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Abstract

With the advancement of high-throughput sequencing technologies, the amount of available
sequencing data is growing at a pace that has now begun to greatly challenge the data process-
ing and storage capacities of modern computer systems. Removing redundancy from such
data by clustering could be crucial for reducing memory, disk space and running time
consumption. In addition, it also has good performance on reducing dataset noise in some
analysis applications. In this study, we propose a high-performance short sequence classifica-
tion algorithm (HSC) for next generation sequencing (NGS) data based on efficient hash
function and text similarity. First, HSC converts all reads into k-mers, then it forms a unique
k-mer set by merging the duplicated and reverse complementary elements. Second, all unique
k-mers are stored in a hash table, where the k-mer string is stored in the key field, and the ID
of the reads containing the k-mer are stored in the value field. Third, each hash unit is trans-
formed into a short text consisting of reads. Fourth, texts that satisfy the similarity threshold
are combined into a long text, the merge operation is executed iteratively until there is no text
that satisfies the merge condition. Finally, the long text is transformed into a cluster consisting
of reads. We tested HSC using five real datasets. The experimental results showed that HSC
cluster 100 million short reads within 2 hours, and it has excellent performance in reducing
memory consumption. Compared to existing methods, HSC is much faster than other tools, it
can easily handle tens of millions of sequences. In addition, when HSC is used as a preproces-
sing tool to produce assembly data, the memory and time consumption of the assembler is
greatly reduced. It can help the assembler to achieve better assemblies in terms of N50,
NA50 and genome fraction.

1. Introduction

High-throughput sequencing technologies produce voluminous amounts of DNA sequence
data, which are employed in a wide array of biological applications including de novo genome
assembly, sequence error correction, expression analysis and detection of sequence variants.
Data volume generated by next generation sequencing technologies is growing at a pace
that is now challenging the storage and data processing capacities of modern computer
systems (Medini et al., 2008). Take genome assembly as an example, the de novo assembler
ALLPATHS-LG (default k-mer size is 96) required approximately 3 weeks with 48 processors
and approximately 0.5TB of RAM memory for the human whole-genome (3Gb) assembly
(Gnerre et al., 2011). Clustering analysis is a method that identifies and groups similar objects.
It is a powerful tool to explore and study large-scale complex data. By sequence clustering, a
large redundant data set can be represented by a small non-redundant set, which could be
crucial for reducing storage space, computational time and noise interference in some analysis
applications. Errors can be detected, filtered or corrected using consensus from sequences with
clusters. In addition, some additional challenges brought by the high-throughput sequencing
technologies may also be solved by clustering (Li et al., 2012).

In order to design fast and accurately clustering algorithms for next generation sequencing
(NGS) sequences, researchers put forward some new solutions. Typical clustering algorithms
for NGS sequences includes: CD-HIT (Li & Godzik, 2006), SEED (Bao et al., 2011), Uclust
(Edgar, 2010), and DNACLUST (Ghodsi et al., 2011). CD-HIT is a comprehensive clustering
package (Huang et al., 2010; Li & Chang, 2017). CD-HIT uses a greedy incremental algorithm.
Basically, sequences are first ordered by decreasing length, and the longest one becomes the
seed of the first cluster. Then, each remaining sequence is compared with existing seed.
If the similarity with any seed meets a pre-defined cutoff, it is grouped into that cluster; other-
wise, it becomes the seed of a different cluster. CD-HIT uses a heuristic based on statistical
k-mer filtering to accelerate clustering calculations. It also has a multi-threading function,
so it can be implemented in parallel on multi-core computers (Li, 2015; Bruneau et al., 2018).
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SEED, Uclust and DNACLUST have been developed using
greedy incremental approaches similar to that introduced by
CD-HIT (James et al., 2017; Rahman et al., 2017). Uclust
(Ennis et al., 2016; Jiang et al., 2016) follows CD-HIT’s greedy
incremental approach, but it uses a heuristic called Usearch for
fast sequence comparison. It also gains speed by comparing a
few top sequences instead of the full database. DNACLUST
(Rahman et al., 2017; Kim, 2015) also follows CD-HIT’s greedy
incremental approach, it requires a suffix array to index the
input data set. Unlike CD-HIT and Uclust, which can process
both protein sequences and DNA sequences, SEED (Hauser,
2014; Mahmud & Schliep, 2014) only works with Illumina
reads and only identifies up to three mismatches and three over-
hanging bases. It utilizes an open hashing technique and a special
class of spaced seeds, called block spaced seed. These methods use
various heuristics and have achieved extraordinary speed in
clustering NGS sequences. CD-HIT and Uclust often produce
comparable results in both protein and DNA clustering tests.
SEED is faster than other programs in clustering Illumina reads,
but it yields many more clusters. Except for SEED, the other
three programs all work on rRNA sequences, where Uclust is
fastest and CD-HIT gives the fewest clusters.

