A GROUP SUM INEQUALITY AND ITS APPLICATION TO POWER GRAPHS

BRIAN CURTIN[™] and G. R. POURGHOLI

(Received 1 April 2014; accepted 4 April 2014; first published online 13 June 2014)

Abstract

Let *G* be a finite group of order *n*, and let C_n be the cyclic group of order *n*. For $g \in G$, let o(g) denote the order of *g*. Let ϕ denote the Euler totient function. We show that $\sum_{g \in C_n} \phi(o(g)) \ge \sum_{g \in G} \phi(o(g))$, with equality if and only if *G* is isomorphic to C_n . As an application, we show that among all finite groups of a given order, the cyclic group of that order has the maximum number of bidirectional edges in its directed power graph.

2010 *Mathematics subject classification*: primary 20F99; secondary 05C25. *Keywords and phrases*: cyclic groups, Euler totient, Sylow subgroups.

1. Introduction

Our main result is a group-theoretic inequality, which we apply to power graphs.

DEFINITION 1.1. Let *G* be a finite group. For $g \in G$, let o(g) denote the order of *g*. Let ϕ denote the Euler totient function. Define

$$\phi(G) = \sum_{g \in G} \phi(\mathbf{0}(g)). \tag{1.1}$$

THEOREM 1.2 (Main theorem). Let G be a finite group of order n, and let C_n be the cyclic group of order n. Then

$$\phi(C_n) \ge \phi(G),\tag{1.2}$$

with equality if and only if G is isomorphic to C_n .

Our motivation for (1.2) lies in our interest in power graphs of finite groups.

DEFINITION 1.3. The *directed power graph* $\overrightarrow{\mathcal{P}}(G)$ of a group *G* has vertex set *G* and directed edge set $\overrightarrow{E}(G) = \{(g,h) \mid g, h \in G, h \in \langle g \rangle \setminus \{g\}\}$. The set of *bidirectional edges* of $\overrightarrow{\mathcal{P}}(G)$ is $\overleftarrow{E}(G) = \{\{g,h\} \mid (g,h), (h,g) \in \overrightarrow{E}(G)\}$.

^{© 2014} Australian Mathematical Publishing Association Inc. 0004-9727/2014 \$16.00

A group sum inequality

Power graphs are among the various graphs related to algebraic structures. They were introduced in [5-8] in connection with groups and semigroups. For more information about power graphs, the reader is referred to the survey [1], which contains a full review of the literature to date.

Counting bidirectional edges in the directed power graph of a group is straightforward. By Definition 1.3, there is a pair of oppositely directed edges between two distinct group elements precisely when they generate the same subgroup. Recall that the number of generators of a cyclic group of order *m* is $\phi(m)$.

LEMMA 1.4. With reference to Definition 1.1, each $g \in G$ is a vertex in $\phi(o(g)) - 1$ bidirectional edges of $\overrightarrow{\mathcal{P}}(G)$, and

$$|\overleftarrow{E}(G)| = \frac{1}{2} \sum_{g \in G} (\phi(o(g)) - 1) = \frac{\phi(G) - |G|}{2}.$$
(1.3)

It was shown in [2] that among directed power graphs of groups of a given finite order, that of the cyclic group has the maximum number of edges. In [4], we showed that the same is true for undirected power graphs. In light of Lemma 1.4, Theorem 1.2 is equivalent to the following related result.

THEOREM 1.5. Among all groups of a given finite order, the cyclic group of that order has the maximum number of bidirectional edges in its directed power graph.

2. A criterion for a normal cyclic Sylow subgroup

We develop a criterion for the existence of a cyclic normal Sylow subgroup. Throughout this section we use the following notation.

NOTATION 2.1. Let n > 1 be an integer. Write $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ for primes $p_1 < p_2 < \cdots < p_k$ and positive integers $\alpha_1, \alpha_2, \ldots, \alpha_k$. Abbreviate $p = p_k$ and $\alpha = \alpha_k$. Let

$$Q = \prod_{h=1}^{k} \frac{p_h + 1}{p_h - 1}.$$
(2.1)

An elementary exercise in the same vein as [3, Exercise 5, page 143] gives two expressions for $\phi(C_n)$ derived from *n* (see also [4, Lemma 2.5]).

