EXPONENTIAL DICHOTOMY OF STRONGLY DISCONTINUOUS SEMIGROUPS

P. Preda and M. Megan

In this paper we give necessary and sufficient conditions for exponential dichotomy of a general class of strongly continuous semigroups of operators defined on a Banach space. As a particular case we obtain a Datko theorem for exponential stability of a strongly continuous semigroup of class C_{0} defined on a Banach space.

1. Introduction

Let X be a real or complex Banach space. The norm on X and on the space $L(X)$ of all bounded linear operators from X into itself will be denoted by $\|\cdot\|$. $T(t)$ will stand for a semigroup of linear operators on X which is of class C_{0}; that is, $T(t)$ is strongly continuous on $\mathbf{R}_{+}=[0, \infty)$ and $T(0) x=x$ for all x in X.

Throughout in this paper we suppose that the set

$$
\begin{equation*}
X_{1}=\left\{x \in X: T(\cdot) x \in L^{\infty}(X)\right\} \tag{1.1}
\end{equation*}
$$

is a closed complemented subspace of X. Here $L^{\infty}(X)$ denotes the Banach space of X-valued functions f almost defined on R_{+}, such that f is strongly measurable and essentially bounded. If X is a complementary

Received 19 June 1984.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 $\$$ A2. $00+0.00$.
subspace of X_{1} then we denote by P_{1} a projection along X_{2} (that is, $\left.P_{1} \in L(X), P_{1}^{2}=P_{1}, \quad \operatorname{Ker} P_{1}=X_{2}\right)$ and by $P_{2}=I-P_{1}$ a projection along X_{1}.

We also shall denote

$$
\begin{equation*}
T_{1}(t)=T(t) P_{1} \quad \text { and } \quad T_{2}(t)=T(t) P_{2} \tag{1.2}
\end{equation*}
$$

DEFINITION 1.1. The C_{0} semigroup $T(t)$ is said to be
(i) exponentially stable if and only if there are $N, \nu>0$ such that

$$
\begin{equation*}
\|T(t)\| \leq N e^{-\nu t} \quad \text { for all } \quad t \geq 0 ; \tag{1.3}
\end{equation*}
$$

(ii) exponentially dichotomic if and only if there exist $N_{1}, N_{2}, v>0$ such that

$$
\begin{equation*}
\left\|T_{1}(t) x\right\| \leq N_{1} e^{-\nu\left(t-t_{0}\right)}\left\|T_{1}\left(t_{0}\right) x\right\| \tag{1.4}
\end{equation*}
$$

and

$$
\begin{gather*}
\left\|T_{2}(t) x\right\| \geq N_{2} e^{\nu\left(t-t_{0}\right)}\left\|T_{2}\left(t_{0}\right) x\right\| \tag{1.5}\\
\text { for all } t \geq t_{0} \geq 0 \text { and } x \in X .
\end{gather*}
$$

Clearly, if $T(t)$ is exponentially dichotomic and $X_{1}=X$ (that is, $P_{2}=0$) then $T(t)$ is exponentially stable. In this case is well known the following theorem due to Datko (see [5] and [6]).

THEOREM 1.1. A necessary and sufficient condition that a strongly continuous semigroup $T(t)$ of class C_{0} defined on a Banach space X be exponentially stable is that for some $p \in[1, \infty)$ the integral

$$
\begin{equation*}
\int_{0}^{\infty}\|T(t) x\|^{p} d t<\infty \quad \text { for all } x \in X \tag{1.6}
\end{equation*}
$$

In this note the above result is extended in a natural manner to the general class of exponentially dichotomic C_{0} semigroups of linear
operators defined on a Banach space X.
The case $T(t)=\exp (A t)$, where A is a bounded linear operator has been considered in [2], [3], [4], [1] and [10]. The problem of exponential dichotony of C_{0}-semigroup on Banach spaces has also been studied in [9], [11] and [12].

2. Preliminary results

The following simple lemmas will be needed in the sequel in proving the main results.

