k < 8). Suppose that P is a set of primes with maximum element
pand Q(P) < p+ 1. If p’ > pis aprime, then Q(PU {p’'}) = Q(P)(p' + 1)/(p' = 1) <
(p+D@P +1D)/(p' —1). Now (p+ 1)/(p' = 1) < 1 provided (p, p’) # (2,3). In any
other case, once the inequality is satisfied by an initial subset of prime factors it is
satisfied by adding larger prime factors. The result follows. O

It is well known that

¢(m) = pi" " (pr = VP (2= - PP (e = D). 2.7
Immediate consequences include the following:
n = ¢(n)- P P2 Pk , 2.8)
pi—1 pp—-1  pe—1
alb= ¢a)|¢b) (a,beZ"). (2.9)
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Lemma 2.5. With Notation 2.1, suppose that n # 2% for any a > 0. Then
n> Q¢(i)p“”, (2.10)
pﬂ/

with equality if and only if n = 23 and a, 8 > 0.

Proor. If n = p®, then (2.10) becomes p® > p®~'(p + 1)/(p — 1), which holds strictly
since p # 2. The inequality fails if n is a power of 2. Now suppose that n has at least
two distinct prime factors. By (2.1) and (2.8),

Bgmp 2 PP
0 Pr+D(p2+1) (e +D(p+1)
By (2.7), (n) = ¢(n/ p™)p®~'(p — 1), 50
n ny 4 )4 D2 D3 p
Z a2 -1)- .
0 ‘b(pa)” ?-D <p+1)(<p1+1>(p2+1> (pk_1+1>)

Observe that for 1 <h <k -1, pp1/(pr + 1) = 1, with equality if and only if p, =2
and ppy =3. Thus n/Q > ¢(n/p*)p*'(p — D)p1/(p + 1), with equality if and
only if k=2, py =2 and p=3. Since p; >2 and (p— 1)/(p+1) > 1, we have
pi(p—1)/(p+1) > 1, with equality if and only if p; = 2 and p = 3. Thus (2.10) holds
with equality if and only if n = 23 with a, 8 > 0. O

LemMma 2.6. With Notation 2.1, let G be a finite group of order n, and let g € G. If
n < Q¢(o(g)), then g is not the identity of G except possibly when n = 2.

Proor. Suppose that e is the identity of G, so ¢(o(e)) = 1. Lemma 2.5 and the
hypothesis imply that n is a positive power of 2. In this case, Q¢(o(e)) = 3, which
is less than n unless n = 2. When n = 2, n < Q¢(o(e)), so the exception is required. O

Lemma 2.7. With Notation 2.1, let G be a finite group of prime power order n > 2, and
let g € G. If n < Q¢p(0(g)), then g generates G.

Proor. Suppose that n = p®. Then Q = (p + 1)/(p — 1) by definition, and o(g) = p' for
some ¢ (0 < £ < ) by Lagrange’s theorem and Lemma 2.6. Now ¢(o(g)) = p''(p — 1).

Thus Q¢(0(g)) = p~'(p + 1). Now p” =n < Q¢(0(g)) = p'~'(p + 1). Thus p**' < p,
so £ > a. In addition ¢ < @, so € = @. Hence g generates G. O

Lemma 2.8. With Notation 2.1, let G be a finite group of order n > 2, and let g € G. If
n < Q¢(0(g)), then p* | o(g).

Proor. If n has just one prime factor, then g generates G by Lemma 2.7, and the result
follows. Assume that n has at least two distinct prime factors. By hypothesis and
Lemma 2.5,

$o(g) > ¢(1%)p”‘1. @.11)

For the sake of contradiction, suppose that p® ¢ o(g), so o(g) | n/p. We consider two
cases. If @ =1, then (2.9) gives ¢(0o(g)) | #(n/p), contradicting (2.11). If a > 2,
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then (2.9) gives ¢(0(9) | $(n/p™)p*2(p —1). In this case $(o(g)) < d(n/p®)
p®~2(p — 1), contradicting (2.11). We conclude that p® | o(g), as required. O

Lemma 2.9. With Notation 2.1, let G be a finite group of order n, and let g € G. If o(g)
is even and n < Q¢(0(g)), then nj/o(g) < p.