LEMMA 2.2. With Notation 2.1, let C_n be the cyclic group of order n. Then

$$\phi(C_n) = \sum_{d|n} \phi(d)^2 = \prod_{h=1}^k \frac{p_h^{2\alpha_h}(p_h - 1) + 2}{p_h + 1}.$$
(2.2)

Subtracting the 2 from the numerator of each factor of (2.2) gives the lower bound

$$\phi(\mathbf{C}_n) > \frac{n^2}{Q}.\tag{2.3}$$

81/5

14

54/5

TABLE 1. Some special values of Q.

When $k \ge 2$, we may write

 $O(\mathcal{S}_{\ell})$

2 9/2 8

$$Q = \frac{1}{p_1 - 1} \left(\frac{p_1 + 1}{p_2 - 1} \cdots \frac{p_{k-2} + 1}{p_{k-1} - 1} \frac{p_{k-1} + 1}{p_k - 1} \right) (p_k + 1).$$
(2.4)

56/3

Observe that if $(p_{h-1}, p_h) \neq (2, 3)$, then for $2 \le h \le k$,

$$\frac{p_{h-1}+1}{p_h-1} \le 1. \tag{2.5}$$

1134/55

This immediately gives the following lemma.

LEMMA 2.3. With Notation 2.1, assume n is odd. Then

$$Q \le \frac{p+1}{p_1 - 1}.$$
(2.6)

In Table 1 above we record data concerning some sets of primes which require special treatment. Let v(i) denote the *i*th prime number. For each positive integer ℓ , let $\mathcal{F}_{\ell} = \{v(i) \mid 1 \le i \le \ell\}$ and $\mathcal{S}_{\ell} = \{v(i) \mid 1 \le i \le \ell - 1\} \cup \{v(\ell + 1)\}$. Write Q(X) to denote the value of Q when the set of distinct prime factors of n is X.

LEMMA 2.4. With Notation 2.1, $Q \le p + 1$ unless $\{p_i \mid 1 \le i \le k\} = \mathcal{F}_k$ with $2 \le k \le 8$. Moreover, Q < p whenever n is odd.

PROOF. If *n* is odd, then by (2.6), $Q \le (p+1)/(p_1-1) \le (p+1)/2 < p$ since $p_1, p \ge 3$. By (2.1), $Q \le p+1$ when k = 1. Table 1 shows that Q > p+1 when the set of prime divisors of *n* is \mathcal{F}_k ($2 \le k \le 8$) and that $Q \le p+1$ when the set of prime divisors of *n* is \mathcal{F}_9 or \mathcal{S}_k ($1 \le k \le 8$). Suppose that *P* is a set of primes with maximum element *p* and $Q(P) \le p+1$. If p' > p is a prime, then $Q(P \cup \{p'\}) = Q(P)(p'+1)/(p'-1) \le (p+1)(p'+1)/(p'-1)$. Now $(p+1)/(p'-1) \le 1$ provided $(p, p') \ne (2, 3)$. In any other case, once the inequality is satisfied by an initial subset of prime factors it is satisfied by adding larger prime factors. The result follows.

It is well known that

$$\phi(n) = p_1^{\alpha_1 - 1}(p_1 - 1)p_2^{\alpha_2 - 1}(p_2 - 1)\cdots p_k^{\alpha_k - 1}(p_k - 1).$$
(2.7)

Immediate consequences include the following:

$$n = \phi(n) \cdot \frac{p_1}{p_1 - 1} \cdot \frac{p_2}{p_2 - 1} \cdots \frac{p_k}{p_k - 1},$$
(2.8)

$$a \mid b \Rightarrow \phi(a) \mid \phi(b) \quad (a, b \in \mathbb{Z}^+).$$
(2.9)

LEMMA 2.5. With Notation 2.1, suppose that $n \neq 2^{\alpha}$ for any $\alpha \ge 0$. Then

$$n \ge Q\phi\left(\frac{n}{p^{\alpha}}\right)p^{\alpha-1},\tag{2.10}$$

with equality if and only if $n = 2^{\alpha} 3^{\beta}$ and α , $\beta > 0$.

PROOF. If $n = p^{\alpha}$, then (2.10) becomes $p^{\alpha} \ge p^{\alpha-1}(p+1)/(p-1)$, which holds strictly since $p \ne 2$. The inequality fails if *n* is a power of 2. Now suppose that *n* has at least two distinct prime factors. By (2.1) and (2.8),

$$\frac{n}{Q} = \phi(n)p_1 \frac{p_2}{(p_1+1)} \frac{p_3}{(p_2+1)} \cdots \frac{p}{(p_{k-1}+1)} \frac{1}{(p+1)}$$