In this study, we proposed a high-performance short sequence
classification algorithm (HSC) for NGS data based on efficient
hash function and text similarity. First, HSC converts all reads
into k-mers, then it forms a unique k-mer set by merging the
duplicated and reverse complementary elements. Second, all
unique k-mers are stored in a hash table, where the k-mer string
is stored in the key field, and the ID of the reads containing the
k-mer are stored in the value field. More read IDs stored in the
value field indicate the more reads that share the unique k-mer,
it also indicates that the unique k-mer is more reliable. To reduce
computational complexity and runtime consumption, some
hash units that store low reliability unique k-mers are filtered
out. Third, each hash unit is transformed into a short text con-
sisting of reads. Fourth, short texts that satisfy the similarity
threshold are combined into a long text, the merge operation is
executed iteratively until there is no text that satisfies the merge
condition. Finally, the long text is transformed into a cluster con-
sisting of reads. We tested HSC using five real datasets. The
experimental results showed that HSC cluster 100 million short
reads within 2 hours, and it had excellent performance in redu-
cing memory consumption. Compared to existing methods,
HSC is much faster than other tools, it can easily handle tens
of millions of sequences. In addition, when HSC is used as a pre-
processing tool to produce assembly data, the memory and time
consumption of the assembler is greatly reduced. It can help
the assembler to achieve better assemblies in terms of N50,
NA50 and genome fraction. The illustration of the pipeline of
HSC is shown in Fig. 1.

2. Methods

HSC has applied two principal techniques. The first is an efficient
storage structure based on hash function, and the second is a pre-
cise text similarity calculation model based on cosine coefficients.
In the process of clustering, the unique k-mer is quickly stored in
the hash unit, where the k-mer string is stored in the key field, and
the ID of the reads containing the k-mer are stored in the value
field. After that, each hash unit is transformed into a short text
consisting of reads, and then short texts that satisfy the similarity
threshold are merged into a long text, the merge operation is

executed iteratively until there is no text that satisfies the merge
condition. Finally, the long text is transformed into a final cluster
consisting of reads. The efficient hash function can quickly
complete the preliminary clustering of the data, and then the
data in a hash unit is converted into a short text, and the align-
ment between the mass reads becomes the similarity comparison
between the short texts, which greatly reduces the complexity of
the computation. The application of these two technologies
enables the HSC to adapt to large-scale data sets.

2.1. Notations

The entire read set is denoted as R, and we assume that there are
n reads in R. Let ri be the i-th read (i = 1,2,…,n), and |ri| be the
length of the read i. Given a fix length k of k-mer, the read i
can be represented as a list of (|ri|− k + 1|) k-mers. The unique
k-mer set is formed by merging the duplicated and reverse com-
plementary elements in original k-mer set. N50 is the length for
which the collection of all contigs of that length or longer covers
at least half an assembly. NG50 is the length for which the collec-
tion of all contigs of that length or longer covers at least half the
reference genome. Misassemblies is the number of mis-assembly
events and local mis-assembly events. NA50 is the value of N50
after contigs have been broken at every misassembly event.
NGA50 is the value of NG50 after contigs have been broken at
every misassembly event. Genome fraction (%) is the proportion
of the genome reference being covered by output contigs.

