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Abstract

We study the asymptotic tail behavior of the conditional probability distributions of rt+k

and rt+1 + · · · + rt+k when (rt )t∈N is a GARCH(1, 1) process. As an application, we
examine the relation between the extreme lower quantiles of these random variables.
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1. Introduction and main results

GARCH(1, 1) processes are popular in empirical finance, since they provide parsimonious
models capable of successfully modeling phenomena like volatility clustering, excess kurtosis,
and fat tails in time series of financial returns. They are often used, in particular, to provide
estimates of one-day value at risk. The GARCH(1, 1) model, as introduced by Bollerslev [3],
is the 2-component stochastic process (rt , σt ) defined recursively by

rt+1 = σt+1εt+1,

σ 2
t+1 = a0 + a1r

2
t + b1σ

2
t , σt+1 ≥ 0, (1)

where εt is a white noise (that is, an independent and identically distributed) process and
a0, a1, and b1 are parameters. The original idea of conditional heteroskedasticity goes back
to Engle [11], whose ARCH(1) model corresponds to setting b1 = 0 in (1). In typical
financial applications, rt will be the daily log-return on some risky asset with price Pt , i.e.
rt = log(Pt/Pt−1). We fix an initial time t , to be interpreted as ‘today’, and let

rt = ρ0 and σt = s0

be today’s observed return and volatility, respectively. Throughout the paper, we will suppose
that the εt are independent and identically normally distributed with mean 0 and variance 1,
unless stated otherwise.
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An investor or financial institution should, for risk-assessment purposes, be interested in
both the conditional and the unconditional probability distributions of future returns rt+k . The
conditional distribution will be important in situations of high market volatility and for high-risk
market players like hedge funds or emerging market investors. The investor, or institution, will
then be interested in conditional probability densities like that of the one-day return, k periods
into the future, i.e.

pt,k(x; ρ0, s0) := P(rt+k = x | rt = ρ0, σt = s0), (2)

and that of the total return

rt+k,t := rt+1 + · · · + rt+k = log

(
Pt+k

Pt

)
over the entire k-day period, i.e.

qt,k(x; ρ0, s0) := P(rt+k,t = x | rt = ρ0, σt = s0). (3)

Here P is the ‘physical’or ‘objective’ (as opposed to the risk-neutral) probability, and we will be
using the informal notation P(X = x | A) for the conditional probability density of a random
variable X given the event A: see also the beginning of Section 2, below.

From these densities, various risk measures like conditional value at risk (VaR) or conditional
expected shortfall (see [1]) can be computed. In this paper, we will analyze the asymptotic
properties of (2) and (3) for large |x| and arbitrary, but fixed, k, under the assumption that
the returns are modeled by the GARCH process (1). As an application, we will examine the
k-day VaR at asymptotically large confidence levels. Our approach should be contrasted with
most of the mathematical literature on GARCH processes (see, for example, [5], [10], [17],
and references therein), which emphasizes the study of the stationary distribution of (1). This
amounts to studying the limit of pt,k(x; ρ0, s0) as k → ∞, and is important for the estimation
of the unconditional VaR. Stationarity considerations will not play a role in this paper.

We note in passing that, as the process (1) is time homogeneous, we could have taken t = 0
without loss of generality. However, in practice there is still a dynamic time dependence in the
ever-changing initial conditions (ρ0, s0) at t , which are today’s realized return and volatility. To
retain this dynamical flavor, important for applications, we have opted for the present notation.

The following three theorems are the main results of the paper.

Theorem 1. Let (rt )t be the GARCH(1, 1) process (1) with independent, Gaussian distributed
εt of mean 0 and variance 1. Fix a time t and a time horizon t + k, and let rt = ρ0 and σt = s0
be given. Let σt+1 = (a0 + a1ρ

2
0 + b1s

2
0 )1/2 be the volatility over [t, t + 1] as predicted by the

GARCH(1, 1) model. Then, as x → ±∞,

pt,k(x; ρ0, s0) � Ck

exp(−ck|x|2/k)

|x|1−1/k
, (4)

with constants ck and Ck given by

ck = 1
2ka

−(1−1/k)
1 σ

−2/k
t+1 (5)

and

Ck = exp((k − 1)b1/2a1)√
2π

a
−(1−1/k)/2
1

√
2k−1

k
σ

−1/k
t+1 , (6)

and with an error of O(|x|−1 exp(−ck|x|2/k)).
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Note the substantial thickening of the tails with increasing k, even when going from k = 1
to k = 2. From k = 3 onwards, the conditional probability density of rt+k , given rt and σt , is
already subexponential. Also note that the conditional probability densities of a GARCH(1, 1)
process and an ARCH(1) process have the same qualitative asymptotic behavior; the only
quantitative difference is the multiplicative prefactor exp((k − 1)b1/2a1).

The asymptotic relation (4) can be generalized to a complete asymptotic expansion – see
Remark 3, below.

We next turn to the k-day returns rt+k,t = rt+1+· · ·+rt+k . Intuitively, we expect the ‘biggest’
term rt+k to dominate the others, as far as the probability of extremal events is concerned. This
intuition is confirmed by our next result.

Theorem 2. Let (rt )t be the GARCH(1, 1) process (1), with an independent and identically
distributed standard normal (εt )t , where we further suppose that b1 > 0. Fix k and let ρ0 ∈ R

and s0 > 0. Then, there exist constants c′
k, c

′′
k , C′

k, C
′′
k > 0, depending on k, a0, a1, b1, ρ0, and

s0, such that

C′
k|x|−(1−1/k) exp(−c′

k|x|2/k) ≤ qt,k(x; ρ0, s0) ≤ C′′
k |x|−(1−1/k) exp(−c′′

k |x|2/k) (7)

for |x| ≥ 1.

For technical reasons, we have limited ourselves to genuine GARCH processes, in the sense
that b1 
= 0; these are, in any case, the most important ones in practice. Theorem 2 is primarily
a qualitative result, which would in fact extend to a slightly larger class of processes (as will
become clear from its proof in Section 5, below). The fact that we have inequalities in (7) instead
of asymptotic equivalences is, by itself, not necessarily a handicap in practical applications.
What is more serious is that we have not given explicit values for the constants, let alone optimal
ones. ‘Chasing the constants’ in the proof of Theorem 2 does not give very good values for
these and, therefore, Theorem 2 is mostly of theoretical interest. However, we can obtain a
slightly more explicit result for the cumulative distribution function

Frt+k,t | ρ0,s0(x) := P(rt+k,t < x | rt = ρ0, σt = s0).

