ON MAXIMALLY FROBENIUS DESTABILISED VECTOR BUNDLES

LINGGUANG LI

(Received 25 August 2018; accepted 21 October 2018; first published online 4 January 2019)

Abstract

Let X be a smooth projective curve of genus $g \ge 2$ over an algebraically closed field k of characteristic p > 0. We show that for any integers r and d with 0 < r < p, there exists a maximally Frobenius destabilised stable vector bundle of rank r and degree d on X if and only if $r \mid d$.

2010 *Mathematics subject classification*: primary 14H60; secondary 14D20, 14D22, 14G17. *Keywords and phrases*: vector bundle, moduli space, Frobenius morphism.

1. Introduction

Let *k* be an algebraically closed field of characteristic p > 0 and *X* a smooth projective curve of genus $g \ge 2$ over *k*. The absolute Frobenius morphism $F_X : X \to X$ is induced by $\mathcal{O}_X \to \mathcal{O}_X$, $f \mapsto f^p$. A rank-*r* vector bundle \mathscr{E} on *X* is called *maximally Frobenius destabilised* if the Harder–Narasimhan filtration of $F_X^*(\mathscr{E})$,

$$\operatorname{HN}(F_{X}^{*}(\mathscr{E})): \quad 0 = \mathscr{E}_{r} \subset \mathscr{E}_{r-1} \subset \cdots \subset \mathscr{E}_{1} \subset \mathscr{E}_{0} = F_{X}^{*}(\mathscr{E}),$$

satisfies $\operatorname{rk}(\mathscr{E}_{i-1}/\mathscr{E}_i) = 1$ for $1 \le i \le r$ and $\mu(\mathscr{E}_{i-1}/\mathscr{E}_i) - \mu(\mathscr{E}_i/\mathscr{E}_{i+1}) = 2g - 2$ for any *i* with $1 \le i \le r - 1$.

If r > p, Zhao [11, Proposition 2.8] showed that any maximally Frobenius destabilised rank-*r* vector bundle over an arbitrary smooth projective curve of genus $g \ge 2$ in characteristic p > 0 is not semistable. If r = p, then $F_{X*}(\mathcal{L})$ is a maximally Frobenius destabilised rank-*p* stable vector bundle for any line bundle \mathcal{L} on an arbitrary smooth projective curve *X* of genus $g \ge 2$ in characteristic p > 0 (see [5] and [11]). If r < p, Zhao [11, Proposition 2.14] showed that for any given natural numbers p > 0, $g \ge 2$ and r > 0 with r < p and $p \nmid g - 1$, there exists some maximally Frobenius destabilised rank-*r* stable vector bundle over some smooth projective curve of genus $g \ge 2$ in characteristic p. Under the assumption p > r(r - 1)(r - 2)(g - 1), Joshi and Pauly [3] gave a correspondence between maximally Frobenius destabilised

This work was supported by the National Natural Science Foundation of China (Grant No. 11501418) and the Shanghai Sailing Program (15YF1412500).

^{© 2019} Australian Mathematical Publishing Association Inc.

stable vector bundles of degree 0 and dormant operatic loci, and proved the existence of Frobenius destabilised stable vector bundles of rank r and degree 0. Further results about Frobenius destabilised stable vector bundles can be found in [4, 6, 7] and [8].

The main goal of this paper is to study the existence of maximally Frobenius destabilised stable vector bundles. We give a necessary and sufficient condition for the existence of a maximally Frobenius destabilised stable vector bundle in terms of its rank and degree. The main result of the paper is the following theorem.

THEOREM 1.1. Let k be an algebraically closed field of characteristic p > 0 and X a smooth projective curve of genus $g \ge 2$ over k. Then, for any integers r and d with 0 < r < p, there exists a maximally Frobenius destabilised stable vector bundle of rank r and degree d on X if and only if $r \mid d$.

Moreover, we show that any maximally Frobenius destabilised stable vector bundle can be realised as a subsheaf of the Frobenius direct image of some line bundle (Proposition 2.5).