2.2. Generating a unique k-mer set

The unique k-mer set can be obtained using many of the currently
available tools, such as Jellyfish (Marcais & Kingsford, 2011), DSK
(Rizk et al., 2013) and KMC2 (Deorowicz et al., 2015). In this
study, we used DSK to obtain the unique k-mer set. Note that
before converting read to k-mers, the k-mer size k needs to be
determined. k should be kept small to avoid the overuse of com-
puter memory. To estimate genomic characters, the k-mer size k
should be determined under the logic that the space of k-mer
(4k) should be several times larger than the genome size (G), so
that few k-mers derived from different genomic positions will
merge together by chance, that is, most k-mers in the genome
will appear uniquely. In practice, we often require the k-mer
space to be at least five times larger than the genome size
(4k > 5*G), and be less than the upper limit of system memory
usage (Liu et al., 2013). In addition, as the value of k increases,
the time required for the k-mer frequency statistics also increases.
Therefore, when selecting the size of k, it is necessary to compre-
hensively consider the memory requirement, the time require-
ment and the accuracy requirement. In this study, we set the
value of k to be 15, which has fully considered the above factors.
The rule for k-mer size selection is shown in Equation (1).

4k . 5∗G (1)

2.3. Storing all unique k-mers in a hash table

After the unique k-mer set is generated, all unique k-mers are
stored in a hash table, where the k-mer string is stored in the
key field, and the ID of the reads containing the k-mer are stored
in the value field. In this study, we chose SDBM (Jain & Pandey,
2012) as the hash function, which is widely used in various
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applications. The mathematical expression of SDBM is shown in
Equation (2), where ch represents the ASCII of each character in
the sequence, >> is a bitwise left shift operator, h represents the
hash value, it initialized as zero. SDBM is a standard hash func-
tion which has very fewer chances of collisions, even in a very
large scale data set.

h = ch+ (h ,, 6) + (h ,, 16) − h (2)

The number of reads stored in the value field can reflect the
credibility of the unique k-mer. The smaller the number of read
IDs stored in the hash unit, the lower the frequency of the corre-
sponding unique k-mer. It is well know that the extremely low fre-
quency k-mer is often caused by sequencing errors or sequencing
bias (Kelley et al., 2010; Sohn & Nam, 2016). In the case of a
large sequencing depth, there is a high possibility that the low-
frequency k-mer is an erroneous k-mer. Keeping these extremely
low frequency k-mers in a hash table not only increases the cost
of calculations, but also affects the quality of downstream applica-
tions. In order to reduce the computational complexity and
improve the quality of downstream analysis, hash units that store
less than 10 read IDs will be removed.

2.4. Transforming each hash unit into a short text

The storage structure of a hash unit can be represented as:
H(, unique k−mer i .,, read IDa, ..., read IDn .). The ID
of read indicates the serial number of the read in the library
(read set). In this step, each hash unit is transformed into a
short text. The short text consists of read strings corresponding

to the read IDs stored in the hash unit. In order to facilitate
downstream applications, the short text is set to fasta format.
The principle of converting a hash unit to a short text is shown
in Fig. 2.

2.5. Calculation of similarity between short texts

Text comparison takes the form of solving the similarity between
two or more texts. The higher the similarity, the more similar the
two texts are. Text comparison is commonly used in fields such as

Fig. 1. The illustration of the pipeline of HSC.

Fig. 2. The principle of converting a hash unit to a short text.
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data retrieval, natural language processing and information
matching (Inzalkar & Sharma, 2015; Liu et al., 2017; Pu et al.,
2017). The comparison of similarity between texts can be divided
into methods based on character similarity (Wen et al., 2017), sta-
tistics based similarity (Lin et al., 2014) and semantic-based simi-
larity (Oramas et al., 2015). The character-based similarity
calculation method is a basic algorithm for similarity calculation
of text, the most representative character-based similarity calcula-
tion algorithm is the edit distance (Levenshtein distance) algo-
rithm (Wang et al., 2010), which is used to solve the minimum
number of edits required to covert one text to another text. In
the Levenshtein distance based similarity calculation method,
the smaller the edit distance between two or more texts, the
higher the similarity between two or more texts. Although the
similarity calculation methods based on the Levenshtein distance
are widely used, they only consider the text similarity from the
character level while not considering the influence of the high-
frequency substrings, thus leading to low accuracy of similarity.
In this study, we calculated the similarity between texts based
on the vector space model (VSM). VSM is the simplest way to
represent a document for the purpose of information retrieval.
We assume there are M documents in the library, and V is the
set of the vocabulary term/words occurring in the library. The
document in VSM is represented by a |V|-dimensional vector,
each element of the vector represents the frequency of occurrence
of each word in the document.