By (2.7), $\phi(n) = \phi(n/p^{\alpha})p^{\alpha-1}(p-1)$, so

$$\frac{n}{Q} = \phi\left(\frac{n}{p^{\alpha}}\right)p^{\alpha-1}(p-1) \cdot \frac{p_1}{(p+1)}\left(\frac{p_2}{(p_1+1)}\frac{p_3}{(p_2+1)}\cdots\frac{p}{(p_{k-1}+1)}\right).$$

Observe that for $1 \le h \le k - 1$, $p_{h+1}/(p_h + 1) \ge 1$, with equality if and only if $p_h = 2$ and $p_{h+1} = 3$. Thus $n/Q \ge \phi(n/p^{\alpha})p^{\alpha-1}(p-1)p_1/(p+1)$, with equality if and only if k = 2, $p_1 = 2$ and p = 3. Since $p_1 \ge 2$ and $(p-1)/(p+1) \ge \frac{1}{2}$, we have $p_1(p-1)/(p+1) \ge 1$, with equality if and only if $p_1 = 2$ and p = 3. Thus (2.10) holds with equality if and only if $n = 2^{\alpha}3^{\beta}$ with $\alpha, \beta > 0$.

LEMMA 2.6. With Notation 2.1, let G be a finite group of order n, and let $g \in G$. If $n < Q\phi(o(g))$, then g is not the identity of G except possibly when n = 2.

PROOF. Suppose that *e* is the identity of *G*, so $\phi(o(e)) = 1$. Lemma 2.5 and the hypothesis imply that *n* is a positive power of 2. In this case, $Q\phi(o(e)) = 3$, which is less than *n* unless n = 2. When n = 2, $n < Q\phi(o(e))$, so the exception is required. \Box

LEMMA 2.7. With Notation 2.1, let G be a finite group of prime power order n > 2, and let $g \in G$. If $n < Q\phi(o(g))$, then g generates G.

PROOF. Suppose that $n = p^{\alpha}$. Then Q = (p+1)/(p-1) by definition, and $o(g) = p^{\ell}$ for some ℓ ($0 < \ell \le \alpha$) by Lagrange's theorem and Lemma 2.6. Now $\phi(o(g)) = p^{\ell-1}(p-1)$. Thus $Q\phi(o(g)) = p^{\ell-1}(p+1)$. Now $p^{\alpha} = n < Q\phi(o(g)) = p^{\ell-1}(p+1)$. Thus $p^{\alpha-\ell+1} \le p$, so $\ell \ge \alpha$. In addition $\ell \le \alpha$, so $\ell = \alpha$. Hence g generates G.

LEMMA 2.8. With Notation 2.1, let G be a finite group of order n > 2, and let $g \in G$. If $n < Q\phi(o(g))$, then $p^{\alpha} | o(g)$.

PROOF. If n has just one prime factor, then g generates G by Lemma 2.7, and the result follows. Assume that n has at least two distinct prime factors. By hypothesis and Lemma 2.5,

$$\phi(\mathbf{o}(g)) > \phi\left(\frac{n}{p^{\alpha}}\right) p^{\alpha-1}.$$
(2.11)

For the sake of contradiction, suppose that $p^{\alpha} \nmid o(g)$, so $o(g) \mid n/p$. We consider two cases. If $\alpha = 1$, then (2.9) gives $\phi(o(g)) \mid \phi(n/p)$, contradicting (2.11). If $\alpha \ge 2$,

then (2.9) gives $\phi(o(g)) \mid \phi(n/p^{\alpha})p^{\alpha-2}(p-1)$. In this case $\phi(o(g)) \leq \phi(n/p^{\alpha})$ $p^{\alpha-2}(p-1)$, contradicting (2.11). We conclude that $p^{\alpha} \mid o(g)$, as required. \Box

LEMMA 2.9. With Notation 2.1, let G be a finite group of order n, and let $g \in G$. If o(g) is even and $n < Q\phi(o(g))$, then n/o(g) < p.

PROOF. Observe that $o(g) \ge 2\phi(o(g))$ and $p_1 = 2$, so $n/o(g) \le n/2\phi(o(g)) < Q/2$. If n = 2, the result is trivial. If $n = 2^{\alpha}$ for some $\alpha > 1$, then o(g) = n by Lemma 2.7, so the result follows. Assume *n* has at least one prime factor other than 2. Then by (2.4), $Q/2 \le 3(p+1)/2(p_2-1)$. Since $p_2 \ge 3$, the right-hand side is at most *p*, and the result follows.