LEMMA 2.1. Let $f, g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be two continuous functions.
(i) $I f$
(2.1) $\inf _{t \geq 0} g(t)<1$ and $f(t) \leq g\left(t-t_{0}\right] f\left(t_{0}\right)$ for alt $t \geq t_{0} \geq 0$
then there are $N, v>0$ such that

$$
\begin{equation*}
f(t) \leq N e^{-\nu\left(t-t_{0}\right)} f\left(t_{0}\right) \text { for all } t \geq t_{0} \geq 0 \tag{2.2}
\end{equation*}
$$

(ii) If
(2.3) $\sup _{t \geq 0} g(t)>1$ and $f(t) \geq g\left(t-t_{0}\right) f\left(t_{0}\right)$ for every $t \geq t_{0} \geq 0$, then there exist $N, \nu>0$ such that

$$
\begin{equation*}
f(t) \geq N e^{v\left(t-t_{0}\right)} f\left(t_{0}\right) \text { for all } t \geq t_{0} \geq 0 \tag{2.4}
\end{equation*}
$$

Proof. See [7].
In the sequel for $p \in[1, \infty)$ we denote by

$$
p^{\prime}= \begin{cases}\infty & , \text { if } p=1 \tag{2.5}\\ p /(p-1) & , \text { if } p>1\end{cases}
$$

LEMMA 2.2. For every $a>0$ there exists $b>0$ such that

$$
\begin{equation*}
e^{a t^{1 / p}} \geq b t^{1 / p^{\prime}} \text { for all } t \geq 0 \tag{2.6}
\end{equation*}
$$

Proof. It is easy to see that for

$$
b=\left(a p^{\prime} / p\right)^{p / p^{\prime}}
$$

the above inequality holds.
LEMMA 2.3. Let $\Delta=\left\{\left(t, t_{0}\right) \in \mathbb{R}_{+}^{2}: t \geq t_{0}\right\}, p \in[1, \infty)$ and let $f: \Delta \rightarrow \mathbf{R}_{+}$be a continuous function with the property that there exist c, $\alpha>0$ such that

$$
\begin{equation*}
\int_{t_{0}}^{t} f\left(s, t_{0}\right) d s \leq c\left(t-t_{0}\right)^{1 / p^{\prime}} f\left(t, t_{0}\right) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{t}^{t+1} f(u, t) d u \geq \alpha \tag{2.8}
\end{equation*}
$$

for all $t \geq t_{0}$. Then there are $N, v>0$ such that

$$
\begin{equation*}
f\left(t, t_{0}\right) \geq N e^{v\left(t-t_{0}\right)^{1 / p}} \text { for every } t \geq t_{0}+1 \tag{2.9}
\end{equation*}
$$

Proof. If we denote by
(2.10) $g\left(t, t_{0}\right)=\int_{t_{0}+1}^{t} f\left(s, t_{0}\right) d s$ and $h\left(t, t_{0}\right)=\frac{p}{c} \cdot\left(t-t_{0}\right)^{1 / p}$
then from the inequalities (2.7) and (2.8) we obtain

$$
\begin{equation*}
\alpha+g\left(t, t_{0}\right) \leq c\left(t-t_{0}\right)^{1 / p^{\prime}} \frac{\partial g\left(t, t_{0}\right)}{\partial t} \tag{2.11}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(-\alpha e^{-h\left(t, t_{0}\right)}\right) \leq \frac{\partial}{\partial t}\left(g\left(t, t_{0}\right) e^{-h\left(t, t_{0}\right)}\right) \tag{2.12}
\end{equation*}
$$

By integration on $\left[t_{0}+1, t\right]$ it follows that

$$
\begin{equation*}
\alpha e^{-p / c}-\alpha e^{-h\left(t, t_{0}\right)} \leq g\left(t, t_{0}\right) e^{-h\left(t, t_{0}\right)} \tag{2.13}
\end{equation*}
$$

and hence using the inequality (2.11) we obtain
(2.14) $\alpha e^{-p / c} e^{h\left(t, t_{0}\right)} \leq \alpha+g\left(t, t_{0}\right) \leq c\left(t-t_{0}\right)^{1 / p^{\prime}} \cdot f\left(t, t_{0}\right)$.