Using Theorem 1, we will prove the following result.

Theorem 3. With the same notation as in Theorem 1, we have

lim
x→−∞

log Frt+k,t | ρ0,s0(x)

|x|2/k
= −ck,

with ck defined by (5).

Note that Theorem 3 does not allow us to draw straightforward conclusions about the
constants c′

k and c′′
k in Theorem 2, even asymptotically for negative x, since asymptotic relations

cannot, in general, be differentiated. In this respect, Theorem 2 contains more information.
We finally note that the present paper’s standing hypothesis of normally distributed inno-

vations is known not always to be realistic for empirical time series of financial returns. In
risk-management practice, heavy-tailed distributions, like Student t-distributions with a small
number of degrees of freedom, are increasingly used – compare also Frey and McNeil [12], who
used extreme value theory to estimate the tails of the εt by a generalized Pareto distribution.
We remark that Theorems 1 and 3 can be generalized to GARCH(1, 1) processes with Pareto-
tailed εt ; these will be treated elsewhere.
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The remainder of the paper is organized as follows. In Section 2, we derive suitable
representation formulae for pt,k and qt,k , which are a consequence of the Markov property
of (1). In Section 3, we prove an asymptotic expansion lemma for Laplace transforms of
functions of the form x−β exp(−cx−α), with α > 0; observe that these are flat at x = 0.
Sections 4, 5, and 6 are devoted to the proofs of, respectively, Theorems 1, 2, and 3. Finally, in
Section 7, we discuss some consequences of Theorem 3 for extreme lower quantiles of rt,t+k

or, in financial terminology, for the k-day value at risk at confidence levels tending to 1.

2. Representation formulae for rt+k and rt+k,t

The following notational conventions will be used throughout the paper. All random variables
will be defined on some sufficiently rich probability space (�, F , P). If X is a random variable
on � and A ∈ F an event, we will denote the cumulative distribution function of X, relative
to the conditional probability measure P(· | A), by FX | A; that is, FX | A(x) := P(X < x | A).
In fact, A will mostly be of the form {rt = ρ0, σt = s0}, in which case we will simply write
FX | ρ0,s0 .

We will assume, for convenience, that all random variables we deal with possess a probability
density function (PDF). This assumption could be relaxed in many places but, since it is satisfied
by the majority of the GARCH models used in practice, we have limited ourselves to this case.
We will write X ∼ f to indicate that the random variable X has PDF f . Following a custom
from the physics literature, we will often use the mathematically incorrect, but nevertheless
very convenient, notation P(X = x | A) for the PDF of X relative to P(· | A). More explicitly,

P(X = x | A) := d

dx
P(X < x | A),

assuming FX | A to be absolutely continuous.
Now consider a general nonparametric GARCH(1, 1) process given by

rt+1 = σt+1εt+1 and σt+1 = ϕ(rt , σt ). (8)

Here, the random shocks or innovations (εt )t satisfy the usual hypothesis of being independent
and identically distributed with mean 0 and variance 1. Moreover, we suppose that they possess
a PDF, i.e.

εt ∼ f, (9)

where 0 ≤ f ∈ L1(R). As for the function ϕ : R
2 → (0, ∞), we suppose that it is Borel

measurable and satisfies the following condition: for each σ > 0, the random variable ϕ(σε, σ )

possesses a density hσ , i.e.

ϕ(σε, σ ) ∼ hσ , 0 ≤ hσ ∈ L1(R). (10)

This class of nonparametric GARCH models contains most of the models proposed in the
literature – see [4] and [13] for overviews and [6], [7], and [14] for additional examples.
Exceptions are the threshold GARCH models of Zakoian and of Gouriéroux and Montfort –
see [4] and references therein.

We are interested in the properties of rt+k , given that rt = ρ0 and σt = s0, for an arbitrary,
but fixed, k ≥ 1. We would like, in particular, to determine and analyze its conditional PDF
pt,k(x; ρ0, s0), which, with our notational conventions, can be written as

pt,k(x; ρ0, s0) = P(rt+k = x | rt = ρ0, σt = s0).
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We define two integral operators

F(u)(x) =
∫ ∞

0

1

s
f

(
x

s

)
u(s) ds,

H(u)(s) =
∫ ∞

0
hs′(s)u(s′) ds′,

from L1(0, ∞) to L1(R) and from L1(0, ∞) to itself, respectively. Here, f (·) and hs′(·) are
PDFs, so these operators are positivity preserving, and an application of Fubini’s theorem shows
that they are of norm 1. We will find it convenient to let F and H act formally on delta measures:
F(δs0) = s−1

0 f (·/s0), and similarly for H ; cf. the statement of Theorem 4 below.
The GARCH(1, 1) process (8) can be interpreted as a two-component Markov process for

(rt , σt ), with an almost-sure evolution for the σt component. It is often convenient to note that
σt , by itself, follows a scalar Markov process, i.e.

σt+1 = ϕ(σtεt , σt ), (11)

with transition probability densities

P(σt+1 = s | σt = σ) = P(ϕ(σtεt , σt ) = s | σt = σ)

= hσ (s), (12)

since εt is independent of σt . This observation will be used in the proof of the next theorem.

Theorem 4. Let (rt )t∈N be defined by (8). Under the hypotheses (9) and (10) on εt and ϕ,
respectively, we have

pt,k(x; ρ0, s0) = F ◦ Hk−1(δϕ(ρ0,s0)). (13)

Proof. If k = 1 then (13) is trivially true. If k > 1 then, writing Pρ0,s0 for P(· | rt = ρ0,

σt = s0) and using the fact that rt+k = σt+kεt+k , with εt+k independent of σt+k , we have

Pρ0,s0(rt+k = x) =
∫ ∞

0
Pρ0,s0(σt+kεt+k = x | σt+k = sk) Pρ0,s0(σt+k = st ) dsk

=
∫ ∞

0

1

sk
f

(
x

sk

)
Pρ0,s0(σt+k = sk) dsk. (14)

By the Markov nature of (11), and using (12), we have

Pρ0,s0(σt+k = sk) = Hk−1(δϕ(ρ0,s0)),

where we have used the fact that Pρ0,s0(σt+1 = s1) = δϕ(ρ0,s0)(s1). Substitution of this into
(14) completes the proof of (13).