THEOREM 2.10. With Notation 2.1, let G be a finite group of order n. Suppose that there exists a non-identity element $g \in G$ such that $n < Q\phi(o(g))$. Then there is a normal (and hence unique) Sylow p-subgroup of G. Moreover, the Sylow p-subgroup is contained in $\langle g \rangle$ and hence is cyclic.

PROOF. The result is trivial if n = 2. If n > 2 is a prime power, then the result follows from Lemma 2.7, so assume that n is not a prime power. First suppose that $n/o(g) . Then <math>|G : \langle g \rangle| = n/o(g) . By Lemma 2.8, <math>p^{\alpha} | o(g)$, so $p \nmid |G : \langle g \rangle|$. Thus $\langle g \rangle$ contains a Sylow *p*-subgroup *P* of *G* (which is necessarily cyclic since $\langle g \rangle$ is). Clearly $\langle g \rangle \subseteq C_G(P) \subseteq N_G(P)$, so $|G : N_G(P)| . But <math>|G : N_G(P)|$ is the number of Sylow *p*-subgroups and must be congruent to 1 modulo *p*. Thus, it must be the case that there is exactly one Sylow *p*-subgroup, which is necessarily normal.

Now suppose that $n/o(g) \ge p + 1$. Note that $n/o(g) < n/\phi(o(g)) < Q$. Thus by Lemmas 2.4 and 2.9, the following hold: $2 \le k \le 8$, $n = \prod_{i=1}^{k} v(i)^{\alpha_i}$ with $\alpha_i \ne 0$ $(1 \le i \le k)$, and o(g) is odd. In Table 2, we show that other than $n = 2 \cdot 3 \cdot 5^{\alpha}$, none of the remaining cases satisfy $n/\phi(o(g)) < Q$, and thus are not subject to this theorem. In this table, for $2 \le k \le 8$ we mark with a bullet (•) the even integers that are at least v(k) + 1 and strictly less than Q (from Table 1) as the possible values of n/o(g). Also by Lemma 2.8, $v(k)^{\alpha_k} | o(g)$, so $v(k) \ne n/o(g)$. Since o(g) is odd, $2^{\alpha_1} | n/o(g)$, where α_1 is the largest power of 2 dividing n/o(g). It is now easy to read o(g). The value of $\phi(o(g))$ will depend upon which primes appear in o(g), but otherwise is straightforward to compute. All cases other than $n = 2 \cdot 3 \cdot 5^{\alpha}$ violate $n/\phi(o(g)) < Q$.

Suppose that $n = 2 \cdot 3 \cdot 5^{\alpha}$. Observe that $o(g) = 5^{\alpha}$, so $\langle g \rangle$ is a cyclic Sylow 5-subgroup. Since the order of *G* is twice an odd number, *G* contains a subgroup *H* of index 2. (See [9, Exercise 205] or use Burnside's normal *p*-complement theorem [9, Theorem 10.21].) Note that *H* is normal and has order $3 \cdot 5^{\alpha}$. Elementary Sylow arguments give that there is a unique Sylow 5-subgroup *P* of *H*. Now *P* is characteristic in *H*, and hence normal in *G*. Since *P* is the unique Sylow 5-subgroup of *G*, we have $P = \langle g \rangle$. Thus the theorem holds in this case.

The contrapositive form of Theorem 2.10 is interesting.

COROLLARY 2.11. With Notation 2.1, let G be a finite group of order n, and let p be the largest prime divisor of n. If there is more than one Sylow p-subgroup, then $n \ge Q\phi(o(g))$ for all $g \in G$.