2.5.1. Similarity measure in VSM
Let T = {T1, T2,…, Tn} be a set of unique k-mers for all documents.
Let W = {W1, W2, …, Wn} be a set of weight for all unique k-mers.
For example, Wi represents the importance of the unique k-mer Ti
in set T. We can construct n-dimensional space vector based on set
T and W, where (W1, W2, …, Wn) are the coordinate values corre-
sponding to (T1, T2, …, Tn). The above conversion can be used to
map a document to a point in vector space. Let any document be
represented by D = (W1,W2,…, Wn). The calculation of weightWi

is shown in Equation (3), where TFi represents the frequency of the
i-th unique k-mer appearing in the document D, n represents the
number of documents in a document collection, and ni represents
the number of occurrences of Ti in the document collection.

Wi = TFi × log2(N/ni) (3)

2.5.2. Similarity calculation based on cosine coefficient
TFi represents the frequency of the i-th unique k-mer appearing
in the document D, and IDF represents the frequency of anti-
document. If there are fewer documents containing the term T,
then the IDF is larger, which indicates that the term T has a
good distinguishing ability. Otherwise, the distinguishing ability
of T is poor. Let the target document D′ be represented by
D′ = (W ′

1,W
′
2, ...,W

′
n). Then, the similarity between documents

D and D′ can be calculated from Equation (4).

sim(D,D′) = D∗D′

||D|| × ||D′|| (4)

Let Ti denote the feature vector of document D, let Tj

denote the feature vector of document D′. Let Wik denote the
weight of the k-th dimension of the document corresponding to
Ti. Let Wjk denote the weight of the k-th dimension of the

document corresponding to Tj. The cosine coefficient of the simi-
larity vector sim(d, d′) between documents D and D′ is shown in
Equation (5).

sim(Ti,Tj) =
∑n

k=1 WikWjk����������������������∑n
k=1 W

2
ik

∑n
k=1 W

2
jk

√ (5)

2.6. Merging short texts to a long text

Short texts that satisfy the similarity threshold are merged into a
long text, the merge operation is executed iteratively until there is
no text that satisfies the merge condition. If the similarity between
short texts meet the requirement of the threshold, they will be
merged in a long text iteratively. Finally, the long text will be
transformed into a cluster consisting of reads.

3. Experiments and results

To evaluate the performance of HSC, a simulated dataset and four
real datasets were used in the experiments in this study. The simu-
lated dataset was generated by a very famous data simulation tool
called wgsim (Li, 2011) (https://github.com/lh3/wgsim). The first
three real datasets (R.spha, M.absc and V.chol) were downloaded
from the GAGE-B website (http://ccb.jhu.edu/gage_b/), the last
real dataset (Hum14) was downloaded from the GAGE website
(http://gage.cb cb.umd.edu/). Details about these four real datasets
are shown in Table 1.

In simulation experiments, a fragment on the Staph
(Staphylococcus albus) reference sequence was selected as a

Table 1. Details of datasets.

Species R.spha M.absc V.chol Hum14

Library lib1 lib2 lib3 lib4

Sequencing type Hi-Seq Hi-Seq Hi-Seq Hi-Seq

Genome size (Mbp) 4.6 3.9 5.0 88.29

Read length (bp) 101 100 100 101

Number of reads 4628173 3957421 5090491 109037804

Coverage ∼210 ∼100 ∼95 ∼102

Insert size (bp) 220 335 335 155

Fig. 3. Classification performance of HSC on simulated data. The y-axis represents
the position on the reference, and the x-axis represents the ID of the cluster.
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reference, and Wgsim was used as a simulator to generate a
library consisting of paired-end reads. In this experiment, the
length of read was set to 101, and the size of k-mer used in the
classification was set to 15. The minimum length of the hash
unit was set to 10. The total number of paired-end reads which
are generated by the Wgsim simulator was one million. The
error rate of reads was set to 0.5%. HSC completed the classifica-
tion within 5 minutes. In order to evaluate the performance of
HSC on simulation dataset, we used bowtie2 (Langmead &
Salzberg, 2012) to align reads in a cluster to the reference
sequence, and record the location of these reads on the reference
sequence, respectively. The classification results are shown in
Fig. 3, where the y-axis represents the position on the reference,

and the x-axis represents the ID of the cluster. It can be seen
from Fig. 3 that HSC divided a million reads into five clusters,
and the distribution of these five clusters on the reference
sequence is relatively independent.