Remarks 1. (i) For a nonparametric ARCH(1) process, by which we mean a process of the
form (8) with a ϕ which does not depend on σ , there is a simpler formula for pt,k(x; ρ0). Since
we now simply have a one-component Markov process, we immediately obtain

pt,k(x; ρ0) = F̃ k(δρ0),

where F̃ is, by definition, the integral operator on L1(R) whose kernel is given by the transition
probability densities (r, ρ) 
→ P(rt+1 = r | rt = ρ) = ϕ(ρ)−1f (r/ϕ(ρ)). This can be used to
slightly shorten the proof of Theorem 1 in the case of an ARCH(1) process, but does not lead
to any essential simplifications.
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(ii) The condition that the εt be independent and identically distributed can easily be weakened
to independence only, and we can also let ϕ explicitly depend on t . Independence of the εt ,
however, is essential, and the results of this paper are not expected to hold for, for example,
the important class of weak GARCH processes introduced by Drost and Nijman [9]. This
is unfortunate, since it would have greatly simplified the discussion for multiperiod returns,
the Drost–Nijman class, unlike ordinary GARCH processes, being closed under temporal
aggregation.

The functions hσ defined in (10) can be easily computed for a GARCH(1, 1) process. If εt

has density f then

hσ (s) = d

ds
P((a0 + a1σ

2ε2 + b1σ
2)1/2 < s)

= s(a1σ
2(s2 − a0 − b1σ

2))−1/2
∑

i=+1,−1

f

(
i

(
s2 − a0 − b1σ

2

a1σ 2

)1/2)

if s ≥ (a0 + b1σ
2)1/2, and hσ (s) = 0 otherwise. If f is symmetric, this simplifies to

2s(a1σ
2(s2 − a0 − b1σ

2))−1/2f

((
s2 − a0 − b1σ

2

a1σ 2

)1/2)
1{s>

√
a0+b1σ 2}, (15)

where 1A denotes the indicator function of the set A. We will apply this formula in Section 3,
with f the standard normal density.

Formula (13) can be used for fast numerical computation of the densities pt,k(· | ρ0, s0). This
is because we are dealing with an operator product, so that we need only evaluate a succession
of one-dimensional integrals, instead of a single k-dimensional one (a similar remark applies
to all Markov processes, of course).

We next turn to the k-period returns rt+k,t . Since the class of GARCH(1, 1) models is not
closed under temporal aggregation [9], the preceding results are not directly applicable. We
will therefore proceed differently, by using the two-component Markov process Zt = (rt , σt ).
Write z0 = (ρ0, s0) and let Pz0 be the probability conditional on Zt = z0. Then, the joint PDF
of (Zt+1, . . . , Zt+k) with respect to Pz0 can be evaluated to be

Pz0((Zt+1, . . . , Zt+k) = (z1, . . . , zk)) =
k∏

j=1

Pz0(Zt+j = zj | Zt+j−1 = zj−1),

by the Markov property. It follows that this joint PDF equals

P((rt+j , st+j ) = (xj , sj ), 1 ≤ j ≤ k | (rt , st ) = (ρ0, s0))

=
k∏

j=1

1

sj
f

(
xj

sj

)
δ(sj − ϕ(xj−1, sj−1)), (16)

with δ(s − v) the Dirac delta measure and x0 = ρ0; the delta measures come from the fact
that (8) is deterministic in the second component (this would be different for a stochastic
volatility model). The conditional PDF of rt+k,t = x is now found by integrating (16) against
δ(x − (x1 +· · ·+xk)). Evaluating the integrals over s1, . . . , sk that involve the delta functions,
we obtain the following result.
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Theorem 5. Recursively define the functions ŝj = ŝj (x1, . . . , xj−1), j ≥ 1, by

ŝ1 = ϕ(ρ0, s0), ŝj = ϕ(xj−1, ŝj ).

Then,

P(rt+k,t = x | rt = ρ0, σt = s0)

=
∫

· · ·
∫

1

ŝk
f

(
x − (x1 + · · · + xk−1)

ŝk

) k−1∏
j=1

1

ŝj
f

(
xj

ŝj

)
dx1 · · · dxk−1.

This formula no longer has the simple recursive structure of an operator product, and this
will complicate its analysis in Section 5, below. This also limits its usefulness in numerical
evaluation of the PDF.

3. Asymptotics of Laplace transforms

In this section, we prove the following technical lemma on asymptotic expansions of certain
degenerate Laplace integrals, which will form the basis of the proofs of Theorems 1 and 2.

Lemma 1. Let α > 0, s > 0, c > 0, and β ∈ R. Then, as s → ∞,∫ ∞

0
x−β exp(−cx−α) exp(−sx) dx

�
(

s

α

)(β−α/2−1)/(α+1)

exp

(
−(α + 1)c1/(α+1)

(
s

α

)α/(α+1)) ∞∑
j=0

Cjs
−jα/(α+1), (17)

with C0 = (2π/α(α + 1))1/2c(1−2β)/2(α+1).

We refer to the integral in (17) as degenerate, since all derivatives of x−β exp(−cx−α) vanish
at 0. In particular, we cannot simply apply Watson’s lemma.

Remarks 2. (i) The meaning of the asymptotic expansion (17) is the usual one: if we cut off
the sum after N − 1 terms, then there exists, for each R > 0, a constant CN,R ≡ CN,R(c, α, β)

such that the error we make can be estimated by

CN,Rs(β−(N+1/2)α−1)/(α+1) exp

(
−(α + 1)c1/(α+1)

(
s

α

)α/(α+1))
for s > R.

To simplify the formulae, we will henceforth only record the main term of the various
asymptotic series we encounter, and write (17) as∫ ∞

0
x−β exp(−sx − x−α) dx

� exp

(
−(α+1)

(
s

α

)α/(α+1))(√
2π

α(α+1)

(
s

α

)(β−α/2−1)/(α+1)

+O(s(β−3α/2−1)/(α+1))

)
,

(18)
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where we have taken c = 1 for simplicity. We will often even leave out the O term altogether.
This should cause no confusion.

(ii) A closely related result is the Abelian part of de Bruijn’s Tauberian theorem (see Theo-
rem 4.12.9 in Bingham et al. [2]), which states the asymptotic equivalence of the logarithm of
the left-hand side of (18) with the logarithm of the exponential on the right-hand side (we thank
Paul Embrechts for bringing this to our attention). De Bruijn’s theorem holds, in fact, for a much
larger class of phase functions, namely those behaving asymptotically as x−α as x → 0+, in the
sense of regular variation. The class of phase functions in (17) could be similarly generalized,
but the present case is all that we will need in this paper.

