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Abstract

Let G be a finite group of order n, and let Cn be the cyclic group of order n. For g ∈ G, let o(g) denote
the order of g. Let φ denote the Euler totient function. We show that

∑
g∈Cn

φ(o(g)) ≥
∑

g∈G φ(o(g)), with
equality if and only if G is isomorphic to Cn. As an application, we show that among all finite groups of a
given order, the cyclic group of that order has the maximum number of bidirectional edges in its directed
power graph.

2010 Mathematics subject classification: primary 20F99; secondary 05C25.
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1. Introduction

Our main result is a group-theoretic inequality, which we apply to power graphs.

Definition 1.1. Let G be a finite group. For g ∈ G, let o(g) denote the order of g. Let
φ denote the Euler totient function. Define

φ(G) =
∑
g∈G

φ(o(g)). (1.1)

Theorem 1.2 (Main theorem). Let G be a finite group of order n, and let Cn be the
cyclic group of order n. Then

φ(Cn) ≥ φ(G), (1.2)

with equality if and only if G is isomorphic to Cn.

Our motivation for (1.2) lies in our interest in power graphs of finite groups.

Definition 1.3. The directed power graph
−→
P(G) of a group G has vertex set G and

directed edge set
−→
E (G) = {(g, h) | g, h ∈ G, h ∈ 〈g〉\{g}}. The set of bidirectional edges

of
−→
P(G) is

←→
E (G) = {{g, h} | (g, h), (h, g) ∈

−→
E (G)}.
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Power graphs are among the various graphs related to algebraic structures. They
were introduced in [5–8] in connection with groups and semigroups. For more
information about power graphs, the reader is referred to the survey [1], which contains
a full review of the literature to date.

Counting bidirectional edges in the directed power graph of a group is
straightforward. By Definition 1.3, there is a pair of oppositely directed edges between
two distinct group elements precisely when they generate the same subgroup. Recall
that the number of generators of a cyclic group of order m is φ(m).

Lemma 1.4. With reference to Definition 1.1, each g ∈ G is a vertex in φ(o(g)) − 1
bidirectional edges of

−→
P(G), and

|
←→
E (G)| =

1
2

∑
g∈G

(φ(o(g)) − 1) =
φ(G) − |G|

2
. (1.3)

It was shown in [2] that among directed power graphs of groups of a given finite
order, that of the cyclic group has the maximum number of edges. In [4], we showed
that the same is true for undirected power graphs. In light of Lemma 1.4, Theorem 1.2
is equivalent to the following related result.

Theorem 1.5. Among all groups of a given finite order, the cyclic group of that order
has the maximum number of bidirectional edges in its directed power graph.

2. A criterion for a normal cyclic Sylow subgroup

We develop a criterion for the existence of a cyclic normal Sylow subgroup.
Throughout this section we use the following notation.

Notation 2.1. Let n > 1 be an integer. Write n = pα1
1 pα2

2 · · · p
αk
k for primes p1 < p2 <

· · · < pk and positive integers α1, α2, . . . , αk. Abbreviate p = pk and α = αk. Let

Q =
k∏

h=1

ph + 1
ph − 1

. (2.1)

An elementary exercise in the same vein as [3, Exercise 5, page 143] gives two
expressions for φ(Cn) derived from n (see also [4, Lemma 2.5]).

Lemma 2.2. With Notation 2.1, let Cn be the cyclic group of order n. Then

φ(Cn) =
∑
d|n

φ(d)2 =

k∏
h=1

p2αh
h (ph − 1) + 2

ph + 1
. (2.2)

Subtracting the 2 from the numerator of each factor of (2.2) gives the lower bound

φ(Cn) >
n2

Q
. (2.3)
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Table 1. Some special values of Q.

` 1 2 3 4 5 6 7 8 9
ν(`) 2 3 5 7 11 13 17 19 23
Q(F`) 3 6 9 12 72/5 84/5 189/10 21 252/11
Q(S`) 2 9/2 8 54/5 14 81/5 56/3 1134/55 *

When k ≥ 2, we may write

Q =
1

p1 − 1

( p1 + 1
p2 − 1

· · ·
pk−2 + 1
pk−1 − 1

pk−1 + 1
pk − 1

)
(pk + 1). (2.4)

Observe that if (ph−1, ph) , (2, 3), then for 2 ≤ h ≤ k,

ph−1 + 1
ph − 1

≤ 1. (2.5)

This immediately gives the following lemma.