In the experiments of four real datasets, we selected R. sphaer-
oides (Rhodobacter sphaeroides), M. abscessus (Mycobacterium
abscessus), V. cholerae (Vibro cholerae) and Hum14 (Human
14) to test the performance of HSC. Details about these four data-
sets are shown in Table 1. The classification results of HSC on
these four real datasets are shown in Table 2, Table 3, Table 4
and Table 5. In these experiments, we used SOAPdenovo2 (Luo
et al. 2012) as an assembler, and the size of k-mer was set to
49 bp during the assembly. The evaluation indicators of N50,

Table 4. The classification results of HSC on lib3.

Methods No. clusters SimT Time (m) Mem (GB) N50 (bp) NG50 (bp) NA50 (bp) NGA50 (bp) GF (%)

SEED 1160217 0.96 9.1 2.7 8905 7541 6840 7038 83.36

CD-HIT 821654 0.90 371.2 7.2 7312 6547 6259 5996 79.18

Uclust 834012 0.90 312.3 0.7 6340 5946 5536 5438 76.54

HSC 1139807 0.96 8.7 2.5 10361 9154 8325 8078 85.46

‘No. clusters’ indicates the number of clusters, ‘Time (m)’ indicates the time consumption in clustering, ‘Mem (GB)’ indicates the memory consumption in clustering, ‘SimT’ indicates the
threshold of similarity, ‘GF (%)’ indicates the genome fraction. Bold values represent best results.

Table 5. The classification results of HSC on lib4.

Methods No. clusters SimT Time (m) Mem (GB) N50 (bp) NG50 (bp) NA50 (bp) NGA50 (bp) GF (%)

SEED 1732567 0.96 50.7 5.8 3854 3720 3543 3259 65.42

CD-HIT 956346 0.90 556.9 10.5 3645 3259 3186 3098 61.54

Uclust 987495 0.90 476.5 2.9 3247 2763 2294 2044 63.84

HSC 1587746 0.96 47.7 5.5 4361 3681 3641 3315 68.63

‘No. clusters’ indicates the number of clusters, ‘Time (m)’ indicates the time consumption in clustering, ‘Mem (GB)’ indicates the memory consumption in clustering, ‘SimT’ indicates the
threshold of similarity, ‘GF (%)’ indicates the genome fraction. Bold values represent best results.

Table 3. The classification results of HSC on lib2.

Methods No. clusters SimT Time (m) Mem (GB) N50 (bp) NG50 (bp) NA50 (bp) NGA50 (bp) GF (%)

SEED 1012136 0.96 6.3 1.9 6714 5417 4416 4212 74.33

CD-HIT 610462 0.90 235.3 4.7 6140 5378 5003 4098 72.34

Uclust 602981 0.90 206.1 0.3 4817 4568 3954 3571 67.78

HSC 976542 0.96 4.2 1.7 6544 6354 5215 4568 76.21

‘No. clusters’ indicates the number of clusters, ‘Time (m)’ indicates the time consumption in clustering, ‘Mem (GB)’ indicates the memory consumption in clustering, ‘SimT’ indicates the
threshold of similarity, ‘GF (%)’ indicates the genome fraction. Bold values represent best results.

Table 2. The classification results of HSC on lib1.

