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Abstract
Let n be an integer congruent to 0 or 3 modulo 4. Under the assumption of the ABC conjecture, we prove that, given
any integer m fulfilling only a certain coprimeness condition, there exist infinitely many imaginary quadratic fields
having an everywhere unramified Galois extension of group An × Cm. The same result is obtained unconditionally
in special cases.

1. Introduction

Understanding unramified extensions of number fields is of crucial importance in algebraic number
theory, much like understanding the geometric fundamental groups of manifolds is in geometry.

In particular, a well-known open problem in number theory is the question whether, given any finite
group G, there exist infinitely many quadratic number fields possessing an everywhere unramified Galois
extension with Galois group G. It is furthermore of interest to determine explicit families of number
fields having such an unramified extension. For the case of cyclic groups Cm, these questions are part of
class field theory, and it has long been known that for any given integer n > 1, there exist infinitely many
quadratic number fields such that the ideal class group has a cyclic subgroup of order m (see [1, 18, 23]
for existence results as well as [6, 7, 9, 14, 16, 17, 20, 24] for stronger quantitative as well as explicit com-
putational results). See also the survey paper [2]. On the other end of the scale is the case of non-abelian
simple groups. The symmetric and alternating groups are among the relatively few groups for which the
problem has been solved, and several previous results such as those of Uchida [22], Yamamoto [23],
Elstrodt–Grunewald–Mennicke [5], Kondo [13], and Kedlaya [8] are related to the existence of unram-
ified extensions over quadratic fields whose Galois group is isomorphic to a symmetric or alternating
group. Similar existence results for some other (small) nonabelian simple groups are contained in [12].
Going one step further, one may wish to investigate the problem for nonsolvable groups which are not
generated by involutions, a condition that in practice tends to add to the difficulty, as explained in [10].
Some first results were obtained in [10] and [11], which solved the problem for certain nonsplit central
extensions of simple groups such as SL2(F7) and SL2(F5).

In the same spirit, it is also natural to ask whether it is possible to find quadratic number fields
having an An-unramified extension and a Cm-unramified extension simultaneously. This is particularly
interesting, since the solution requires to combine ideas from the realization of cyclic groups and simple
groups, whose methods are otherwise often quite different. We give a partial answer to this question.
Here is the main theorem.
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Main Theorem. Let n be an integer congruent to 0 (resp 3) modulo 4 and m be an integer such that
gcd (n, m) = 1 (resp. gcd (n − 1, m) = 1). If we assume that the ABC conjecture is true, then there exist
infinitely many imaginary quadratic fields having an An × Cm-unramified extension.

The theorem will be proven in Section 3. The usefulness of the ABC conjecture to problems related
to class number divisibility has been previously noticed by Murty, see [16]. Furthermore, the relevance
of the ABC conjecture to counting squarefree discriminants of trinomials, and consequently to count-
ing quadratic fields with unramified An-extensions, was pointed out in [15]. It seems, however, that
previously the two directions of “class number divisibility” and “unramified non-solvable (namely, An)-
extensions” have not been put together. The proof of our main theorem uses careful specialization of
trinomial families to achieve these two goals simultaneously.

In Section 4, we point out a special case in which the assertion follows unconditionally, without
relying on the ABC conjecture.

2. Preliminaries
2.1. Trinomials and construction of An-unramified extensions over quadratic fields

There are several ways to construct An-unramified extensions over quadratic fields. A well-known
approach works with trinomials, that is, polynomials of the form Xn + aXk + b. The following discrim-
inant formula for trinomial extensions, due to Swan, will be very useful.

Theorem 2.1. (Theorem 2 of [21]): The trinomial f (x) = Xn − aXk + b with 0 < k < n has
discriminant:

D(f ) = (−1)
n(n−1)

2 bk−1
[
nNbN−K − (n − k)N−KkKaN

]d
,

where d = (n, k), N = n/d, K = k/d.