Lemma 2.3. With Notation 2.1, assume n is odd. Then

Q ≤
p + 1
p1 − 1

. (2.6)

In Table 1 above we record data concerning some sets of primes which require
special treatment. Let ν(i) denote the ith prime number. For each positive integer `, let
F` = {ν(i) | 1 ≤ i ≤ `} and S` = {ν(i) | 1 ≤ i ≤ ` − 1} ∪ {ν(` + 1)}. Write Q(X) to denote
the value of Q when the set of distinct prime factors of n is X.

Lemma 2.4. With Notation 2.1, Q ≤ p + 1 unless {pi | 1 ≤ i ≤ k} = Fk with 2 ≤ k ≤ 8.
Moreover, Q < p whenever n is odd.

Proof. If n is odd, then by (2.6), Q ≤ (p + 1)/(p1 − 1) ≤ (p + 1)/2 < p since p1, p ≥ 3.
By (2.1), Q ≤ p + 1 when k = 1. Table 1 shows that Q > p + 1 when the set of prime
divisors of n is Fk (2 ≤ k ≤ 8) and that Q ≤ p + 1 when the set of prime divisors of
n is F9 or Sk (1 ≤ k ≤ 8). Suppose that P is a set of primes with maximum element
p and Q(P) ≤ p + 1. If p′ > p is a prime, then Q(P ∪ {p′}) = Q(P)(p′ + 1)/(p′ − 1) ≤
(p + 1)(p′ + 1)/(p′ − 1). Now (p + 1)/(p′ − 1) ≤ 1 provided (p, p′) , (2, 3). In any
other case, once the inequality is satisfied by an initial subset of prime factors it is
satisfied by adding larger prime factors. The result follows. �

It is well known that

φ(n) = pα1−1
1 (p1 − 1)pα2−1

2 (p2 − 1) · · · pαk−1
k (pk − 1). (2.7)

Immediate consequences include the following:

n = φ(n) ·
p1

p1 − 1
·

p2

p2 − 1
· · ·

pk

pk − 1
, (2.8)

a | b⇒ φ(a) | φ(b) (a, b ∈ Z+). (2.9)
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Lemma 2.5. With Notation 2.1, suppose that n , 2α for any α ≥ 0. Then

n ≥ Qφ
( n

pα

)
pα−1, (2.10)

with equality if and only if n = 2α3β and α, β > 0.

Proof. If n = pα, then (2.10) becomes pα ≥ pα−1(p + 1)/(p − 1), which holds strictly
since p , 2. The inequality fails if n is a power of 2. Now suppose that n has at least
two distinct prime factors. By (2.1) and (2.8),

n
Q
= φ(n)p1

p2

(p1 + 1)
p3

(p2 + 1)
· · ·

p
(pk−1 + 1)

1
(p + 1)

.

By (2.7), φ(n) = φ(n/pα)pα−1(p − 1), so

n
Q
= φ

( n
pα

)
pα−1(p − 1) ·

p1

(p + 1)

( p2

(p1 + 1)
p3

(p2 + 1)
· · ·

p
(pk−1 + 1)

)
.

Observe that for 1 ≤ h ≤ k − 1, ph+1/(ph + 1) ≥ 1, with equality if and only if ph = 2
and ph+1 = 3. Thus n/Q ≥ φ(n/pα)pα−1(p − 1)p1/(p + 1), with equality if and
only if k = 2, p1 = 2 and p = 3. Since p1 ≥ 2 and (p − 1)/(p + 1) ≥ 1

2 , we have
p1(p − 1)/(p + 1) ≥ 1, with equality if and only if p1 = 2 and p = 3. Thus (2.10) holds
with equality if and only if n = 2α3β with α, β > 0. �

Lemma 2.6. With Notation 2.1, let G be a finite group of order n, and let g ∈ G. If
n < Qφ(o(g)), then g is not the identity of G except possibly when n = 2.