Proof of Lemma 1. By scaling, it suffices to prove (17) only for c = 1. We first split the
integral into two parts, according to∫ ∞

0
x−β exp(−sx − x−α) dx

=
∫ s−1/(1+α)

0
x−β exp(−sx − x−α) dx +

∫ ∞

s−1/(1+α)

x−β exp(−sx − x−α) dx

=: I + II.

Observe that sx = x−α precisely when x = s−1/(α+1). We next analyze the two parts
separately, using Laplace’s method. We start with the integral II . Making the change of variable
x = s−1/(1+α)y, we find that

II = s(β−1)/(α+1)

∫ ∞

1
exp(−sα/(α+1)(y + y−α))y−β dy,

which, apart from the prefactor, is a classical Laplace integral of the form∫ ∞

1
e−λϕ(y)a(y) dy.

The main contribution to the asymptotics will come from the absolute minimum of the phase
function ϕ(y) = y + y−α in [1, ∞) or from the boundary point y = 1. It is easily seen that
ϕ(y) has an absolute minimum in [0, ∞) at y = yc = α1/(α+1). We distinguish the following
three cases.

Case (i): α > 1. In this case, yc ∈ (1, ∞) and we get a contribution

e−λϕ(yc)

((
2π

λ

)1/2
a(yc)

ϕ′′(yc)1/2 + O(λ−3/2)

)
,

where the O term actually stands for a complete asymptotic series in the powers λ−(1/2)−j .
Computing ϕ(yc) = α1/(α+1) + α−α/(α+1) = (α + 1)α−α/(α+1) and ϕ′′(yc) = α(α + 1)/

α(α+2)/(α+1), and remembering the prefactor and the fact that λ = sα/(α+1), we find the
following contribution to II:

exp

(
−(α + 1)

(
s

α

)α/(α+1))(√
2π

α(α + 1)

(
s

α

)(β−α/2−1)/(α+1)

+ · · ·
)

, (19)
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the dots indicating lower-order terms. We must compare this with the contribution from the
boundary point yc = 1, which is

exp(−2sα/(α+1))((1 − α)−1s(β−α−1)/(α+1) + · · · ). (20)

However, these will all be dominated by (19), as follows from the elementary observation that,
for all α > 0,

(α + 1)α−α/(α+1) ≤ 2 (21)

with equality if and only if α = 1.
To prove (21), we must show that

log(α + 1) −
(

α

α + 1

)
log α ≤ log 2

for α > 0. This follows from the fact that the left-hand side has an absolute maximum, equal
to log 2, at α = 1.

Continuing with the analysis of II , we consider the two remaining cases.
Case (ii): α = 1. The minimum yc coincides with the boundary point, and we obtain a

contribution equal to half that of (19).
Case (iii): α < 1. In this case, yc < 1 and the asymptotics of II will be given by (20), since

only y = 1 will contribute.
We next repeat the analysis for the integral I . Making the substitution x = s−1/(α+1)u−1,

we find that

I = s(β−1)/(α+1)

∫ ∞

1
exp(−sα/(α+1)(uα + u−1))uβ−2 du.

In this case, the phase function equals ϕ(u) = uα + u−1, which has an absolute minimum at
u = uc = α−1/(α+1). We compute that ϕ(uc) = (α + 1)α−α/(α+1) (as for II) and that

ϕ′′(uc) = α(α − 1)α−(α−2)/(α+1) + 2α3/(α+1)

= α2/(α+1)(α(α + 1))α−α/(α+1).

We then have to consider the same three cases as for II .
Case (i ′): α > 1. Since uc < 1, the only contribution to the asymptotics will come from

the boundary point u = 1, which will give (20).
Case (ii ′): α = 1. In this case, uc = 1 and we get a contribution of half that of (19), as

before.
Case (iii ′): α < 1. Now the critical point uc > 1 is in the integration range of I , and will

give a contribution to the asymptotics that turns out to be the same as (19). By observation (21),
this contribution will again dominate that coming from the boundary point.

It now suffices to add up the asymptotics of I and II and observe once more that, in cases (i)
and (i′) and cases (iii) and (iii′), the contribution of the interior minimum dominates, by (21).

4. Proof of Theorem 1

We will now prove Theorem 1. We will start from Theorem 4 and use induction on k.
For this, we need to know how the operators F and H will affect the asymptotic behavior of the
functions on which they act. This will be analyzed in the following two lemmas. Let us start
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with H . Its kernel is given by (15) with f (x) = (2π)−1/2 exp(− 1
2x2), the standard normal

density. Therefore,

H(v)(s) = 2seb1/2a1

√
2πa1

∫ √
(s2−a0)/b1

0

1√
t2(s2 − a0 − b1t2)

exp

(−(s2 − a0)

2a1t2

)
v(t) dt (22)

if s2 > a0, and H(v)(s) = 0 otherwise. If b1 = 0, the integral is to be taken over the whole
positive real axis. We then have the following lemma.

Lemma 2. Suppose that v(s) � Csβ exp(−csα) for 0 < s → ∞, where β ∈ R, c > 0, and
α > 0. Then,

H(v)(s) � C′s(2β−α)/(α+2) exp(−c′s2α/(α+2)), s → ∞,

where
c′ = 1

2 (α + 2)(αa1)
−α/(α+2)c2/(α+2) (23)

and

C′ = 2C exp (b1/2a1)√
α + 2

(cαa1)
−(β+1)/(α+2). (24)

Proof. Making the change of variable z = 1/t2 in (22) and letting γ (s) = 2seb1/2a1/

(2πa1)
1/2 and s̃ = (s2 − a0)/2a1, we obtain

H(v)(s) = 1
2γ (s)

∫ ∞

b1/2a1 s̃−1

√
z

2a1s̃z − b1
e−s̃z 1

z
v

(
1√
z

)
dz.