From Lemma 2.2 and the preceding relation it follows that there exists $N>0$ (independent of t and t_{0}) such that

$$
\begin{equation*}
f\left(t, t_{0}\right) \geq N e^{h\left(t, t_{0}\right) / 2} \text { for all } t \geq t_{0}+1 \tag{2.15}
\end{equation*}
$$

The lemma is proved.
LEMMA 2.4. If $T(t)$ is a C_{0} semigroup on a Banach space X then there exist $M>1, \omega>0$ such that
$\|T(t)\| \leq M e^{\omega t}$ for each $t \geq 0$,

$$
\begin{equation*}
\left\|T\left(t_{0}+1\right) x\right\| \leq M e^{\omega}\|T(t) x\| \leq M^{2} e^{2 \omega_{\| T}}\left\|\left(t_{0} x\right)\right\|, \tag{2.16}
\end{equation*}
$$

$$
M^{p} e^{\omega p} \cdot \int_{t_{0}}^{t_{0}+1}\|T(t) x\|^{p} d t \geq\left\|T\left(t_{0}+1\right) x\right\|^{p}
$$

and

$$
\begin{equation*}
\left\|T_{2}\left(t_{0}\right) x\right\|^{-p} \leq M^{p} e^{\omega p} \cdot \int_{t_{0}}^{t_{0}+1}\left\|T_{2}(t) x\right\|^{-p} d t \tag{2.19}
\end{equation*}
$$

for all $t_{0} \geq 0, x \in X, t \in\left[t_{0}, t_{0}+1\right]$ and $p \in[1, \infty)$.
Proof. It is well known (see, for example, [1], pp. 165-166) that there are $M>1$ and

$$
\begin{equation*}
\omega \geq \inf _{t \geq 0} \frac{\ln T(t)}{t} \tag{2.20}
\end{equation*}
$$

such that (2.16) holds.
From
(2.21)

$$
\left\|T\left(t_{0}+1\right) x\right\| \leq\left\|T\left(t_{0}+1-t\right)\right\|\|T(t) x\| \leq M e^{\omega_{\|}}\|T(t) x\|
$$

and
(2.22)

$$
\|T(t) x\| \leq\left\|T\left(t-t_{0}\right)\right\|\left\|T\left(t_{0}\right) x\right\| \leq M e^{\omega}\left\|T\left(t_{0}\right) x\right\|
$$

the relation (2.17) results.
The inequalities (2.18) and (2.19) follow immediately from (2.17). LEMMA 2.5. Let $T(t)$ be a C_{0} semigroup on the Banach space X and let P_{1} respectively P_{2} be the projection along the closed complemented subspace X_{1} defined by (1.1) respectively $X_{2}=X \ominus X_{1}$. Then we have that

$$
\begin{align*}
& T_{1}(t)=P_{1} T_{1}(t) \text { for every } t \geq 0, \tag{2.23}\\
& T_{2}(t) x \neq 0 \text { for all } t \geq 0 \text { and } x \neq X_{1},
\end{align*}
$$

and
(2.25) if $T_{1}(t) x \neq 0$ for every $t \geq 0$ then $T(t) x \neq 0$ for all $t \geq 0$.

Proof. For (2.23) it is sufficient to prove that the subspace X_{1} is an invariant subspace for $T(t)$.

Indeed, if $x \in X_{1}$ and $t \geq 0$ then from

$$
\begin{equation*}
\|T(s) T(t) x\|=\|T(t+s) x\| \leq\|T(t)\|\|T(s) x\| \leq M e^{\omega t} \sup _{s \geq 0}\|T(s) x\| \tag{2.26}
\end{equation*}
$$

it follows that $T(t) x \in X_{1}$.
If there exist $t \geq 0$ and $x \notin X_{1}$ such that $T_{2}(t) x=0$ then from

$$
\begin{equation*}
T(s) x=T_{1}(s) x \text { for all } s \geq t \tag{2.27}
\end{equation*}
$$

and $T_{1}(\cdot) x \in L^{\infty}(X)$ it follows that $x \in X_{1}$. This contradiction proves the property (2.24).