	• $\frac{n}{o(g)}$	α_1	0(<i>g</i>)	
	0(8)	case	$\phi(\mathrm{o}(g))$	$\left \frac{n}{\phi(0(g))} \right $
2	3	6		[[(((8) /]
	• 4	2	3^{α_1}	
		all	$2 \cdot 3^{\alpha_1 - 1}$	6 = Q
3	5	9	_	
	• 6	1	$3^{\alpha_2-1}5^{\alpha_3}$	
		$\alpha_2 = 1$	$4 \cdot 5^{\alpha_3 - 1}$	7.5 < Q
	0	$\alpha_2 > 1$	$2 \cdot 3^{\alpha_2 - 2} 4 \cdot 5^{\alpha_3 - 1}$	11 > Q
	• 8	3	$3^{\alpha_2}5^{\alpha_3}$	15 . 0
	7	all	$2\cdot 3^{\alpha_2-1}4\cdot 5^{\alpha_3-1}$	15 > Q
4	• 8	12 3	$3^{a_2}5^{a_3}7^{a_4}$	
	• 0	all	$2 \cdot 3^{\alpha_2 - 1} 4 \cdot 5^{\alpha_3 - 1} 6 \cdot 7^{\alpha_4 - 1}$	17 > Q
	• 10	1	$\frac{2}{3^{\alpha_2}5^{\alpha_3-1}7^{\alpha_4}}$	1722
	• 10	$\alpha_3 = 1$	$2\cdot 3^{\alpha_2-1}6\cdot 7^{\alpha_4-1}$	14 > 0
		$\alpha_3 > 1$	$2 \cdot 3^{\alpha_2 - 1} 4 \cdot 5^{\alpha_3 - 2} 6 \cdot 7^{\alpha_4 - 1}$	$21 > \tilde{Q}$
5	11	14.4		
	• 12	2	$3^{\alpha_2-1}5^{\alpha_3}7^{\alpha_4}11^{\alpha_5}$	
		$\alpha_2 = 1$	$4 \cdot 5^{\alpha_3 - 1} 6 \cdot 7^{\alpha_4} 10 \cdot 11^{\alpha_5 - 1}$	19 > Q
		$\alpha_2 > 1$	$2 \cdot 3^{\alpha_2 - 2} 4 \cdot 5^{\alpha_3 - 1} 6 \cdot 7^{\alpha_4 - 1} 10 \cdot 11^{\alpha_5 - 1}$	28 > Q
	• 14	1	$3^{\alpha_2} 5^{\alpha_3} 7^{\alpha_4 - 1} 11^{\alpha_5}$	
		$\alpha_4 = 1$	$2 \cdot 3^{\alpha_2 - 1} 4 \cdot 5^{\alpha_3 - 1} 10 \cdot 11^{\alpha_5 - 1}$	28 > Q
		$\alpha_4 > 1$	$2 \cdot 3^{\alpha_2 - 1} 4 \cdot 5^{\alpha_3 - 1} 6 \cdot 7^{\alpha_4 - 1} 10 \cdot 11^{\alpha_5 - 1}$	33 > Q
6	13	16.8		
	• 14	1	$\frac{3^{\alpha_2}5^{\alpha_3}7^{\alpha_4-1}11^{\alpha_5}13^{\alpha_6}}{2\cdot 3^{\alpha_2-1}4\cdot 5^{\alpha_3-1}10\cdot 11^{\alpha_5-1}12\cdot 13^{\alpha_6-1}}$	21 . 0
		$\alpha_4 = 1$	$\begin{array}{c} 2 \cdot 5^{\alpha_2} & 4 \cdot 5^{\alpha_3} & 10 \cdot 11^{\alpha_3} & 12 \cdot 13^{\alpha_0} \\ (2 \cdot 3^{\alpha_2 - 1} 4 \cdot 5^{\alpha_3 - 1} 6 \cdot 7^{\alpha_4 - 2} \end{array}$	31 > Q
		$\alpha_4 > 1$	$\begin{cases} 2 \cdot 3^{2} \cdot 4 \cdot 3^{3} & 0 \cdot 7^{\alpha_{6}} \\ \times 10 \cdot 11^{\alpha_{5}-1} 12 \cdot 13^{\alpha_{6}-1} \end{cases}$	36 > Q
	• 16	4	$(\times 10^{-11} - 12^{-13})$ $3^{\alpha_2} 5^{\alpha_3} 7^{\alpha_4} 11^{\alpha_5} 13^{\alpha_6}$	
	- 10		$(2 \cdot 3^{\alpha_2 - 1} 4 \cdot 5^{\alpha_3 - 1} 6 \cdot 7^{\alpha_4 - 1})$	
		all	$\times 10 \cdot 11^{\alpha_5 - 1} 12 \cdot 13^{\alpha_6 - 1}$	41 > Q
7	17	18.9		
	• 18	1	$3^{\alpha_2-2}5^{\alpha_3}7^{\alpha_4}11^{\alpha_5}13^{\alpha_6}17^{\alpha_7}$	
		a. – 2	$\begin{cases} 4 \cdot 5^{\alpha_3 - 1} 6 \cdot 7^{\alpha_4 - 1} 10 \cdot 11^{\alpha_5 - 1} \\ \times 12 \cdot 13^{\alpha_6 - 1} 16 \cdot 17^{\alpha_7 - 1} \end{cases}$	22 > 0
		$\alpha_2 = 2$	$(\times 12 \cdot 13^{\alpha_6 - 1} 16 \cdot 17^{\alpha_7 - 1})$	33 > Q
			$\int 2 \cdot 3^{\alpha_2 - 3} 4 \cdot 5^{\alpha_3 - 1} 6 \cdot 7^{\alpha_4 - 1}$	40 > 0
		$\alpha_2 > 2$	$\left\{ \times 10 \cdot 11^{\alpha_5 - 1} 12 \cdot 13^{\alpha_6 - 1} 16 \cdot 17^{\alpha_7 - 1} \right\}$	49 > Q
8	19	21		
	• 20	2	$3^{\alpha_2} 5^{\alpha_3 - 1} 7^{\alpha_4} 11^{\alpha_5} 13^{\alpha_6} 17^{\alpha_7} 19^{\alpha_8}$	
		$\alpha_3 = 1$	$\begin{cases} 2 \cdot 3^{\alpha_2 - 1} 6 \cdot 7^{\alpha_4 - 1} 10 \cdot 11^{\alpha_5 - 1} \\ 12 \cdot 3^{\alpha_5 - 1} 10 \cdot 11^{\alpha_5 - 1} \\ 12 \cdot 3^{\alpha_5 - 1} 10 \cdot 10^{\alpha_5 - 1} \\ 12 \cdot 3^{\alpha_5 - 1} 10 \cdot 10^{\alpha_5 - 1} \\ 12 \cdot 3^{\alpha_5 - 1} 10 \cdot 10^{\alpha_5 - 1} \\ 12 \cdot 3^{\alpha_5 - 1} 10 \cdot 10^{\alpha_5 - 1} \\ 12 \cdot 3^{\alpha_5 - 1} 10 \cdot 10^{\alpha_5$	46 > Q
			$ \left\{ \times 12 \cdot 13^{\alpha_{6}-1} 16 \cdot 17^{\alpha_{7}-1} 18 \cdot 19^{\alpha_{8}-1} \right. $	e e z
		$\alpha_3 > 1$	$\begin{cases} 2 \cdot 3^{\alpha_2 - 1} 4 \cdot 5^{\alpha_3 - 2} 6 \cdot 7^{\alpha_4 - 1} 10 \cdot 11^{\alpha_5 - 1} \\ 12 \cdot 3^{\alpha_4 - 1} 4 \cdot 5^{\alpha_5 - 1} 4 \cdot 5^{\alpha_5 - 1} 4 \cdot 5^{\alpha_5 - 1} \end{cases}$	58 > 0
		2	$\left\{ \times 12 \cdot 13^{\alpha_6 - 1} 16 \cdot 17^{\alpha_7 - 1} 18 \cdot 19^{\alpha_8 - 1} \right\}$	~