2. Maximally Frobenius destabilised vector bundles

Let k be an algebraically closed field of characteristic p > 0 and X a smooth projective curve of genus g over k. For any coherent sheaf \mathscr{F} on X, there exists a *canonical connection* $(F_X^*(\mathscr{F}), \nabla_{can})$ on the coherent sheaf $F_X^*(\mathscr{F})$,

$$\nabla_{\operatorname{can}}: F_X^*(\mathscr{F}) \to F_X^*(\mathscr{F}) \otimes_{\mathscr{O}_X} \Omega^1_X,$$

which is locally defined by $f \otimes m \mapsto m \otimes d(f)$, where $m \in \mathscr{F}$, $f \in \mathscr{O}_X$ and $d : \mathscr{O}_X \to \Omega^1_X$ is the canonical exterior differentiation.

DEFINITION 2.1 (Joshi *et al.* [4]). Let *k* be an algebraically closed field of characteristic p > 0 and *X* a smooth projective curve over *k*. For any coherent sheaf \mathscr{F} on *X*, let

$$\nabla_{\operatorname{can}}: F_X^* F_{X*}(\mathscr{F}) \to F_X^* F_{X*}(\mathscr{F}) \otimes_{\mathscr{O}_X} \Omega_X^1$$

be the canonical connection on $F_X^*F_{X*}(\mathscr{F})$. Set

$$V_{1} := \ker(F_{X}^{*}F_{X*}(\mathscr{F}) \twoheadrightarrow \mathscr{F}),$$

$$V_{l+1} := \ker\{V_{l} \xrightarrow{\nabla_{\operatorname{can}}} F_{X}^{*}F_{X*}(\mathscr{F}) \otimes_{\mathscr{O}_{X}} \Omega_{X}^{1} \to (F_{X}^{*}F_{X*}(\mathscr{F})/V_{l}) \otimes_{\mathscr{O}_{X}} \Omega_{X}^{1}\}.$$

The filtration

$$\mathbb{P}^{\operatorname{can}}_{\mathscr{F}} : F_X^* F_{X*}(\mathscr{F}) = V_0 \supset V_1 \supset V_2 \supset \cdots \supset V_{p-1} \supset V_p = 0$$

is called the *canonical filtration* of $F_X^*F_{X*}(\mathscr{F})$.

THEOREM 2.2 (Joshi *et al.* [4] and Sun [9]). Let k be an algebraically closed field of characteristic p > 0, X a smooth projective curve of genus g over k and \mathscr{E} a vector bundle on X. Then the canonical filtration of $F_X^*F_{X*}(\mathscr{E})$,

$$0 = V_p \subset V_{p-1} \subset \cdots \subset V_{l+1} \subset V_l \subset \cdots \subset V_1 \subset V_0 = F_X^* F_{X*}(\mathscr{E}),$$

has the following properties.

Frobenius destabilised vector bundles

(1) $\nabla_{\operatorname{can}}(V_{i+1}) \subset V_i \otimes_{\mathcal{O}_X} \Omega^1_X \text{ for } 0 \le i \le p-1.$

[3]

- (2) $V_l/V_{l+1} \xrightarrow{\nabla_{\text{can}}} \mathscr{E} \otimes_{\mathscr{O}_X} \Omega_X^{\otimes l}$ is an isomorphism for $0 \le l \le p-1$.
- (3) If $g \ge 1$, then $F_{X_*}(\mathscr{E})$ is semistable whenever \mathscr{E} is semistable. If $g \ge 2$, then $F_{X_*}(\mathscr{E})$ is stable whenever \mathscr{E} is stable.
- (4) If $g \ge 2$ and \mathscr{E} is semistable, then the canonical filtration of $F_X^*F_{X*}(\mathscr{E})$ is just the Harder–Narasimhan filtration of $F_X^*F_{X*}(\mathscr{E})$.

THEOREM 2.3 (Sun [10, Corollary 2.4]). Let k be an algebraically closed field of characteristic p > 0, X a smooth projective curve of genus $g \ge 2$ over k and $\mathcal{L} \in \text{Pic}(X)$. Then, for any coherent subsheaf $\mathscr{E} \subseteq F_{X*}(\mathscr{L})$,

$$\mu(\mathscr{E}) - \mu(F_{X*}(\mathscr{L})) \le -\frac{p - \mathrm{rk}(\mathscr{E})}{p}(g-1).$$

PROPOSITION 2.4. Let k be an algebraically closed field of characteristic p > 0, X a smooth projective curve of genus $g \ge 2$ over k and \mathcal{E} a maximally Frobenius destabilised vector bundle of rank r and degree d on X. Then $r \mid pd$.