We can easily see that, since z−1v(z−1/2) � Cz−(β/2)−1 exp(−cz−α/2) as z → 0, this integral
is asymptotically equivalent to

H(v)(s) � 1
2γ (s)c

∫ ∞

b1/2a1 s̃

√
z

2a1s̃z − b1
z−(β/2)−1 exp(−s̃z − cz−α/2) dz

= 1
2γ (s)s̃(β−1)/2c

∫ ∞

b1/2a1

√
w

2a1w − b1
w−(β/2)−1 exp(−w − cs̃α/2w−α/2) dw

= γ (s)s̃(β−1)/2

α
√

2a1
c

∫ A

0

1√
1 − (A−1y)2/α

y(β/α)−1 exp(−y−2/α − cs̃α/2y) dy,

where we have successively made the changes of variable w = s̃z and y = w−α/2, and
introduced A := (b1/2a1)

−α/2. The integrand clearly has an integrable singularity at A, and
we split the integral into

∫ A/2
0 + ∫ A

A/2 (schematically). The second integral can be trivially
estimated as K exp(−kaα) for suitable constants k and K . For the first integral, we Taylor
expand (1 − (A−1y)2/α)−1/2, and then extend the integration from (0, 1

2A] to (0, ∞], thereby
introducing a further error Ksp exp(−ksα), for some suitable power p and possibly larger
constants k and K . The conclusion is that H(v)(s) will be asymptotically equivalent to

H(v)(s) � γ (s)s̃(β−1)/2

α
√

2a1
c

∫ ∞

0
y(β/α)−1 exp(−y2/α − cs̃α/2y) dy

+ O

(∫ ∞

0
yβ/α exp(−y2/α − cs̃α/2y) dy

)
+ O(sp exp(−ksα)),
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for some positive p and k. The two integrals are Laplace integrals of the type studied in
Lemma 1, with c = 1; s replaced by cs̃α/2 (with c as in the hypothesis on v); α replaced
by 2/α; and β by, respectively, −(β/α) + 1 and −β/α. A straightforward application of
Lemma 1 then gives, after some computations,

H(v)(s) � C′s(2β−α)/(α+2) exp(−c′s2α/(α+2))(1 + O(s−α/(α+2)) + O(sp exp(−ksα)))

with c′ and C′ given by (23) and (24), and where we have used the fact that

exp(−c(s2 − a0)
α/(α+2)) � exp(−cs2α/α+2)

(
1 +

∑
ν

cνs
−2ν

)
as s → ∞,

which holds because α/(α + 2) < 1. The main term clearly dominates the first error term and,
since 2α/(α + 2) < α for α > 0, it also dominates the second.

We next perform a similar analysis for F .

Lemma 3. Suppose that v(s) � Csβ exp(−csα) for 0 < s → ∞, where β ∈ R, c > 0, and
α > 0. Then,

F(v)(x) � C′|x|(2β−α)/(α+2) exp(−c′x2α/(α+2)), x → ∞,

where

c′ = 1
2 (α + 2)c2/(α+2)α−α/(α+2) (25)

and

C′ = 2C√
α + 2

(cα)−(β+1)/(α+2). (26)

Proof. By the definition of F , we have

F(v)(x) = 2√
2π

∫ ∞

0

exp(−(x2/2s2))

s
v(s) ds

= 1√
2π

∫ ∞

0

√
u exp(− 1

2ux2)v

(
1√
u

)
1

u3/2 du

= 1√
2π

∫ ∞

0
exp(− 1

2ux2)
1

u
v

(
1√
u

)
du,

making the change of variable u = 1/s2. The integral on the right-hand side is the Laplace
transform of u−1v(u−1/2) evaluated at 1

2x2, whose large-x behavior is completely determined
by the small-u behavior

1

u
v

(
1√
u

)
� Cu−(β/2)−1 exp(−cu−α/2), u → 0,

by the hypothesis on v. Using Lemma 1 again, the asymptotics of F(v)(x) follow from
straightforward calculations.

We can now derive the asymptotic behavior of Hk(δσ ).
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Lemma 4. Let σ > 0 and k ≥ 1. Then, as s → ∞,

Hk(δσ )(s) � C̃ks
−(1−1/k) exp

(
− k

2a1σ 2/k
s2/k

)
, (27)

where

C̃k = exp(kb1/2a1)√
2πa1

√
2k−1

k
σ−1/k.

Proof. Define qk(s) := Hk(δσ )(s), βk := −(1 − 1/k), c̃k := k/2a1σ
2/k , and αk := 2/k.

We will show, by induction on k, that qk(s) � C̃ks
βk exp(−c̃ks

αk ) as s → ∞. First, if k = 1
then

q1(s) = H(δσ )(s)

= 1√
2π

2s exp(b1/2a1)√
a1σ 2(s2 − a0 − b1σ 2)

exp(−(s2 − a0)/2a1σ
2) 1{s>

√
a0+b1σ 2}

� 1

σ
√

2a1π
eb1/2a1 e−s2/2a1σ

2

= C̃1s
β1 e−c1s

α1
, s → ∞,

as required.
Next, assume that the lemma is true for qk−1. Since qk(s) = H(qk−1)(s), we have

qk(s) � C′s(2βk−1−αk−1)/(αk−1+2) exp(−c′s(2αk−1/(αk−1+2))),

by Lemma 2, with c′ and C′ given by (23) and (24), respectively (with α = αk−1, β = βk−1,
c = c̃k−1, and C = C̃k−1). Now, 2αk−1/(αk−1 + 2) = 2/k = α and, similarly,

2βk−1 − αk−1

αk−1 + 2
= −

(
1 − 1

k

)
= βk.

Furthermore, by direct computation, we find that c′ = k/2a1σ
2/k = c̃k and

C′ = 2C̃k−1eb1/2a1

√
αk−1 + 2

(ck−1αk−1a1)
−(βk−1+1)/(αk−1+2)

= eb1/2a1

√
2(k − 1)

k
σ 1/k(k−1)C̃k−1 = C̃k,

which proves (27).

Proof of Theorem 1. By Theorem 4, pt,k ≡ pt,k(x; ρ0, s0) = F ◦ Hk−1(δσt+1) and, for
k = 1, we simply obtain σ−1

t+1(2π)−1/2 exp(−x2/2σ 2
t+1), which has the correct asymptotic

behavior. If k > 1 then pt,k = F(qk−1) with

qk−1(s) := Hk−1(δσt+1)(s) � C̃k−1s
βk−1 exp(−c̃k−1s

αk−1),

by Lemma 4 with σ = σt+1, using the notation introduced in the proof of that lemma. Hence,
by Lemma 3,

pt,k(x; ρ0, σ0) � C′|x|(2βk−1−αk−1)/(αk−1+2) exp(−c′|x|2αk−1/(αk−1 − 2)),
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with c′ and C′ now being given by (25) and (26), respectively (with α = αk−1, β = βk−1,
c = c̃k−1, and C = C̃k−1). Straightforward computations then yield (4) together with (5)
and (6).

Remark 3. A closer look at the proof of Theorem 1 shows that we in fact get a complete
asymptotic expansion, i.e.

pt,k(x; ρ0, s0) � e−ck |x|2/k

|x|1−1/k

∑
ν≥0

Cν,k|x|−ν/k, |x| → ∞,

with C0,k = Ck .