TABLE 2. Exceptional cases in the proof of Theorem 2.10.

v(k)n

Q

k

The bound in Theorem 2.10 is tight in the following sense. In the alternating group \mathbb{A}_4 , n = 12, Q = 6, and elements have order 3, 2, and 1. For $g \in \mathbb{A}_4$ with o(g) = 3, $\phi(o(g)) = 2$. Thus $n = Q\phi(o(g))$. However, \mathbb{A}_4 has four Sylow 3-subgroups, which happen to be cyclic.

3. Proof of the main theorem

To prove Theorem 1.5, we need some facts about direct and semi-direct products.

LEMMA 3.1. Let U and T be finite groups, and let $G = U \times T$ be the direct product of U and T. Then $\phi(G) \leq \phi(U)\phi(T)$. Moreover, if (|U|, |T|) = 1, then $\phi(G) = \phi(U)\phi(T)$.

PROOF. Given $g = (u, t) \in G$, o(g) = o(u)o(t)/(o(u), o(t)). Thus by the multiplicative property of the totient function and by (2.9),

$$\phi(\mathbf{o}(g)) = \phi\left(\frac{\mathbf{o}(u)}{(\mathbf{o}(u),\mathbf{o}(t))}\right)\phi(\mathbf{o}(t)) \le \phi(\mathbf{o}(u))\phi(\mathbf{o}(t)).$$

Now

$$\phi(G) = \sum_{u \in U} \sum_{t \in T} \phi(o(u, t)) = \sum_{u \in U} \sum_{t \in T} \phi\left(\frac{o(u)}{(o(u), o(t))}\right) \phi(o(t)) \\
\leq \sum_{u \in U} \phi(o(u)) \sum_{t \in T} \phi(o(t)) = \phi(U) \phi(T).$$
(3.1)

Observe that if (|U|, |T|) = 1, then (o(u), o(v)) = 1 for all $u \in U$ and $t \in T$, so equality holds throughout.