Proof. Suppose that e is the identity of G, so φ(o(e)) = 1. Lemma 2.5 and the
hypothesis imply that n is a positive power of 2. In this case, Qφ(o(e)) = 3, which
is less than n unless n = 2. When n = 2, n < Qφ(o(e)), so the exception is required. �

Lemma 2.7. With Notation 2.1, let G be a finite group of prime power order n > 2, and
let g ∈ G. If n < Qφ(o(g)), then g generates G.

Proof. Suppose that n = pα. Then Q = (p + 1)/(p − 1) by definition, and o(g) = p` for
some ` (0 < ` ≤ α) by Lagrange’s theorem and Lemma 2.6. Now φ(o(g)) = p`−1(p − 1).
Thus Qφ(o(g)) = p`−1(p + 1). Now pα = n < Qφ(o(g)) = p`−1(p + 1). Thus pα−`+1 ≤ p,
so ` ≥ α. In addition ` ≤ α, so ` = α. Hence g generates G. �

Lemma 2.8. With Notation 2.1, let G be a finite group of order n > 2, and let g ∈ G. If
n < Qφ(o(g)), then pα | o(g).

Proof. If n has just one prime factor, then g generates G by Lemma 2.7, and the result
follows. Assume that n has at least two distinct prime factors. By hypothesis and
Lemma 2.5,

φ(o(g)) > φ
( n

pα

)
pα−1. (2.11)

For the sake of contradiction, suppose that pα - o(g), so o(g) | n/p. We consider two
cases. If α = 1, then (2.9) gives φ(o(g)) | φ(n/p), contradicting (2.11). If α ≥ 2,
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then (2.9) gives φ(o(g)) | φ(n/pα)pα−2(p − 1). In this case φ(o(g)) ≤ φ(n/pα)
pα−2(p − 1), contradicting (2.11). We conclude that pα | o(g), as required. �

Lemma 2.9. With Notation 2.1, let G be a finite group of order n, and let g ∈ G. If o(g)
is even and n < Qφ(o(g)), then n/o(g) < p.

Proof. Observe that o(g) ≥ 2φ(o(g)) and p1 = 2, so n/o(g) ≤ n/2φ(o(g)) < Q/2. If
n = 2, the result is trivial. If n = 2α for some α > 1, then o(g) = n by Lemma 2.7, so
the result follows. Assume n has at least one prime factor other than 2. Then by (2.4),
Q/2 ≤ 3(p + 1)/2(p2 − 1). Since p2 ≥ 3, the right-hand side is at most p, and the result
follows. �

Theorem 2.10. With Notation 2.1, let G be a finite group of order n. Suppose that there
exists a non-identity element g ∈G such that n < Qφ(o(g)). Then there is a normal (and
hence unique) Sylow p-subgroup of G. Moreover, the Sylow p-subgroup is contained
in 〈g〉 and hence is cyclic.

Proof. The result is trivial if n = 2. If n > 2 is a prime power, then the result
follows from Lemma 2.7, so assume that n is not a prime power. First suppose
that n/o(g) < p + 1. Then |G : 〈g〉| = n/o(g) < p + 1. By Lemma 2.8, pα | o(g), so
p - |G : 〈g〉|. Thus 〈g〉 contains a Sylow p-subgroup P of G (which is necessarily cyclic
since 〈g〉 is). Clearly 〈g〉 ⊆ CG(P) ⊆ NG(P), so |G : NG(P)| < p + 1. But |G : NG(P)| is
the number of Sylow p-subgroups and must be congruent to 1 modulo p. Thus, it must
be the case that there is exactly one Sylow p-subgroup, which is necessarily normal.