Proor. Observe that o(g) > 2¢(o(g)) and p; =2, so n/o(g) < n/2¢(o(g)) < Q/2. If
n = 2, the result is trivial. If n = 2% for some « > 1, then o(g) = n by Lemma 2.7, so
the result follows. Assume n has at least one prime factor other than 2. Then by (2.4),
0/2 <3(p+ 1)/2(p, — 1). Since p, > 3, the right-hand side is at most p, and the result
follows. O

TueoreMm 2.10. With Notation 2.1, let G be a finite group of order n. Suppose that there
exists a non-identity element g € G such that n < Q¢(0(g)). Then there is a normal (and
hence unique) Sylow p-subgroup of G. Moreover, the Sylow p-subgroup is contained
in {g) and hence is cyclic.

Proor. The result is trivial if n =2. If n>2 is a prime power, then the result
follows from Lemma 2.7, so assume that n is not a prime power. First suppose
that n/o(g) < p+ 1. Then |G : (g)| =n/o(g) < p+ 1. By Lemma 2.8, p® | o(g), so
p 111G : {(g)]. Thus (g) contains a Sylow p-subgroup P of G (which is necessarily cyclic
since (g) is). Clearly (g) € Cg(P) € Ng(P), so |G : Ng(P)| < p+ 1. But |G : Ng(P)| is
the number of Sylow p-subgroups and must be congruent to 1 modulo p. Thus, it must
be the case that there is exactly one Sylow p-subgroup, which is necessarily normal.

Now suppose that n/o(g) > p + 1. Note that n/o(g) < n/¢(o(g)) < Q. Thus by
Lemmas 2.4 and 2.9, the following hold: 2 <k <8, n= [—[f.‘:l v(@)® with a; # 0
(1 <i<k), and o(g) is odd. In Table 2, we show that other than n =2 - 3 - 5%, none
of the remaining cases satisfy n/¢(0(g)) < Q, and thus are not subject to this theorem.
In this table, for 2 < k < 8 we mark with a bullet (o) the even integers that are at least
v(k) + 1 and strictly less than Q (from Table 1) as the possible values of n/o(g). Also
by Lemma 2.8, v(k)* | o(g), so v(k) t n/o(g). Since o(g) is odd, 2%' | n/o(g), where
a; is the largest power of 2 dividing n/o(g). It is now easy to read o(g). The value of
¢(0(g)) will depend upon which primes appear in o(g), but otherwise is straightforward
to compute. All cases other than n =2 -3 - 5% violate n/¢(o(g)) < Q.

Suppose that n =2 -3 -5% Observe that o(g) = 5%, so (g) is a cyclic Sylow
5-subgroup. Since the order of G is twice an odd number, G contains a subgroup
H of index 2. (See [9, Exercise 205] or use Burnside’s normal p-complement theorem
[9, Theorem 10.21].) Note that H is normal and has order 3 - 5°. Elementary Sylow
arguments give that there is a unique Sylow 5-subgroup P of H. Now P is characteristic
in H, and hence normal in G. Since P is the unique Sylow 5-subgroup of G, we have
P = (g). Thus the theorem holds in this case. |

The contrapositive form of Theorem 2.10 is interesting.

CoroLLary 2.11. With Notation 2.1, let G be a finite group of order n, and let p be
the largest prime divisor of n. If there is more than one Sylow p-subgroup, then

n > Q¢(o(g)) forall g € G.
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TasLE 2. Exceptional cases in the proof of Theorem 2.10.