PROOF. Suppose that $rk(\mathscr{E}) = r$ and $deg(\mathscr{E}) = d$. Let

$$\mathrm{HN}(F_X^*(\mathscr{E})): \quad 0 = \mathscr{E}_r \subset \mathscr{E}_{r-1} \subset \cdots \subset \mathscr{E}_1 \subset \mathscr{E}_0 = F_X^*(\mathscr{E})$$

be the Harder–Narasimhan filtration of $F_X^*(\mathscr{E})$ and $F_X^*(\mathscr{E}) \twoheadrightarrow \mathscr{L} \cong \mathscr{E}_0/\mathscr{E}_1$ the quotient line bundle with minimal degree in the Harder–Narasimhan filtration of $F_X^*(\mathscr{E})$. Since \mathscr{E} is a maximally Frobenius destabilised vector bundle on X,

$$\deg(F_X^*(\mathscr{E})) = \sum_{i=0}^{r-1} \deg(\mathscr{E}_i/\mathscr{E}_{i+1}) = r \deg(\mathscr{L}) + r(r-1)(g-1) = pd.$$

It follows that $\deg(\mathscr{L}) = (pd/r) - (r-1)(g-1) \in \mathbb{Z}$. Hence, $r \mid pd$.

PROPOSITION 2.5. Let k be an algebraically closed field of characteristic p > 0 and X a smooth projective curve of genus $g \ge 2$ over k. Let \mathscr{E} be a maximally Frobenius destabilised semistable vector bundle of rank r and degree d on X and $F_X^*(\mathscr{E}) \twoheadrightarrow \mathscr{L}$ the quotient line bundle with minimal degree in the Harder–Narasimhan filtration of $F_X^*(\mathscr{E})$. Then:

- (1) $\mu(F_{X*}(\mathcal{L})) \mu(\mathcal{E}) = ((p-r)/p)(g-1);$ and
- (2) the adjoint homomorphism $\mathscr{E} \hookrightarrow F_{X*}(\mathscr{L})$ is an injection, that is, $\operatorname{rk}(\mathscr{E}) \leq p$.

PROOF. Since \mathscr{E} is a maximally Frobenius destabilised vector bundle on *X*, we have $\deg(\mathscr{L}) = (pd/r) - (r-1)(g-1)$ from the proof of Proposition 2.4. Moreover, from [4, Section 2.9],

$$\deg(F_{X*}(\mathscr{L})) = \frac{pd}{r} - (r-1)(g-1) + (p-1)(g-1) = \frac{pd}{r} + (p-r)(g-1).$$

It follows that

$$\mu(F_{X*}(\mathscr{L})) - \mu(\mathscr{E}) = \frac{p-r}{p}(g-1).$$

197

By adjunction, there is a nontrivial homomorphism $\mathscr{E} \to F_{X*}(\mathscr{L})$. Denote the image by \mathscr{G} . If $\mathrm{rk}(\mathscr{G}) < \mathrm{rk}(\mathscr{E})$, then, by [10, Corollary 2.4] and the stability of $F_{X*}(\mathscr{L})$,

$$\mu(\mathcal{G}) - \mu(F_{X*}(\mathcal{L})) \le -\frac{p - \operatorname{rk}(\mathcal{G})}{p}(g-1),$$

$$\mu(\mathcal{G}) \le \mu(F_{X*}(\mathcal{L})) - \frac{p - \operatorname{rk}(\mathcal{G})}{p}(g-1) = \frac{d}{r} - \frac{r - \operatorname{rk}(\mathcal{G})}{p}(g-1)$$

Thus, $\mu(\mathscr{G}) < \mu(\mathscr{E})$. This contradicts the semistability of \mathscr{E} , so $\operatorname{rk}(\mathscr{G}) = \operatorname{rk}(\mathscr{E})$. Therefore, $\mathscr{E} \cong \mathscr{G}$, that is, the adjoint homomorphism $\mathscr{E} \hookrightarrow F_{X*}(\mathscr{L})$ is an injection. \Box

It is easy to deduce [11, Proposition 2.8] from Proposition 2.5.

COROLLARY 2.6 (Zhao [11, Proposition 2.8]). Let k be an algebraically closed field of characteristic p > 0, X a smooth projective curve of genus $g \ge 2$ over k and \mathscr{E} a maximally Frobenius destabilised vector bundle on X with $\operatorname{rk}(k) > p$. Then \mathscr{E} is not semistable.