5. Proof of Theorem 2

By Theorem 5, with f the standard normal density,

P(rt+k,t = x | rt = ρ0, σt = s0)

=
(

1

2π

)(k−1)/2 ∫
R

· · ·
∫

R

k−1∏
j=1

1

ŝj
e−x2

j /2ŝ2
j

1

ŝk

× exp

(
− (x − (x1 + · · · + xk−1))

2

2ŝ2
k

)
dx1 · · · dxk−1, (28)

where the standard deviations ŝj ≡ ŝj (x1, . . . , xj−1) are defined recursively by

ŝ2
1 ≡ a0 + a1ρ

2
0 + b1s

2
0 , ŝ2

j = a0 + a1x
2
j−1 + b1ŝ

2
j−1.

It easily follows that

ŝ2
j =

j−1∑
ν=1

a1b
ν−1
1 x2

j−ν + eν,

where e1 = ŝ2
1 and ek = a0 + b1ek−1. We will in fact establish a slightly more general result,

and replace the ŝ2
j in (28) by arbitrary functions Lj−1 ≡ Lj−1(x1, . . . , xj−1), which are affine

in x2
1 , . . . , x2

j−1 (note the shift by 1 of the index, relative to ŝj ). That is, we let

Lj (x1, . . . , xj ) = γ
(j)
0 +

j∑
ν=1

γ (j)
ν x2

ν , (29)

with γ
(j)
ν a positive constant, ν = 0, . . . , j . We will also put an adjustable multiplicative

constant η > 0 in the exponent of the final factor of (28), and estimate the functions qk(x)

defined by

qk(x) ≡ qk(x; η, L0, . . . , Lk−1)

=
∫

R

· · ·
∫

R

k−1∏
j=1

e−x2
j /2Lj−1√

2πLj−1

1√
2πLk−1

× exp

(−η(x − (x1 + · · · + xk−1))
2

2Lk−1

)
dx1 · · · dxk−1, (30)
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under the following conditions on the coefficients of Lj :

γ (j)
ν > 0, 0 ≤ ν ≤ j. (31)

This will be satisfied if Lj−1 = ŝ2
j for a GARCH(1, 1) process with b1 > 0.

We will then prove the following set of inequalities, of which Theorem 2 will be an immediate
consequence.

Assertion 1. For given affine forms L0, . . . , Lk−1 (as in (29)) satisfying (31), and given η > 0,
there exist strictly positive constants c, c′, C, and C′ such that

C|x|−(1−1/k)e−c|x|2/k ≤ qk(x) ≤ C′|x|−(1−1/k)e−c′|x|2/k

. (32)

The constants c, c′, C, and C′ can be chosen locally uniformly in η and γ
(j)
ν , 0 ≤ ν ≤ j, j ≤ k.

In the remainder of this section, we will prove this claim by induction on k. The idea is
to estimate qk(x) from above and from below by a Laplace transform of a qk−1 with slightly
modified η and Lj (modulo a negligible error) and then use Lemma 1 again. To accomplish
this, we will first eliminate x1 from all factors under the integral sign of (30) except the first
one, using the following elementary inequality.

Lemma 5. For all ε, 0 < ε ≤ 1, and all a, b ∈ R, we have

C−
b,εe−(1+ε)a2 ≤ e−(a+b)2 ≤ C+

b,εe−(1−ε)a2
, (33)

where C−
b,ε = exp(−(ε−1 + 1)b2) and C+

b,ε = exp((ε−1 − 1)b2).

Proof. To prove, for example, the upper bound, write

exp((1 − ε)a2) exp(−(a + b)2) = exp(−(εa2 + 2ab + b2))

and maximize over a. The lower bound is proven in the same way.
It is clear that (32) holds for k = 1. We now suppose that it holds for k − 1, and aim to

prove it for k. We first establish the upper bound. Apply the second inequality in (33) with
a = η1/2(x − (x2 + · · · + xk))/(2Lk−1)

1/2 and b = −η1/2x1/(2Lk−1)
1/2. The constant C+

b,ε

then becomes

C+
b,ε = exp

(
(ε−1 − 1)ηx2

1

2Lk−1

)
≤ exp

(
(ε−1 − 1)ηx2

1

2γ
(k−1)
0

)
and we see that it can be absorbed in the numerator of the first factor in the integrand of (30),
namely exp(−x2

1/2L0), provided that ε is sufficiently close to 1. In fact, Cb,ε < exp(x2
1/4L0)

if
(1 + γ

(k−1)
0 /2ηL0)

−1 < ε < 1.

With such a choice of ε, we then have

qk(x) ≤
∫

R

· · ·
∫

R

e−x2
1/4L0

√
2πL0

k−1∏
j=2

e−x2
j /2Lj−1√

2πLj−1

1√
2πLk−1

× exp

(
− (1 − ε)η(x − (x2 + · · · + xk−1))

2

2Lk−1

)
dx1 · · · dxk−1.
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We now split this integral as follows, and estimate the two pieces separately:∫
|x1|≤1

dx1
e−x2

1/4L0

√
2πL0

∫
Rk−2

(· · · ) +
∫

|x1|>1
dx1

e−x2
1/4L0

√
2πL0

∫
Rk−2

(· · · ) =: I + II.

We first show that I is of the same order as some qk−1(x; η∗, L∗
1, . . . , L

∗
k−1) for some suitable

choice of η∗ and L∗
ν . In fact, if |x1| ≤ 1 then

Lj (x1, . . . xj ) ≤ γ
(j)
0 + γ

(j)
1 + γ

(j)
2 x2

2 + · · · + γ
(j)
j x2

j

=: L∗
j (x2, . . . , xj ),

where L∗
1 is just a constant, independent of x2, . . . , xk−1. We also have

L∗
j

Lj

≤ max

{
1,

γ
(j)
0 + γ

(j)
1

γ
(j)
0

}
,

this without any restriction on (x1, . . . , xj ). It follows that, for a suitable constant C > 0,

|I | ≤ C

∫
|x1|≤1

∫
R

· · ·
∫

R

e−x2
1/4L0

√
2πL0

k−1∏
j=2

e−x2
j /2L∗

j−1√
2πL∗

j−1

× 1√
2πL∗

k−1

exp

(−(1 − ε)η(x − (x2 + · · · + xk−1))
2

2L∗
k−1

)
dx1 · · · dxk−1.