The condition (|U|, |T|) = 1 in Lemma 3.1 can be replaced with other conditions to reach the same conclusion. If *U* is an elementary abelian 2-group, then all elements of *U* have order 1 or 2. The totient of these numbers and their divisors is 1, so $\phi(o(u)) = \phi(o(u)/(o(u), o(t))) = 1$ for all $u \in U$ and $t \in T$. Now (3.1) gives $\phi(G) = \phi(U)\phi(T)$. Similarly, if (|U|, |T|) = 2 and |U| is twice an odd number, then $\phi(o(u)) = \phi(o(u)/(o(u), o(t)))$, so $\phi(G) = \phi(U)\phi(T)$.

LEMMA 3.2 [4, Lemma 5.3]. Suppose that G is a finite group and that $G = U \rtimes_{\varphi} V$ is the semidirect product of a normal abelian subgroup U and a subgroup V. Assume that U and V have coprime orders. Then $o_G(uv) | o_{U \times V}(uv)$ for all $u \in U$ and $v \in V$.

COROLLARY 3.3. With reference to Lemma 3.2, $\phi(o_G(uv)) | \phi(o_{U \times V}(uv))$, and $\phi(U \rtimes_{\varphi} V) \leq \phi(U \times V)$.

PROOF. The divisibility follows from Lemma 3.2 and (2.9), and the inequality follows from (1.1).

THEOREM 3.4 [9, Theorem 10.30]. (Schur–Zassenhaus theorem) Let G be a finite group, and let K be a normal subgroup of G with (|K|, |G : K|) = 1. Then G is a semidirect product of K and G/K. In particular, there exists a subgroup H of G with order |G : K|such that $G = K \rtimes_{\varphi} H$ for some homomorphism $\varphi : H \to \operatorname{Aut}(K)$. Before treating the general case we present a special case involving cyclic groups.

LEMMA 3.5. Let a and b be coprime positive integers. Then $\phi(C_a \rtimes_{\varphi} C_b) \leq \phi(C_a \times C_b)$, with equality if and only if the semi-direct product is direct.

PROOF. Note that $G = C_a \rtimes_{\varphi} C_b$ and $H = C_a \times C_b \cong C_{ab}$ are defined on the cartesian product of the underlying sets of C_a and C_b . Let n = ab. By Corollary 3.3, $\phi(o_G(g))|\phi(o_H(g))$ for all $g \in G$. Thus $\sum_{g \in G} \phi(o_G(g)) \leq \sum_{g \in G} \phi(o_H(g))$. Moreover, equality holds if and only if $\phi(o_G(g)) = \phi(o_H(g))$ for all $g \in G$.

Suppose equality holds for the sums. Pick a generator *h* of *H*. We are done if $o_G(h) = n$ since $G \cong C_n \cong H$ in this case. Suppose for the sake of contradiction that $o_G(h) \neq n$. Now $o_G(h)|n$, so in light of (2.9), $m = o_G(h) = n/2$ is odd. Let $L = \langle h \rangle \subset G$, so |L| is odd and |G : L| = 2. This implies $L \triangleleft G$. Let *K* be a Sylow 2-subgroup of *G*, so |K| = 2. Now G = LK and $L \cap K = \{e\}$, where *e* is the identity of *G*. Hence *G* is the semi-direct product $G = L \rtimes_{\psi} K$ (see [9, Theorem 9.13]). Hence *G* is isomorphic to the semi-direct product $C_m \rtimes_{\psi} C_2$. Since C_m is normal in *G*, we have that $(uv)^2 \in C_m$ for all $u \in C_m$, $v \in C_2$. In particular, $o_G(uv)$ is even. However, $o_G(uv) \neq 2m$ since *G* is not cyclic. Now $\phi(o_G(uv)) < \phi(2m) = \phi(n)$, since o(u)|m. This implies $\phi(G) < \phi(C_n)$, contrary to our assumption. Thus *G* is cyclic as required.

We are ready to prove our main result, namely that $\phi(C_n) \ge \phi(G)$, with equality if and only if *G* is isomorphic to C_n .

PROOF OF THEOREM 1.2. The result is clear for $n \in \{1, 2\}$, so assume that $n \ge 3$. Suppose that $\phi(G) \ge \phi(C_n)$. For some $g \in G$, $\phi(o(g))$ is at least the average value over the group, so $\phi(o(g)) \ge \phi(G)/n \ge \phi(C_n)/n > n/Q$ by (2.3).