k v(k) 0
. O(”g) o o(g)
n
case #(0(g)) { ¢(o(g))J
2 3 6
o 4 2 3@
all 2.3m-1 6=0
3 5 9
o 6 1 3m-l503
=1 4.55°1  75<Q
ar > 1 2.3m24 . 5051 11>0
o 8 3 30503
all 2. 3wl 501 15>0
4 7 12
g 3 302503704
all 2. 3m-lg. 503-1g . e 17>0
e 10 1 30 50-17e
az = 230716 . 7] 14> Q0
a; > 1 2.3mol4. 5026 . qeu-] 21> 0
5 11 144
o 12 2 3e2-l503gas ] s
=1 45071670410 . 11057 19> 0
> 1 2.3m24 . 50-1g . gl o5 28>0
o 14 1 32503 704-1 ] s
as =1 23wl 5es-11( . o5 28>0
> 1 2.3m-lq. 50m1g . gl . o5 33>0
6 13 16.8
o 14 1 3250704110513
@ = 2.3ml4. 5051 [ 1esm1]2 . (3001 31>0
L2m-lyg, saz-lg | qas-2
@ > 1 {2>< fo- 1‘11'1:' 12~6137W1 36>0
o 16 4 302503704 | (a5 | 3%
2. 303—14 . 503—16 . 7(1/4—]
all {>< 10- 11957112 - 130! 41>0
7 17 189
18 1 30-25037a | [as | 3a6 |77
450716 7ea-1(. (o5
@2 =2 {x 12-13%7116- 17071 3>0
2 ) 30{2—34 . 5(13—16 . 7(14—1
a2 >2 {><10- 11757112 13%7116 - 17977 49> 0
3 19 21
20 2 32 50s=17a | [os | 3a0 | 7a7 ]9
2.3m-lg. asml Q. o5
@ =1 { x 12 13%7116 - 17277118 - 19! 46>0
2.3m-l4. 50726 gl . os-]
as > 1 {x 121397116 1777118 - 19°5~! >8>0
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The bound in Theorem 2.10 is tight in the following sense. In the alternating group
Ay, n=12, O =6, and elements have order 3, 2, and 1. For g € A4 with o(g) =3
¢(0(g)) = 2. Thus n = Q¢(o(g)). However, Ay has four Sylow 3-subgroups, which
happen to be cyclic.

3. Proof of the main theorem

To prove Theorem 1.5, we need some facts about direct and semi-direct products.

Lemma 3.1. Let U and T be finite groups, and let G = U X T be the direct product of
UandT. Then ¢(G) < p(U)d(T). Moreover, if (|U|,|T|) = 1, then ¢(G) = ¢p(U)¢(T).

Proor. Given g = (u,t) € G, o(g) = o(u)o(t)/(o(u),o(¢)). Thus by the multiplicative
property of the totient function and by (2.9),

_ o(u)
$0() = 8 s o0 < (oo,
Now
WG = 3 dew =3 3o (0(”) Jocotn)
uelU teT uelU teT u) O(t)) (31)
< D e0w) Y ¢o) = gUI(T).
uelU teT
Observe that if (|U|,|T) = 1, then (o(x),0(v)) = 1 for all u € U and t € T, so equality
holds throughout. O

The condition (|U|,|T]) = 1 in Lemma 3.1 can be replaced with other conditions
to reach the same conclusion. If U is an elementary abelian 2-group, then all
elements of U have order 1 or 2. The totient of these numbers and their divisors
is 1, so ¢(o(u)) = ¢p(o(u)/(o(u),0(t))) =1 for all u € U and t € T. Now (3.1) gives
d(G) = p(U)@(T). Similarly, if (|U|,|T|) =2 and |U| is twice an odd number, then
$(0(u)) = ¢(0(u)/(0(u), 0(1))), 50 $(G) = SU)HT).

Lemma 3.2 [4, Lemma 5.3]. Suppose that G is a finite group and that G = U =, V is
the semidirect product of a normal abelian subgroup U and a subgroup V. Assume
that U and V have coprime orders. Then og(uv) | oyxy(uv) forallu e U andv e V.

CoroLLary 3.3. With reference to Lemma 3.2, ¢(og(uv)) | p(oyxyuv)), and ¢(U >, V)
< ¢p(U X V).

Proor. The divisibility follows from Lemma 3.2 and (2.9), and the inequality follows
from (1.1). O

TraeorREM 3.4 [9, Theorem 10.30]. (Schur—Zassenhaus theorem) Let G be a finite group,
and let K be a normal subgroup of G with (|K|,|G : K|) = 1. Then G is a semidirect
product of K and G/K. In particular, there exists a subgroup H of G with order |G : K|
such that G = K =, H for some homomorphism ¢ : H — Aut(K).
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Before treating the general case we present a special case involving cyclic groups.