PROPOSITION 2.7. Let k be an algebraically closed field of characteristic p > 0, X a smooth projective curve of genus $g \ge 2$ over k and $\mathscr{L} \in \text{Pic}(X)$. Let \mathscr{E} be a coherent subsheaf of $F_{X*}(\mathscr{L})$ such that $\text{rk}(\mathscr{E}) = r < p$ and

$$\mu(F_{X*}(\mathscr{L})) - \mu(\mathscr{E}) = (1 - r/p)(g - 1).$$

Then:

- (1) $F_{X*}(\mathcal{L})$ is a maximally Frobenius destabilised stable vector bundle;
- (2) $F_{X*}(\mathcal{L})/\mathcal{E}$ is a maximally Frobenius destabilised stable vector bundle; and
- (3) the adjoint homomorphism $F_X^*(\mathscr{E}) \to \mathscr{L}$ is the quotient line bundle with the minimal slope in the Harder–Narasimhan filtration of $F_X^*(\mathscr{E})$.

PROOF. The canonical filtration of $F_X^*F_{X*}(\mathscr{L})$,

$$\mathbb{P}_{\mathscr{F}_{\bullet}}^{\operatorname{can}}: \quad 0 = V_p \subset V_{p-1} \subset \cdots \subset V_1 \subset V_0 = F_X^* F_{X*}(\mathscr{L}),$$

induces the filtration

$$0 \subset V_m \cap F_X^*(\mathscr{E}) \subset V_{m-1} \cap F_X^*(\mathscr{E}) \subset \dots \subset V_1 \cap F_X^*(\mathscr{E}) \subset V_0 \cap F_X^*(\mathscr{E}) = F_X^*(\mathscr{E}),$$

where $m = \max\{l \mid V_l \cap F_x^*(\mathscr{E}) \neq 0, 0 \le l \le p - 1\}$. Let

$$W_l := \frac{V_l \cap F_X^*(\mathscr{E})}{V_{l+1} \cap F_X^*(\mathscr{E})} \subset \frac{V_l}{V_{l+1}}, \quad r_l := \operatorname{rk}(W_l) \quad \text{for } 0 \le l \le m.$$

Then the injections $W_l \hookrightarrow W_{l-1} \otimes_{\mathscr{O}_X} \Omega_X^1$, $1 \le l \le m$, imply that $r_0 \ge r_1 \ge r_2 \ge \cdots \ge r_m$. Since $r_0 = 1$, it follows that m = r - 1 and $r_0 = r_1 = r_2 = \cdots = r_{r-1} = 1$.

Let $\mathscr{G} \subset \mathscr{E}$ be a subsheaf of \mathscr{E} with $\operatorname{rk}(\mathscr{G}) < \operatorname{rk}(\mathscr{E})$. By [10, Corollary 2.4] and the stability of $F_{X*}(\mathscr{L})$,

$$\mu(\mathscr{G}) - \mu(F_{X*}(\mathscr{L})) \le -\frac{p - \mathrm{rk}(\mathscr{G})}{p}(g-1).$$

It follows that

$$\mu(\mathscr{G}) \le \mu(F_{X*}(\mathscr{L})) - \frac{p - \mathrm{rk}(\mathscr{G})}{p}(g-1) = \mu(\mathscr{E}) - \frac{r - \mathrm{rk}(\mathscr{G})}{p}(g-1).$$

Thus, \mathscr{E} is a stable vector bundle. Summing over *i*,

$$\deg(F_X^*(\mathscr{E})) = \sum_{i=0}^{r-1} \deg(W_i) \le \sum_{i=0}^{r-1} \deg(\mathscr{L} \otimes_{\mathscr{O}_X} \Omega_X^{\otimes i}) = pd.$$

Hence, the previous inequality is an equality. It follows that

$$W_l \cong \frac{V_l}{V_{l+1}} \cong \mathscr{L} \otimes_{\mathscr{O}_X} \Omega_X^{\otimes l} \quad \text{for } 0 \le l \le r-1.$$