Now suppose that n/o(g) ≥ p + 1. Note that n/o(g) < n/φ(o(g)) < Q. Thus by
Lemmas 2.4 and 2.9, the following hold: 2 ≤ k ≤ 8, n =

∏k
i=1 ν(i)

αi with αi , 0
(1 ≤ i ≤ k), and o(g) is odd. In Table 2, we show that other than n = 2 · 3 · 5α, none
of the remaining cases satisfy n/φ(o(g)) < Q, and thus are not subject to this theorem.
In this table, for 2 ≤ k ≤ 8 we mark with a bullet (•) the even integers that are at least
ν(k) + 1 and strictly less than Q (from Table 1) as the possible values of n/o(g). Also
by Lemma 2.8, ν(k)αk | o(g), so ν(k) - n/o(g). Since o(g) is odd, 2α1 | n/o(g), where
α1 is the largest power of 2 dividing n/o(g). It is now easy to read o(g). The value of
φ(o(g)) will depend upon which primes appear in o(g), but otherwise is straightforward
to compute. All cases other than n = 2 · 3 · 5α violate n/φ(o(g)) < Q.

Suppose that n = 2 · 3 · 5α. Observe that o(g) = 5α, so 〈g〉 is a cyclic Sylow
5-subgroup. Since the order of G is twice an odd number, G contains a subgroup
H of index 2. (See [9, Exercise 205] or use Burnside’s normal p-complement theorem
[9, Theorem 10.21].) Note that H is normal and has order 3 · 5α. Elementary Sylow
arguments give that there is a unique Sylow 5-subgroup P of H. Now P is characteristic
in H, and hence normal in G. Since P is the unique Sylow 5-subgroup of G, we have
P = 〈g〉. Thus the theorem holds in this case. �

The contrapositive form of Theorem 2.10 is interesting.

Corollary 2.11. With Notation 2.1, let G be a finite group of order n, and let p be
the largest prime divisor of n. If there is more than one Sylow p-subgroup, then
n ≥ Qφ(o(g)) for all g ∈ G.
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Table 2. Exceptional cases in the proof of Theorem 2.10.

k ν(k) Q
•

n
o(g)

α1 o(g)

case φ(o(g))
⌊

n
φ(o(g))

⌋
2 3 6

• 4 2 3α1

all 2 · 3α1−1 6 = Q
3 5 9

• 6 1 3α2−15α3

α2 = 1 4 · 5α3−1 7.5 < Q
α2 > 1 2 · 3α2−24 · 5α3−1 11 > Q

• 8 3 3α2 5α3

all 2 · 3α2−14 · 5α3−1 15 > Q
4 7 12

• 8 3 3α2 5α3 7α4

all 2 · 3α2−14 · 5α3−16 · 7α4−1 17 > Q
• 10 1 3α2 5α3−17α4

α3 = 1 2 · 3α2−16 · 7α4−1 14 > Q
α3 > 1 2 · 3α2−14 · 5α3−26 · 7α4−1 21 > Q

5 11 14.4
• 12 2 3α2−15α3 7α4 11α5

α2 = 1 4 · 5α3−16 · 7α4 10 · 11α5−1 19 > Q
α2 > 1 2 · 3α2−24 · 5α3−16 · 7α4−110 · 11α5−1 28 > Q

• 14 1 3α2 5α3 7α4−111α5

α4 = 1 2 · 3α2−14 · 5α3−110 · 11α5−1 28 > Q
α4 > 1 2 · 3α2−14 · 5α3−16 · 7α4−110 · 11α5−1 33 > Q