Lemma 3.5. Let a and b be coprime positive integers. Then ¢(C, =, Cp) < $(Cy X Cp),
with equality if and only if the semi-direct product is direct.

Proor. Note that G = C, =, C, and H = C, X C; = C,, are defined on the cartesian
product of the underlying sets of C, and C,. Let n=ab. By Corollary 3.3,
#(oG(g)(on(g)) for all g € G. Thus ¥, $(06(8)) < Yo $(0n(g)). Moreover,
equality holds if and only if ¢(0g(g)) = ¢p(oy(g)) for all g € G.

Suppose equality holds for the sums. Pick a generator 4 of H. We are done if
0og(h) = n since G = C, = H in this case. Suppose for the sake of contradiction that
o (h) # n. Now og(h)|n, so in light of (2.9), m = og(h) = n/2 is odd. Let L = (h) C G,
so |L| is odd and |G : L| = 2. This implies L < G. Let K be a Sylow 2-subgroup of G,
so |K| =2. Now G = LK and L N K = {e}, where e is the identity of G. Hence G is the
semi-direct product G = L =y, K (see [9, Theorem 9.13]). Hence G is isomorphic to
the semi-direct product C,, >, C,. Since C,, is normal in G, we have that (uv)? € Gy,
for all u € C,,, v € C;. In particular, og(uv) is even. However, og(uv) # 2m since G is
not cyclic. Now ¢(og(uv)) < ¢(2m) = ¢(n), since o(u)|m. This implies p(G) < ¢(C,,),
contrary to our assumption. Thus G is cyclic as required. O

We are ready to prove our main result, namely that ¢(C,) > ¢(G), with equality if
and only if G is isomorphic to C,,.

Proor oF THEOREM 1.2. The result is clear for n € {1, 2}, so assume that n > 3. Suppose
that ¢(G) > ¢(C,). For some g € G, ¢(0(g)) is at least the average value over the group,
50 $(0(8)) = $(G)/n = $(C,)/n > n/Q by (2.3).

We proceed by induction on the number of distinct prime factors of n. If |G| has just
one prime factor, then G is cyclic by Lemma 2.7, and hence isomorphic to C,. Now
assume that for all n” with fewer distinct prime factors than n and for all groups G’ of
order n’, we have ¢(C,,) > ¢(G”), with equality if and only if G’ is isomorphic to C,,.

By Theorem 2.10, there exists a Sylow p-subgroup P of G which is both cyclic and
normal, where p is the largest prime divisor of n. Since P is a Sylow p-subgroup,
|G : P|is coprime to |P|. Abbreviate a = |P|, b = |G : P|. By Theorem 3.4,G =P =, T
for some subgroup 7' € G with order b and some homomorphism ¢ : T — Aut(P).

Since P is cyclic, Corollary 3.3 gives that ¢(G) = ¢(P <, T) < ¢(P x T). But
by Lemma 3.1, ¢(P X T) = ¢(P)¢(T). Identify C, with the direct product of cyclic
subgroups C, X Cp. Observe that ¢(C,,) = ¢(C,)¢(C;) by Lemma 3.1 and ¢(C,) = ¢(P)
since both are cyclic and of the same order.

Note that p {1 |T| = b by construction and |T||n by Lagrange’s theorem, so |T|
has fewer distinct prime divisors than n and |T| < n. By the induction hypothesis
¢(Cp) = ¢(T), with equality if and only if T is cyclic. Thus ¢(G) < ¢(C,), with equality
only if T is cyclic. By assumption ¢(G) > ¢(C,,), hence ¢(G) = ¢(C,) and T is cyclic
of order b. Thus G is isomorphic to C, >, C;,. The result follows by Lemma 3.5. O

Proor oF THEOREM 1.5. Straightforward from Theorem 1.2 and (1.3). O
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Theorem 1.2 implies that C, is determined up to isomorphism by ¢(C,,). However,
¢(G) depends only upon the orders of its elements, and does not determine G in
general. Indeed, ¢(C4 X Cy) = ¢(C, X Q) = 28, where Q is the quaternion group, since
each has three elements of order 2 and 12 of order 4. We pose a related question. Let G
and H be finite groups of the same order with ¢(G) = ¢(H). Suppose that G is simple.
Is H necessarily simple?
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