We proceed by induction on the number of distinct prime factors of *n*. If |G| has just one prime factor, then *G* is cyclic by Lemma 2.7, and hence isomorphic to C_n . Now assume that for all *n'* with fewer distinct prime factors than *n* and for all groups *G'* of order *n'*, we have $\phi(C_{n'}) \ge \phi(G')$, with equality if and only if *G'* is isomorphic to $C_{n'}$.

By Theorem 2.10, there exists a Sylow *p*-subgroup *P* of *G* which is both cyclic and normal, where *p* is the largest prime divisor of *n*. Since *P* is a Sylow *p*-subgroup, |G : P| is coprime to |P|. Abbreviate a = |P|, b = |G : P|. By Theorem 3.4, $G = P \rtimes_{\varphi} T$ for some subgroup $T \subseteq G$ with order *b* and some homomorphism $\varphi : T \to \operatorname{Aut}(P)$.

Since *P* is cyclic, Corollary 3.3 gives that $\phi(G) = \phi(P \rtimes_{\varphi} T) \le \phi(P \times T)$. But by Lemma 3.1, $\phi(P \times T) = \phi(P)\phi(T)$. Identify C_n with the direct product of cyclic subgroups $C_a \times C_b$. Observe that $\phi(C_n) = \phi(C_a)\phi(C_b)$ by Lemma 3.1 and $\phi(C_a) = \phi(P)$ since both are cyclic and of the same order.

Note that $p \nmid |T| = b$ by construction and |T||n by Lagrange's theorem, so |T| has fewer distinct prime divisors than n and |T| < n. By the induction hypothesis $\phi(C_b) \ge \phi(T)$, with equality if and only if T is cyclic. Thus $\phi(G) \le \phi(C_n)$, with equality only if T is cyclic. By assumption $\phi(G) \ge \phi(C_n)$, hence $\phi(G) = \phi(C_n)$ and T is cyclic of order b. Thus G is isomorphic to $C_a \rtimes_{\varphi} C_b$. The result follows by Lemma 3.5.

PROOF OF THEOREM 1.5. Straightforward from Theorem 1.2 and (1.3).

425

Theorem 1.2 implies that C_n is determined up to isomorphism by $\phi(C_n)$. However, $\phi(G)$ depends only upon the orders of its elements, and does not determine *G* in general. Indeed, $\phi(C_4 \times C_4) = \phi(C_2 \times Q) = 28$, where *Q* is the quaternion group, since each has three elements of order 2 and 12 of order 4. We pose a related question. Let *G* and *H* be finite groups of the same order with $\phi(G) = \phi(H)$. Suppose that *G* is simple. Is *H* necessarily simple?

References

- [1] J. Abawajy, A. Kelarev and M. Chowdhury, 'Power graphs: a survey', *Electron. J. Graph Theory Appl.* **1**(2) (2013), 125–147.
- [2] H. Amiri, S. M. Jafarian Amiri and I. M. Isaacs, 'Sums of element orders in finite groups', *Comm. Algebra* 37(9) (2009), 2978–2980.
- [3] D. M. Burton, *Elementary Number Theory*, 5th edn (McGraw-Hill, Boston, MA, 2002).
- [4] B. Curtin and G. R. Pourgholi, 'Edge-maximality of power graphs of finite cyclic groups', J. Algebraic Combin., to appear. Online first edition doi: 10.1007/s10801-013-0490-5; arXiv:1311.2984.
- [5] A. V. Kelarev and S. J. Quinn, 'A combinatorial property and power graphs of groups', in: *Contributions to General Algebra, 12 (Vienna, 1999)* (Heyn, Klagenfurt, 2000), 229–235.
- [6] A. V. Kelarev and S. J. Quinn, 'Directed graph and combinatorial properties of semigroups', J. Algebra 251(1) (2002), 16–26.
- [7] A. V. Kelarev and S. J. Quinn, 'A combinatorial property and power graphs of semigroups', *Comment. Math. Univ. Carolin.* 45 (2004), 1–7.
- [8] A. V. Kelarev, S. J. Quinn and R. Smolikova, 'Power graphs and semigroups of matrices', Bull. Aust. Math. Soc. 63(2) (2001), 341–344.
- [9] J. S. Rose, A Course on Group Theory (Dover Publications, New York, 1994).

BRIAN CURTIN, Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, USA e-mail: bcurtin@usf.edu

G. R. POURGHOLI, School of Mathematics, Statistics and Computer Science, University of Tehran, Tehran 14155-6455, Iran e-mail: pourgholi@ut.ac.ir