6 13 16.8
• 14 1 3α2 5α3 7α4−111α5 13α6

α4 = 1 2 · 3α2−14 · 5α3−110 · 11α5−112 · 13α6−1 31 > Q

α4 > 1
{

2 · 3α2−14 · 5α3−16 · 7α4−2

× 10 · 11α5−112 · 13α6−1 36 > Q

• 16 4 3α2 5α3 7α4 11α5 13α6

all
{

2 · 3α2−14 · 5α3−16 · 7α4−1

× 10 · 11α5−112 · 13α6−1 41 > Q

7 17 18.9
• 18 1 3α2−25α3 7α4 11α5 13α6 17α7

α2 = 2
{

4 · 5α3−16 · 7α4−110 · 11α5−1

× 12 · 13α6−116 · 17α7−1 33 > Q

α2 > 2
{

2 · 3α2−34 · 5α3−16 · 7α4−1

× 10 · 11α5−112 · 13α6−116 · 17α7−1 49 > Q

8 19 21
• 20 2 3α2 5α3−17α4 11α5 13α6 17α7 19α8

α3 = 1
{

2 · 3α2−16 · 7α4−110 · 11α5−1

× 12 · 13α6−116 · 17α7−118 · 19α8−1 46 > Q

α3 > 1
{

2 · 3α2−14 · 5α3−26 · 7α4−110 · 11α5−1

× 12 · 13α6−116 · 17α7−118 · 19α8−1 58 > Q
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The bound in Theorem 2.10 is tight in the following sense. In the alternating group
A4, n = 12, Q = 6, and elements have order 3, 2, and 1. For g ∈ A4 with o(g) = 3,
φ(o(g)) = 2. Thus n = Qφ(o(g)). However, A4 has four Sylow 3-subgroups, which
happen to be cyclic.

3. Proof of the main theorem

To prove Theorem 1.5, we need some facts about direct and semi-direct products.

Lemma 3.1. Let U and T be finite groups, and let G = U × T be the direct product of
U and T . Then φ(G) ≤ φ(U)φ(T ). Moreover, if (|U |, |T |) = 1, then φ(G) = φ(U)φ(T ).

Proof. Given g = (u, t) ∈ G, o(g) = o(u)o(t)/(o(u), o(t)). Thus by the multiplicative
property of the totient function and by (2.9),

φ(o(g)) = φ
( o(u)
(o(u), o(t))

)
φ(o(t)) ≤ φ(o(u))φ(o(t)).

Now

φ(G) =
∑
u∈U

∑
t∈T

φ(o(u, t)) =
∑
u∈U

∑
t∈T

φ
( o(u)
(o(u), o(t))

)
φ(o(t))

≤
∑
u∈U

φ(o(u))
∑
t∈T

φ(o(t)) = φ(U)φ(T ).
(3.1)

Observe that if (|U |, |T |) = 1, then (o(u), o(v)) = 1 for all u ∈ U and t ∈ T , so equality
holds throughout. �

The condition (|U |, |T |) = 1 in Lemma 3.1 can be replaced with other conditions
to reach the same conclusion. If U is an elementary abelian 2-group, then all
elements of U have order 1 or 2. The totient of these numbers and their divisors
is 1, so φ(o(u)) = φ(o(u)/(o(u), o(t))) = 1 for all u ∈ U and t ∈ T . Now (3.1) gives
φ(G) = φ(U)φ(T ). Similarly, if (|U |, |T |) = 2 and |U | is twice an odd number, then
φ(o(u)) = φ(o(u)/(o(u), o(t))), so φ(G) = φ(U)φ(T ).

Lemma 3.2 [4, Lemma 5.3]. Suppose that G is a finite group and that G = U oϕ V is
the semidirect product of a normal abelian subgroup U and a subgroup V. Assume
that U and V have coprime orders. Then oG(uv) | oU×V (uv) for all u ∈ U and v ∈ V.

Corollary 3.3. With reference to Lemma 3.2, φ(oG(uv)) | φ(oU×V (uv)), and φ(U oϕ V)
≤ φ(U × V).

Proof. The divisibility follows from Lemma 3.2 and (2.9), and the inequality follows
from (1.1). �

Theorem 3.4 [9, Theorem 10.30]. (Schur–Zassenhaus theorem) Let G be a finite group,
and let K be a normal subgroup of G with (|K|, |G : K|) = 1. Then G is a semidirect
product of K and G/K. In particular, there exists a subgroup H of G with order |G : K|
such that G = K oϕ H for some homomorphism ϕ : H → Aut(K).
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Before treating the general case we present a special case involving cyclic groups.

Lemma 3.5. Let a and b be coprime positive integers. Then φ(Ca oϕ Cb) ≤ φ(Ca × Cb),
with equality if and only if the semi-direct product is direct.