We recognize the integral over dx2 · · · dxk−1 as being a constant times qk−1(x; (1 − ε)η,
L∗

1, . . . , L
∗
k−1) and, therefore, by the induction hypothesis,

|I | ≤ C|x|−(1−1/(k−1))e−c|x|2/(k−1)

for suitable constants c and C. For |x| → ∞, this is of strictly lower order than the inequality
we are trying to establish for qk(x).

We next turn to integral II . If |x1| > 1 then

Lj (x1, . . . , xj ) ≤ (γ
(j)
0 + γ

(j)
1 )x2

1 + γ
(j)
2 x2

2 + · · · + γ
(j)
j x2

j

= x2
1

(
γ

(j)
0 + γ

(j)
1 + γ

(j)
2

x2
2

x2
1

+ · · · + γ
(j)
j

x2
j

x2
1

)
=: x2

1 L̃j

(
x2

x1
, . . . ,

xj

x1

)
,

the last equation defining L̃j . Similarly, for |x1| > 1 we can estimate

Lj (x1, . . . , xj ) ≥ γ
(j)
1 x2

1 + γ
(j)
2 x2

2 + · · · + γ
(j)
j x2

j

= x2
1

(
γ

(j)
1 + γ

(j)
2

x2
2

x2
1

+ · · · + γ
(j)
j

x2
j

x2
1

)
≥ c x2

1 L̃j

(
x2

x1
, . . . ,

xj

x1

)
, (34)
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provided that

c ≤ γ
(j)
1

γ
(j)
0 + γ

(j)
1

.

Note that, to have (34) with a c > 0, we must have γ
(j)
1 > 0, which is ensured by condition (31).

By substituting these inequalities into (30), we find that, for a suitable C > 0,

II ≤ C

∫
|x1|>1

∫
Rk−2

e−x2
1/4L0

√
2πL0

k−1∏
j=2

exp(−x2
j /2x2

1 L̃j−1)

|x1|
√

2πL̃j−1

× 1

|x1|
√

2πL̃k−1

exp

(−(1 − ε)η(x − (x2 + · · · + xk−1))
2

2x2
1 L̃k−1

)
dx1 · · · dxk−1

(we can in fact take C = [minj (γ
(j)
1 /(γ

(j)
0 + γ

(j)
1 ))]−(k−1)/2). If we now change variable to

yj := xj /|x1|, 2 ≤ j ≤ k − 1, we see that the previous inequality can be written as

II ≤ C

∫
|x1|>1

1

|x1|
e−x2

1/4L0

√
2πL0

qk−1

(
x

|x1| ; (1 − ε)η, L̃1, . . . , L̃k−1

)
dx1.

By the induction hypothesis, the qk−1(x/x1) contained in the integrand is less than or equal to

C

( |x|
|x1|

)β

e−c(|x|/|x1|)α ,

with

α = 2

k − 1
, β = −1 + 1

k − 1
, (35)

and, thus, after a rescaling, and with different constants c and C,

II ≤ |x|βC

∫
|x1|>1

|x1|−β−1e−c(|x|/|x1|)α e−x2
1 dx1. (36)

We now assume that x > 0 and write the integral as twice that over the range [1, ∞).
We again want to use Lemma 1 and for this we rewrite our integral as a Laplace transform with
large parameter, by introducing the new variable z = x−α

1 . Then, the right-hand side of (36) is
less than or equal to a constant times

xβ

∫ 1

0
z(β/α)−1e−z−2/α

e−cxαz dz

and, by Lemma 1 with s = c xα and α and β replaced respectively by 2/α and 1 − (β/α),
we find that

II ≤ Cx(2β−α)/(α+2) exp(−cx2α/(α+2)),

again with different c and C. Since, using (35), the exponents of x corresponding to
(2β − α)/(α + 2) and 2α/(α + 2) in this formula turn out to be, respectively, −(1 − 1/k) and
2/k, this proves the desired upper bound for II and, thus, for qk(x).
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We next turn to the lower bound for qk . By the first inequality of (33) we see, in the same
way as before, that

exp

(
−η(x − (x1 + · · · + xk−1))

2

2Lk−1

)
≥ C−

b,ε exp

(
− (1 + ε)η(x − (x2 + · · · + xk−1))

2

2Lk−1

)
,

where

C−
b,ε = exp

(
−η(1 + ε−1)x2

1

2Lk−1

)
≥ exp

(
−η(1 + ε−1)x2

1

2γ
(k−1)
0

)
.

We can combine C−
b,ε with the numerator of the first factor of the integrand of (30) to produce

a factor e−κx2
1 . By doing so, and limiting the x1 integration in (30) to |x1| > 1, we find that

qk(x) ≥
∫

|x1|>1

∫
R

· · ·
∫

R

e−κx2
1√

2πL0

k−1∏
j=2

e−x2
j /2Lj−1√

2πLj−1

× 1√
2πLk−1

exp

(
−η(1 + ε)(x − (x2 + · · · + xk−1))

2

2Lk−1

)
dx1 · · · dxk−1.

(37)

As before, we next eliminate x1 from the Lj . First, if j ≥ 1 then

Lj (x1, . . . , xj ) ≥ x2
1

(
γ

(j)
1 + γ

(j)
2

x2
2

x2
1

+ · · · + γ
(j)
j

x2
j

x2
1

)
=: x2

1 L̂j

(
x2

x1
, . . . ,

xj

x1

)
.

Next, if |x1| > 1 then

Lj (x1, . . . , xj ) ≤ (γ
(j)
0 + γ

(j)
1 )x2

1 + · · · + γ
(j)
j x2

j

≤ cx2
1 L̂j

(
x2

x1
, . . . ,

xj

x1

)
, (38)

provided that c ≥ (γ
(j)
0 + γ

(j)
1 )/γ

(j)
1 ; there exists such a (finite) c since γ

(j)
1 > 0, by (31).

Substituting these inequalities into (37) and making the same change of variable yj = xj /x1
as before (with j ≥ 2), we find that, for a suitable constant C > 0,

qk(x) ≥ C

∫
|x1|>1

e−κx2
1

|x1| qk−1

(
x

x1
; (1 + ε)η, L̂2, . . . , L̂k−1, (1 + ε)η

)
.

Using the induction hypothesis and Lemma 1, we find the required lower bound for qk(x).