Theorem 2.2. (Theorem 1 of [19]) Let f (X) = Xn + aXk + b be a polynomial of rational integral coef-
ficients, that is, f (X) ∈Z[X]. Let a = a0cn and b = bk

0cn. Then the Galois group of f is isomorphic to the
symmetric group Sn of degree n if the following conditions are satisfied:

1. f (X) is irreducible ouer Q,
2. a0c(n − k)k and nb0 are relatively prime, that is, (a0c(n − k)k, nb0) = 1.

Theorem 2.3. (Theorem 1 of [22]) Let k be an algebraic number field of finite degree. Let a and b be
integers of k. Let

f (X) = Xn − aX + b,

and let K denote the splitting field of f over k, that is, K = k(α1, α2, · · ·, αn) where α1, α2, · · ·, αn) are
the roots of f (X) = 0. Let D be the discriminant of f (X). If (n − 1)a and nb are relatively prime, K is
unramified over k(

√
D).

2.2. Divisibility of class numbers of imaginary quadratic fields

We collect some useful results on class number divisibility.

Proposition 2.4. (Proposition 1 of [20]) Let g ≥ 3 be an integer. Suppose that d ≥ 63 is a squarefree
integer such that t2d = mg − n2. Here, t, m, and n are positive integers with (m, 2n) = 1 and with mg <

(d + 1)2. Then, CL(−d) contains an element of order g where CL(−d) is the class group of Q(
√−d).
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Notice the condition mg < (d + 1)2 in the above proposition, which is exactly the reason why the ABC
conjecture will be needed in our proof. There are also numerous results on class number divisibility
of certain families of quadratic fields which do not require such extra conditions. Among those, the
following is particularly well suited to our problem.

Theorem 2.5. (Main Theorem of [24]) Let k be an odd integer with k > 1 and 22m < kn where m is a
positive integer and n is an odd positive integer with n > 3. Suppose that 22m − kn �≡ 5 (mod 8). Then the
class group of the imaginary quadratic field Q(

√
22m − kn) contains an element of order n.

Remark 2.6. Note that in [24], the assumptions of the theorem are weaker; we only extracted the case
relevant to our application. On the other hand, in [24], the conclusion is worded only in terms of order
of the class group, not in terms of order of elements. The latter is a priori stronger, but the proof in
[24] does indeed yield this stronger version. We briefly summarize the points relevant to this stronger
conclusion. Let −dy2 = 22m − kn where d is a squarefree integer. Then, we know that 22m + y2d = kn

and
(
2m + y

√−d
) = kn for some ideal k. We want to show that the ideal class of k has order n. To do

this, one has to show that 2m + y
√−d �= (

x1 + y1

√−d
)t

for all divisors t �= 1 of n.
(
If 2m + y

√−d =(
x1 + y1

√−d
)t for some t, then we know that the order of k is a divisor of n/t.

)

Suppose that 2m + y
√−d = (

x1 + y1

√−d
)t

for some t. Then, [24] deduces a contradiction unless
t = 3. If t = 3, there is a contradiction when 22m − kn �≡ 5 (mod 8). (See the bottom of page 153 and the
top of page 154 in [24].) Thus, 2m + y

√−d �= (
x1 + y1

√−d
)t

for all t|n, t �= 1 when 22m − kn �≡ 5 (mod
8). In other words, the order of k is n and the class group of the ring of integer of Q

(√
22m − kn

)
has an

element of order n.

2.3. The ABC conjecture

The ABC conjecture is stated in terms of three positive integers a, b, and c that are relatively prime and
satisfy a + b = c. The conjecture essentially states that in this situation the radical of abc, that is, the
product of the distinct prime factors of abc, cannot be too small. Here is the concrete statement.

The ABC Conjecture. For each ε > 0, there are at most finitely many coprime triples a, b, c of positive
integers with a + b = c and rad(abc) < c1−ε . Here, rad(n) denotes the radical of a positive integer n.

3. Proof of the main theorem

We will now prove our main result.

Proof. Case 1: n ≡ 3 (mod 4). Let us consider the following polynomial:

f (x) = Xn − X − nk, (3.1)

where k is an arbitrary integer. By Theorem 2.1, we know that the discriminant of f (x) is

(n − 1)n−1 − nn+k(n−1).