Methods No. clusters SimT Time (m) Mem (GB) N50 (bp) NG50 (bp) NA50 (bp) NGA50 (bp) GF (%)

SEED 1056109 0.96 7.9 2.5 7321 6278 4832 4544 78.21

CD-HIT 750276 0.90 347.5 5.2 6543 4951 4725 4631 79.03

Uclust 734981 0.90 227.5 0.5 5476 4461 3638 2315 61.45

HSC 1013212 0.96 5.8 2.3 9213 7480 7342 6914 82.35

‘No. clusters’ indicates the number of clusters, ‘Time (m)’ indicates the time consumption in clustering, ‘Mem (GB)’ indicates the memory consumption in clustering, ‘SimT’ indicates the
threshold of similarity, ‘GF (%)’ indicates the genome fraction. Bold values represent best results.
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NG50, NA50, NGA50 and genome fraction were obtained by
Quast (Gurevich et al., 2013). The experimental results show
that HSC cluster 100 million short reads within 2 hours, and it
has excellent performance in reducing memory consumption.
For example, as shown in Table 2, HSC generated 1,013,212 clus-
ters requiring 2.3GB of memory (as compared to the tool of
CD-HIT, which produced 750,276 clusters requiring 5.2GB mem-
ory). Compared to existing methods, HSC is much faster than
other tools, it can easily handle tens of millions of sequences.
For example, as shown in Table 5, HSC generated 1,587,746 clusters
on the Human 14 data set, which took 47.7 minutes (as compared
to the tool of CD-HIT, which produced 956,346 clusters requiring
556.9 minutes). In addition, when HSC is used as a preprocessing
tool to produce assembly data, the memory and time consumption
of the assembler is greatly reduced. It can help the assembler to
achieve better assemblies in terms of N50, NG50, NA50, NGA50
and genome fraction. For example, as shown in Table 3, HSC
generated 976,542 clusters, SOAPdenovo2 assembled 76.21% of
V. cholerae genome with NA50 of 5.215 kb based on these clusters
(as compared to the tool of SEED, SOAPdenovo2 assembled
74.33% of V. cholerae genome with NA50 of 4.416 kb based on
clusters generated by SEED).

4. Discussion

In this study, we proposed a HSC for NGS data based on efficient
hash function and text similarity. HSC has applied two important
techniques. The first is an efficient storage structure based on
hash function, and the second is a precise text similarity calcula-
tion model based on cosine coefficients. The efficient hash func-
tion can quickly complete the preliminary clustering of the data,
and then the data in a hash unit is converted into a short text, the
alignment between the mass reads becomes the similarity com-
parison between the short texts, which greatly reduces the com-
plexity of the computation. The time complexity of alignment
between reads in the library is O(n2). HSC uses the hash function
to achieve an initial classification of reads, the time complexity of
this process is O(n). After that, HSC converts the two-to-two
comparison between reads into an alignment between short
texts (suppose a short text contains r reads on average, the num-
ber of short texts is m), the time complexity of this process can be
expressed as O(m2) (m ≃ n/r). The application of these two tech-
nologies makes HSC processing large-scale data sets faster than
other tools.

It is well known that extremely low frequency k-mers are
often caused by sequencing errors or sequencing bias. In the
case of a large sequencing depth, there is a high possibility that
the low-frequency k-mer is an erroneous k-mer. Keeping these
extremely low frequency k-mers in a hash table not only increases
the cost of calculations, but also affects the quality of downstream
applications. In order to reduce the computational complexity
and improve the quality of downstream analysis, hash units
that store less than 10 read IDs were removed in this study.
This operation allows the HSC to produce a better quality data
set for downstream analysis than other tools.

5. Conclusion

In this study, we proposed a HSC for NGS data based on efficient
hash function and text similarity. We tested HSC using a simula-
tion dataset and four real datasets. The experimental results show
that HSC cluster 100 million short reads within 2 hours, and has

excellent performance in reducing memory consumption.
Compared to existing methods, HSC is much faster than other
tools and can easily handle tens of millions of sequences. In add-
ition, when HSC is used as a preprocessing tool to produce assem-
bly data, the memory and time consumption of the assembler is
greatly reduced. It can help the assembler to achieve better assem-
blies in terms of N50, NG50, NA50, NGA50 and genome fraction.

6. Future works

The calculation method of similarity between short texts is the
core of the classification algorithm in this study. Although, HSC
performs better than other methods on various datasets, there
is still much room for improvement in its performance. Next,
we will further study the similarity comparison between short
texts and propose a more superior comparison algorithm. In
addition, low quality read filtering is also a very important oper-
ation in classification, which affects the quality of downstream
analysis directly. We will also further study the new method of
low-quality read filtering.
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