Thus, $\mu(W_i) - \mu(W_{i-1}) = 2g - 2$ for $1 \le i \le r - 1$ and the Harder–Narasimhan filtration of $F_X^*(\mathscr{E})$ is

$$0 \subset V_{r-1} \cap F_X^*(\mathscr{E}) \subset V_{r-2} \cap F_X^*(\mathscr{E}) \subset \cdots \subset V_1 \cap F_X^*(\mathscr{E}) \subset V_0 \cap F_X^*(\mathscr{E}) = F_X^*(\mathscr{E}).$$

Hence, \mathscr{E} is a maximally Frobenius destabilised stable vector bundle and the adjoint homomorphism $F_X^*(\mathscr{E}) \twoheadrightarrow \mathscr{L}$ is the quotient line bundle with the minimal slope in the Harder–Narasimhan filtration of $F_X^*(\mathscr{E})$. This completes the proof of (1) and (3) of the proposition.

Now we will prove the stability of $F_{X*}(\mathcal{L})/\mathcal{E}$. Let \mathscr{F} be the subsheaf of $F_{X*}(\mathcal{L})/\mathcal{E}$ with $\operatorname{rk}(\mathscr{F}) = t and <math>\widetilde{\mathscr{F}}$ the preimage of \mathscr{F} under the projection $F_{X*}(\mathcal{L}) \twoheadrightarrow F_{X*}(\mathcal{L})/\mathcal{E}$. By [10, Corollary 2.4] and the stability of $F_{X*}(\mathcal{L})$,

$$\mu(\widetilde{\mathscr{F}}) \leq \mu(F_{X*}(\mathscr{L})) - \frac{p - \mathrm{rk}(\mathscr{F})}{p}(g-1) = \mu(\mathscr{E}) + \frac{t}{p}(g-1).$$

Hence,

$$\begin{split} \deg(\mathscr{F}) &= \deg(\widetilde{\mathscr{F}}) - \deg(\mathscr{E}) \leq t \cdot \mu(\mathscr{E}) + \frac{t(r+t)}{p}(g-1), \\ &\mu(\mathscr{F}) \leq \mu(\mathscr{E}) + \frac{r+t}{p}(g-1). \end{split}$$

On the other hand, $\mu(F_{X*}(\mathcal{L})) - \mu(\mathcal{E}) = (1 - r/p)(g - 1)$ implies that

$$deg(F_{X*}(\mathscr{L})/\mathscr{E}) = deg(F_{X*}(\mathscr{L})) - deg(\mathscr{E}) = (p-r)\mu(\mathscr{E}) + (p-r)(g-1),$$
$$\mu(F_{X*}(\mathscr{L})/\mathscr{E}) = \mu(\mathscr{E}) + (g-1).$$

Thus,

$$\mu(\mathscr{F}) \leq \mu(\mathscr{E}) + \frac{r+t}{p}(g-1) < \mu(\mathscr{E}) + (g-1) = \mu(F_{X*}(\mathscr{L})/\mathscr{E}).$$

Hence, $F_{X*}(\mathcal{L})/\mathcal{E}$ is a stable vector bundle.

[5]

Projecting the canonical filtration $\mathbb{F}^{can}_{\mathscr{F}_{\bullet}}$ of $F^*_X F_{X*}(\mathscr{L})$ to the quotient sheaf $F^*_X(F_{X*}(\mathscr{L})/\mathscr{E})$ gives the filtration

$$0 = \widetilde{V}_p \subset \widetilde{V}_{p-1} \subset \cdots \subset \widetilde{V}_1 \subset \widetilde{V}_0 = F_X^*(F_{X*}(\mathscr{L})/\mathscr{E}),$$

where $\widetilde{V}_i := V_i / (V_i \cap F_X^*(\mathcal{E}))$ for $0 \le i \le p - 1$.

Consider the commutative diagram

for $0 \le i \le r-2$. Since $(V_i \cap F_X^*(\mathscr{E}))/(V_{i+1} \cap F_X^*(\mathscr{E})) \cong V_i/V_{i+1} \cong \mathscr{L} \otimes_{\mathscr{O}_X} \Omega_X^{\otimes i}$,

$$V_i/(V_i \cap F_X^*(\mathscr{E})) \cong F_X^*(F_{X*}(\mathscr{L})/\mathscr{E})$$

for $0 \le i \le r - 1$ by the snake lemma. This yields the filtration on $F_X^*(F_{X*}(\mathscr{L})/\mathscr{E})$:

$$0 = \widetilde{V}_p \subset \widetilde{V}_{p-1} \subset \cdots \subset \widetilde{V}_r \subset \widetilde{V}_{r-1} = F_X^*(F_{X*}(\mathscr{L})/\mathscr{E}),$$

where $\widetilde{V}_i/\widetilde{V}_{i+1} \cong \mathscr{L} \otimes_{\mathscr{O}_X} \Omega_X^{\otimes i}$ for $r \leq i \leq p-1$. This is just the Harder–Narasimhan filtration of $F_X^*(F_{X*}(\mathscr{L})/\mathscr{E})$. Hence, $F_{X*}(\mathscr{L})/\mathscr{E}$ is also a maximally Frobenius destabilised stable vector bundle.

3. Existence of maximally Frobenius destabilised vector bundles

Let k be an algebraically closed field of arbitrary characteristic and X a smooth projective curve of genus g over k. Let \mathcal{E} be a vector bundle of rank n and degree d over X. For any integer r with 0 < r < n, define

$$s_r(\mathscr{E}) := r \cdot d - n \cdot \max\{\deg(\mathscr{E}') | \mathscr{E}' \subsetneq \mathscr{E}, \operatorname{rk}(\mathscr{E}') = r\}.$$

Then $s_r(\mathscr{E}) \equiv r \cdot d \pmod{n}$ and \mathscr{E} is semistable (respectively stable) if and only if $s_r \ge 0$ (respectively $s_r > 0$) for any integer 0 < r < n.

LEMMA 3.1 (Hirschowitz [1, Theorem 4.4]). Let k be an algebraically closed field of arbitrary characteristic, X a smooth projective curve of genus $g \ge 2$ over k and \mathscr{E} a vector bundle over X. Then, for any integer r with 0 < r < n, there exists a subbundle $\mathscr{E}' \subset \mathscr{E}$ of rank r with

$$r \cdot d - n \cdot \deg(\mathscr{E}') \le r(n-r)(g-1) + \varepsilon,$$

where ε is the unique integer with $r(n-r)(g-1) + \varepsilon \equiv r \cdot d \pmod{n}$ and $0 \le \varepsilon < n$, that is, $s_r(\mathscr{E}) \le r(n-r)(g-1) + \varepsilon$.

200

PROPOSITION 3.2. Let k be an algebraically closed field of characteristic p > 0, X a smooth projective curve of genus $g \ge 2$ over k and $\mathcal{L} \in \text{Pic}(X)$. Then, for any integer r with 0 < r < p,

$$s_r(F_{X*}(\mathscr{L})) = r(p-r)(g-1) + \varepsilon,$$

where ε is the unique integer satisfying $r(p-r)(g-1) + \varepsilon \equiv r \cdot d \pmod{p}$ and $0 \le \varepsilon < p$.

PROOF. Let \mathscr{E} be a rank-*r* subsheaf of $F_{X_*}(\mathscr{L})$. By [10, Corollary 2.4],

$$p \cdot \deg(\mathscr{E}) - r \cdot \deg(F_{X*}(\mathscr{L})) \leq -r(p-r)(g-1)$$

This implies that $s_r(F_{X*}(\mathcal{L})) \ge r(p-r)(g-1)$. Then, by Lemma 3.1,

$$s_r(F_{X*}(\mathscr{L})) = r(p-r)(g-1) + \varepsilon,$$

where ε is the unique integer satisfying $r(p-r)(g-1) + \varepsilon \equiv r \cdot d \pmod{p}$ and $0 \le \varepsilon < p$.

THEOREM 3.3. Let k be an algebraically closed field of characteristic p > 0 and X a smooth projective curve of genus $g \ge 2$ over k. Then, for any integers r and d with 0 < r < p, there exists a maximally Frobenius destabilised stable vector bundle of rank r and degree d on X if and only if $r \mid d$.

PROOF. For any maximally Frobenius destabilised stable vector bundle of rank r and degree d on X, we have r | d by Proposition 2.4.