6. Proof of Theorem 3

Theorem 3 is much easier to prove than Theorem 2, and is in fact a fairly straightforward
consequence of the following corollary to Theorem 1. Let

erfc(x) = 1√
2π

∫ ∞

x

exp(− 1
2y2) dy

denote the complementary error function. By integrating (4), we then find the following result.
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Corollary 1. Let

Ĉk = exp

(
k − 1

2

(
log 2 + b1

a1

))
.

Then,
Frt+k | ρ0,s0(x) � Ĉk erfc(

√
2ck|x|1/k), x → −∞,

where ck is given by (5).

By symmetry, we have the same asymptotics for F rt+k | ρ0,s0(x) := 1 − Frt+k | ρ0,s0(x) as
x → ∞.

We now prove Theorem 3. First, observe that if λ1 +· · ·+λk = 1 with λj ≥ 0 (1 ≤ j ≤ k),
then, for any x ∈ R,

{rt+k,t < x} ⊂
k⋃

j=1

{rt+j < λjx}

and, therefore, we have

Pρ0,s0(rt+k,t < x) ≤
k∑

j=1

Pρ0,s0(rt+j < λjx),

where, recall, Pρ0,s0 stands for P(· | rt = ρ0, σt = s0). We choose λk = 1 − ε and λj =
ε/(k − 1), 1 ≤ j ≤ k − 1, for some 0 < ε < 1, which will tend to 0 at the end of the proof.
By Corollary 1,

Pρ0,s0(rt+j < x) � Ĉj erfc(
√

2cj |x|1/j ), x → −∞,

and a moment’s thought then shows that, for all η > 0, there exists an R ≡ R(η, ε, k) > 0 such
that, for all x < −R,

Frt+k,t | rt=ρ0,σt=s0(x) ≤ (1 + η)Ĉk erfc((1 − ε)
√

2ck|x|1/k).

Taking logarithms, it follows that

lim sup
x→−∞

log Frt+k,t | rt=ρ0,σt=s0(x)

|x|2/k
≤ −(1 − ε)2ck

(since log(erfc(x)) � − 1
2x2 as |x| → ∞). Hence, letting ε → 0, we have

lim sup
x→−∞

log Frt+k,t | rt=ρ0,σt=s0(x)

|x|2/k
≤ −ck. (39)

To obtain a lower bound, we simply note that if rt+k < x and rt+k−1,t < 0, then rt+k,t < x.
Hence,

Pρ0,s0(rt+k,t < x) ≥ Pρ0,s0(rt+k < x, rt+k−1,t < 0).

We can easily check, using the symmetry properties of a GARCH(1, 1) process, that

Pρ0,s0(rt+k < x, rt+k−1,t < 0) = Pρ0,s0(rt+k < x, rt+k−1,t > 0).

It follows that

Pρ0,s0(rt+k < x, rt+k−1 < 0) = 1
2 Pρ0,s0(rt+k < x) = 1

2Frt+k | ρ0,s0(x)
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and, therefore, that
Frt+k,t | ρ0,s0(x) ≥ 1

2Frt+k | ρ0,s0 .

Using Corollary 1 and taking logarithms, we find that

lim inf
x→−∞

log Frt+k,t | rt=ρ0,σt=s0(x)

|x|2/k
≥ −ck,

which, together with (39), proves Theorem 3.

7. Application to extreme lower quantiles

The above theorems have theoretical implications for financial risk management, in particular
VaR estimations in GARCH models. Again, consider a risky asset (or portfolio of assets)
with price Pt , t = 0, 1, 2, . . . , where, to be specific, we assume that t is measured in days.
Recall that VaRα(t, k), the conditional (or dynamic) value at risk at confidence 1 − α and
over the time window [t, t + k], is defined as the αth lower quantile of the profit-and-loss
distribution �Pt,k = Pt+k − Pt , given the information available at time t . Here, α and k are
given parameters; in practice, α equals 0.05 or 0.01 for k equal to 1 or 10, respectively. We
refer to [8], [15], and [16] (which was at the origin of the concept) for further information on
VaR and its uses in financial risk management, and to [1] for a critique of its suitability as a
risk measure. As quantile function, we will take the left inverse of the distribution function as
defined, for example, in [10, Definitions 3.3.4 and 3.3.5]; cf. (40) below.

The conditional VaR should be carefully distinguished from the unconditional VaR, which
is computed from the stationary return distribution – see [12] for more discussion of this point.

Let rt = log(Pt/Pt−1) be the log-return over [t − 1, t], and assume that rt follows a
GARCH(1, 1) process. It is convenient to introduce the conditional return at risk, RaRα(t, k),
which will simply be the αth lower quantile of rt+k,t , given that rt = ρ0 and σt = s0. Explicitly,

RaRα(t, k) = inf{x : Frt+k,t | ρ0,s0(x) = α}, (40)

where we have suppressed the dependence of the left-hand side on ρ0 and s0, to simplify the
notation. This quantity is related to the conditional VaR by

VaRα(t, k) = (exp(RaRα(t, k)) − 1)Pt .

In practice, one often approximates the right-hand side of this by RaRα(t, k)Pt , although this
might give rise to sizeable errors. (Of course, such an approximation would have been exact
were we to have used percentage returns instead of logarithmic ones, but that would have caused
problems with temporal aggregation of one-day returns to k-day returns.) Observe that we are
recording losses using negative numbers.

The prediction of the one-day conditional return at risk is trivial in a GARCH(1, 1) model.
However, one often also needs to know theVaR over multiple-day time windows. A well-known
example is given by the Bank of International Settlements capital adequacy requirements,
which ask banks to estimate their 10-day VaR at the 99% confidence level. As a rule of thumb,
practitioners simply rescale one-day VaR (or, more precisely, one-day RaR) by k1/2. The origin
of this heuristic rule lies in the simple random walk model for log-prices and is, therefore, strictly
speaking, not applicable to GARCH models. Our asymptotic results allow us to investigate this
point more closely for asymptotically vanishing α. Theorem 3 has the following corollary.
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Corollary 2. For k fixed and α → 0, we have

RaRα(t, k) � −k−k/2a
(k−1)/2
1 σt+1(log α−2)k/2.

Hence, |RaRα(t, k)| tends to infinity as (log α−2)k/2 when α tends to 0. In particular, for
any k ≥ 2,

lim
α→0

RaRα(t, k)√
k RaRα(t, 1)

= ∞,

which shows that the k1/2 rule fails spectacularly for very small α, even if k = 2. It remains
to be seen to what extent this asymptotic result is relevant for the αs used in practical risk
assessment. This question is probably most easily investigated using numerical simulations,
since good explicit error bounds have turned out to be hard to obtain from our proofs.
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