Assume for the moment that f is irreducible. Then the Galois group of the splitting field K of f is
isomorphic to Sn by Theorem 2.2. On the other hand, due to [4, Theorem 1.2], if the polynomial f
is reducible for infinitely many choices of k, then the two-variable polynomial F(T , X) = Xn − X −
nuTe must be reducible for some integer u and positive integer e. However, that polynomial is an
Eisenstein polynomial in T (for the prime X of Q[X]) and therefore clearly irreducible. We have thus
obtained that f has Galois group Sn for all but finitely many choices of k. We also know that K is
unramified over Q

(√
(n − 1)n−1 − nn+k(n−1)

)
, that is, Q

(√
(n − 1)n−1 − nn+k(n−1)

)
has an An-unramified
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extension K. The remaining task is to show that, for infinitely many choices of k, the class group
of Q

(√
(n − 1)n−1 − nn+k(n−1)

)
contains an element of m. The discriminant of f (x) can be written as

follows:

(n − 1)n−1 − nn+k(n−1) = −b2D

Here, D is a squarefree integer. Set A: = (n − 1)n−1, B = b2D and C: = nn+k(n−1) so that A + B = C. By
Proposition 2.4, it suffices to show that (D + 1)2 > C. If we assume the ABC conjecture, for a given
ε > 0, for all but finitely many (A, B, C) of this kind, one has rad(ABC) > C1−ε . From now on, we will
write a: = n + k(n − 1). We easily see that

(n − 1)rad(B)n ≥ rad(ABC) > C1−ε = na(1−ε).

In other words,

rad(B) > na(1−ε)−2 n

n − 1
> na(1−ε)−2 = (na)1−ε−2/a > B1−ε−2/a.

As soon as a > 8, one has rad(B) > B3/4. This means that

B/rad(B) =
∏

p|B
pep−1 < B1/4

where ep is the multiplicity of p in the prime factorization of B. Since all the primes contributing to b2

must divide B more than once, it follows that the term b2 in the expression B = b2D must be smaller
than (B1/4)2 = B1/2. Therefore, we know that B = b2D < B1/2D and B < D2. Since A is a fixed value (not
depending on k), if a is sufficiently large, we obtain the condition A < B1/2. In conclusion,

na = C = A + B < D2 + D < (D + 1)2.

Since n − 1 is relatively prime to m, we can find positive integers k such that m|(n + k(n − 1)
)
.

Therefore, if we choose k satisfying m|(n + k(n − 1)) and n + k(n − 1) = a > 8, the class group of
Q

(√
(n − 1)n−1 − nn+k(n−1)

)
contains an element of order m under the assumption of the ABC conjecture.

Case 2: n ≡ 0 (mod 4). Let us consider the polynomial:

f (x) = Xn − (n − 1)kX + 1, (3.2)

where k is an arbitrary integer. We know that the discriminant of f (X) is

nn − (n − 1)n−1+nk.

By an argument analogous to the above, we know that f has Galois group Sn and the splitting field K
of f is unramified over Q

(√
nn − (n − 1)n−1+nk

)
for all but finitely many choices of k. We also want to

show that Q
(√

nn − (n − 1)n−1+nk
)

has a Cm-unramified extension by the similar way. The discriminant
of f (x) can be written as follows:

nn − (n − 1)n−1+nk = −b2D

where D is a squarefree integer. Set A: = nn, B: = b2D, and C: = (n − 1)n−1+nk so that A + B = C. By the
similar argument in the above, under the assumption of the ABC conjecture, for a given ε > 0, for all
but finitely many (A, B, C), we have rad(ABC) > C1−ε . Set a = n(k + 1) − 1. We know that

n · rad(B) · (n − 1) ≥ rad(ABC) > C1−ε = (n − 1)a(1−ε).

It means that,

rad(B) > (n − 1)a(1−ε)−3 (n − 1)2

n
> (n − 1)a(1−ε)−3 = ((n − 1)a)1−ε−3/a > B1−ε−3/a.