Conversely, suppose that 0 < r < p and r | d. Let \mathscr{L} be a line bundle of degree (pd/r) - (r-1)(g-1) on X. From [4, Section 2.9],

$$\deg(F_{X*}(\mathscr{L})) = \frac{pd}{r} + (p-r)(g-1).$$

Let \mathscr{E} be a rank-*r* subsheaf of $F_{X*}(\mathscr{L})$ with maximal degree. Then

$$s_r(F_{X*}(\mathscr{L})) = r\left(\frac{pd}{r} + (p-r)(g-1)\right) - p \cdot \deg(\mathscr{E}) = r(p-r)(g-1) + \varepsilon,$$

where ε is the unique integer satisfying $r(p-r)(g-1) + \varepsilon \equiv r \cdot d \pmod{p}$ and $0 \le \varepsilon < p$. It follows that $\varepsilon = 0$ and deg(\mathscr{E}) = d. Thus, \mathscr{E} is a maximally Frobenius destabilised stable vector bundle of rank r and degree d on X by Proposition 2.7. \Box

REMARK 3.4. Joshi provided a conjectural formula [2, Conjecture 8.1] for the degree of the dormant operatic locus under the assumption p > r(r - 1)(r - 2)(g - 1). By Theorem 3.3, the left-hand side of the conjectural formula still makes sense after removing the assumption p > r(r - 1)(r - 2)(g - 1). So, we can propose the conjectural formula for any integer *r* under the condition 0 < r < p.

COROLLARY 3.5. Let k be an algebraically closed field of characteristic p > 0 and X a smooth projective curve of genus $g \ge 2$ over k. Then there exists a maximally Frobenius destabilised rank-p nonsemistable vector bundle on X.

PROOF. Fix two integers *r* and *d* with 0 < r < p and r | d. Choosing any line bundle \mathscr{L} of degree (pd/r) - (r-1)(g-1) on *X*, by the proof of Theorem 3.3, there exists a rank-*r* and degree-*d* subsheaf \mathscr{E} of $F_{X*}(\mathscr{L})$. By Proposition 2.7, \mathscr{E} and $F_{X*}(\mathscr{L})/\mathscr{E}$ are maximally Frobenius destabilised stable vector bundles on *X*. It is easy to check that $\mathscr{E} \oplus F_{X*}(\mathscr{L})/\mathscr{E}$ is a maximally Frobenius destabilised rank-*p* nonsemistable vector bundle on *X*.

By Corollary 3.5, we see that the condition r < p is necessary in [11, Proposition 2.6].

Acknowledgement

I would like to thank the anonymous referee who carefully read the manuscript and gave very helpful comments, which improved both the mathematics and the presentation of the paper.

References

- [1] A. Hirschowitz, 'Probléme de Brill–Noether en rang supérieur', *C. R. Acad. Sci. Paris* **307** (1988), 153–156.
- [2] K. Joshi, 'The degree of the dormant operatic locus', Int. Math. Res. Not. IMRN 2017(9) (2017), 2599–2613.
- [3] K. Joshi and C. Pauly, 'Hitchin–Mochizuki morphism, opers and Frobenius-destabilized vector bundles over curves', Adv. Math. 274 (2015), 39–75.
- [4] K. Joshi, S. Ramanan, E. Z. Xia and J.-K. Yu, 'On vector bundles destabilized by Frobenius pullback', *Compos. Math.* 142 (2006), 616–630.
- [5] L. Li, 'The morphism induced by Frobenius push-forward', Sci. China Math. 57(1) (2014), 61–67.
- [6] S. Mochizuki, 'A theory of ordinary *p*-adic curves', *Publ. Res. Inst. Math. Sci.* **32**(6) (1996), 957–1152.
- [7] S. Mochizuki, Foundations of p-adic Teichmüller theory, AMS/IP Studies in Advanced Mathematics, 11 (American Mathematical Society, Providence, RI, 1999).
- [8] B. Osserman, 'Frobenius-unstable bundles and *p*-curvature', *Trans. Amer. Math. Soc.* **360**(1) (2008), 273–305.
- [9] X. Sun, 'Direct images of bundles under Frobenius morphisms', *Invent. Math.* **173**(2) (2008), 427–447.
- [10] X. Sun, 'Stability of sheaves of locally closed and exact forms', J. Algebra 324 (2010), 1471–1482.
- [11] Y. Zhao, 'Maximally Frobenius-destabilized vector bundles over smooth algebraic curves', Internat. J. Math. 28(2) (2017), Article ID 1750003, 26 pages.

LINGGUANG LI, School of Mathematical Sciences, Tongji University, Shanghai, PR China e-mail: LiLg@tongji.edu.cn