Proof. Note that G = Ca oϕ Cb and H = Ca × Cb � Cab are defined on the cartesian
product of the underlying sets of Ca and Cb. Let n = ab. By Corollary 3.3,
φ(oG(g))|φ(oH(g)) for all g ∈ G. Thus

∑
g∈G φ(oG(g)) ≤

∑
g∈G φ(oH(g)). Moreover,

equality holds if and only if φ(oG(g)) = φ(oH(g)) for all g ∈ G.
Suppose equality holds for the sums. Pick a generator h of H. We are done if

oG(h) = n since G � Cn � H in this case. Suppose for the sake of contradiction that
oG(h) , n. Now oG(h)|n, so in light of (2.9), m = oG(h) = n/2 is odd. Let L = 〈h〉 ⊂ G,
so |L| is odd and |G : L| = 2. This implies L CG. Let K be a Sylow 2-subgroup of G,
so |K| = 2. Now G = LK and L ∩ K = {e}, where e is the identity of G. Hence G is the
semi-direct product G = L oψ K (see [9, Theorem 9.13]). Hence G is isomorphic to
the semi-direct product Cm oψ C2. Since Cm is normal in G, we have that (uv)2 ∈ Cm

for all u ∈ Cm, v ∈ C2. In particular, oG(uv) is even. However, oG(uv) , 2m since G is
not cyclic. Now φ(oG(uv)) < φ(2m) = φ(n), since o(u)|m. This implies φ(G) < φ(Cn),
contrary to our assumption. Thus G is cyclic as required. �

We are ready to prove our main result, namely that φ(Cn) ≥ φ(G), with equality if
and only if G is isomorphic to Cn.

Proof of Theorem 1.2. The result is clear for n ∈ {1, 2}, so assume that n ≥ 3. Suppose
that φ(G) ≥ φ(Cn). For some g ∈G, φ(o(g)) is at least the average value over the group,
so φ(o(g)) ≥ φ(G)/n ≥ φ(Cn)/n > n/Q by (2.3).

We proceed by induction on the number of distinct prime factors of n. If |G| has just
one prime factor, then G is cyclic by Lemma 2.7, and hence isomorphic to Cn. Now
assume that for all n′ with fewer distinct prime factors than n and for all groups G′ of
order n′, we have φ(Cn′) ≥ φ(G′), with equality if and only if G′ is isomorphic to Cn′ .

By Theorem 2.10, there exists a Sylow p-subgroup P of G which is both cyclic and
normal, where p is the largest prime divisor of n. Since P is a Sylow p-subgroup,
|G : P| is coprime to |P|. Abbreviate a = |P|, b = |G : P|. By Theorem 3.4, G = P oϕ T
for some subgroup T ⊆ G with order b and some homomorphism ϕ : T → Aut(P).

Since P is cyclic, Corollary 3.3 gives that φ(G) = φ(P oϕ T ) ≤ φ(P × T ). But
by Lemma 3.1, φ(P × T ) = φ(P)φ(T ). Identify Cn with the direct product of cyclic
subgroups Ca × Cb. Observe that φ(Cn) = φ(Ca)φ(Cb) by Lemma 3.1 and φ(Ca) = φ(P)
since both are cyclic and of the same order.

Note that p - |T | = b by construction and |T ||n by Lagrange’s theorem, so |T |
has fewer distinct prime divisors than n and |T | < n. By the induction hypothesis
φ(Cb) ≥ φ(T ), with equality if and only if T is cyclic. Thus φ(G) ≤ φ(Cn), with equality
only if T is cyclic. By assumption φ(G) ≥ φ(Cn), hence φ(G) = φ(Cn) and T is cyclic
of order b. Thus G is isomorphic to Ca oϕ Cb. The result follows by Lemma 3.5. �

Proof of Theorem 1.5. Straightforward from Theorem 1.2 and (1.3). �
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Theorem 1.2 implies that Cn is determined up to isomorphism by φ(Cn). However,
φ(G) depends only upon the orders of its elements, and does not determine G in
general. Indeed, φ(C4 × C4) = φ(C2 × Q) = 28, where Q is the quaternion group, since
each has three elements of order 2 and 12 of order 4. We pose a related question. Let G
and H be finite groups of the same order with φ(G) = φ(H). Suppose that G is simple.
Is H necessarily simple?
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