In particular, for a > 12, we have rad(B) > B3/4. This implies that

B/rad(B) =
∏

p|B
pep−1 < B1/4
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Table 1. Numerical examples for n = 7, 8, 11, 12, 15, 16

n m k f (x) Gal(K/Q(
√−d)) CL(−d)

7 13 1 x7 − x − 71 A7 C13×17352

7 19 2 x7 − x − 72 A7 C19×2265609

7 25 3 x7 − x − 73 A7 C2 × C25×462766508

7 31 4 x7 − x − 74 A7 C2 × C2 × C2 × C2 × C31×11748043524

7 37 5 x7 − x − 75 A7 C2 × C2 × C37×17184049472416

7 43 6 x7 − x − 76 A7 C4 × C43×3529527988166436

7 49 7 x7 − x − 77 A7 C2 × C4 × C49×996646374538593224

8 15 1 x8 − 7x + 1 A8 C15×9444

8 23 2 x8 − 72x + 1 A8 C2 × C23×85502314

8 31 3 x8 − 73x + 1 A8 C2 × C2 × C2 × C2 × C31×18978581872

8 39 4 x8 − 74x + 1 A8 C4 × C39×30473144843060

8 47 5 x8 − 75x + 1 A8 C2 × C2 × C2 × C47×122165495694239114

11 21 1 x11 − x − 11 A11 C21×850416880

11 31 2 x11 − x − 112 A11 C2 × C2 × C6 × C31×14559528313494

11 41 3 x11 − x − 113 A11 C2 × C6 × C41×3368337361585347756

12 23 1 x12 − 11x + 1 A12 C2 × C23×4534229550

12 35 2 x12 − 112x + 1 A12 C2 × C2 × C35×9499707828478530

15 29 1 x15 − x − 15 A15 C2 × C29×2247764426365470

16 31 1 x16 − 15x + 1 A16 C2 × C2 × C31×22784561683366030

With the same development as in Case 1, we can deduce

(n − 1)a = C = A + B < D2 + D < (D + 1)2.

for all sufficiently large a. With the same idea as in Case 1, if we put k satisfying m|(n − 1 + nk) (which is
possible since m and n are coprime) and n − 1 + kn = a > 12, the class group of Q

(√
nn − (n − 1)n−1+kn

)

contains an element of order m under the assumption of the ABC conjecture.

4. An unconditional result

Although we have proven our Main Theorem under the assumption of the ABC conjecture, in special
cases, it is possible to prove it without this assumption. We will explain such a case in this section.

Theorem 4.1. Let n = 2� be a 2-power. Then there exist infinitely many imaginary quadratic fields
having an An × Cm-unramified extension where m is any odd integer.

Proof. Let us again consider the following polynomial:

f (X) = Xn − (n − 1)kX + 1. (4.1)

We know that the discriminant of f is of the form:

2n� − (n − 1)n−1+nk.

As we have already seen in the proof of the previous theorem, f (x) is irreducible and the Galois group
of the splitting field K of f is isomorphic to Sn for all but finitely many choices of k. By Theorem 2.3,
we also know that K is unramified over Q

(√
2n� − (n − 1)n−1+nk

)
. Since m is an odd integer, we can find

(infinitely many) k such that m|(n − 1 + nk
)
. Since n = 2� and n − 1 + nk is an odd integer, we know
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that 2n� − (n − 1)n−1+nk ≡ 1 (mod 8). By Theorem 2.5, the class group of the imaginary quadratic field
Q

(√
2n� − (n − 1)n−1+nk

)
contains an element of order n − 1 + nk, and hence one of order m.

5. Numerical examples

In this section, we will give several explicit examples of quadratic fields with An × Cm-unramified exten-
sions illustrating the proof of the Main Theorem. All computations in this section were carried out with
Magma (see [3]). The contents of Table 1 are described as follows (with the two cases depending on the
mod-4 residue of n):

n: an integer congruent to 3 (resp. 0) modulo 4,
k: an auxiliary integer,
m: the integer m = n + k(n − 1) (resp. m = n − 1 + nk),
f (x): the polynomial f (x) = xn − x − nk (resp. f (x) = xn − (n − 1)kx + 1),
K: the splitting field of f (x),
−d: the squarefree part of the discriminant of f (x).
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