The implication (2.25) is obvious from the equality

$$
\begin{equation*}
X_{1} \cap X_{2}=\{0\} \tag{2.28}
\end{equation*}
$$

3. The main results

We are now ready to prove the following
THEOREM 3.1. Let $T(t)$ be a strongly continuous semigroup of
operators of class C_{0} defined on the Banach space X. Then $T(t)$ is exponentially dichotomic if and only if there exist $c, p \geq 1$ such that

$$
\begin{equation*}
\int_{0}^{t}\left\|T_{1}(t-s)\right\|^{p} d s \leq c^{p} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{t}^{\infty}\left\|T_{2}(u) x\right\|^{-p} d u \leq c^{-p} \cdot\left\|T_{2}(t) x\right\|^{-p} \tag{3.2}
\end{equation*}
$$

for all $t \geq 0$ and $x \in X$.
Proof. Necessity. We omit the simple verification (using Definition 1.1 (ii)) that if $T(t)$ is exponentially dichotomic then it satisfies the above inequalities (3.1) and (3.2).

Sufficiency. Suppose that the C_{0} semigroup $T(t)$ has the properties (3.1) and (3.2).

Let $t_{0} \geq 0, x \in X$ be fixed.
(i) Firstly, we suppose that

$$
\begin{equation*}
T_{1}(t) x \neq 0 \text { for all } t \geq 0 \tag{3.3}
\end{equation*}
$$

Let $f: \Delta \rightarrow R_{+}$be the function defined by

$$
\begin{equation*}
f\left(t, t_{0}\right)=\frac{1}{\| T_{1}\left(t-t_{0}\right) \pi} . \tag{3.4}
\end{equation*}
$$

From Lemma 2.4 it follows that there exist $M, \omega>0$ such that (3.5) $f(u, t) \geq e^{-\omega} / M\left\|P_{1}\right\|=\alpha$ for all $u \in[t, t+1]$ and $t \geq t_{0}$. Hence

$$
\begin{equation*}
\int_{t}^{t+1} f(u, t) d u \geq \alpha \tag{3.6}
\end{equation*}
$$

that is, the inequality (2.8) from Lemma 2.3 holds.
From Lemmas 2.4 and 2.5, using Hölder's inequality, we have
(3.7) $\left\|T_{1}\left(t-t_{0}\right)\right\| \int_{t_{0}}^{t} f\left(s, t_{0}\right) d s=\int_{t_{0}}^{t}\left\|T_{1}(t-s) T_{1}\left(s-t_{0}\right)\right\| f\left(s, t_{0}\right) d s$

$$
\leq \int_{t_{0}}^{t}\left\|T_{1}(t-s)\right\| d s \leq\left(\int_{t_{0}}^{t}\left\|T_{1}(t-s)\right\|^{p} d s\right)^{1 / p}\left(t-t_{0}\right)^{1 / p^{\prime}} \leq c\left(t-t_{0}\right)^{1 / p^{\prime}}
$$

This shows that the inequality (2.7) from Lemma 2.3 is verified.
By Lemma 2.3 there are $M_{1}, \lambda_{1}>0$ such that

$$
\begin{equation*}
\left\|T_{1}\left(t-t_{0}\right)\right\| \leq M_{1} e^{-\lambda_{1}\left(t-t_{0}\right)^{1 / p}} \text { for all } t \geq t_{0}+1 \tag{3.8}
\end{equation*}
$$

From this inequality and

$$
\begin{equation*}
\left\|T_{1}(t) x\right\| \leq\left\|T_{1}\left(t-t_{0}\right)\right\| \cdot\left\|T_{1}\left(t_{0}\right) x\right\| \tag{3.9}
\end{equation*}
$$

we obtain that there is $N>0$ such that
(3.10) $\quad\left\|T_{1}(t) x\right\| \leq N e^{-\lambda_{1}\left(t-t_{0}\right)^{1 / p}}\left\|T_{1}\left(t_{0}\right) x\right\|$, for all $t \geq t_{0}$.
(ii) Suppose now that

$$
\begin{equation*}
\text { there exists } s_{0}>0 \text { such that } T_{1}\left(s_{0}\right) x=0 \tag{3.11}
\end{equation*}
$$

Then

$$
\begin{equation*}
T_{1}(s) x=T_{1}\left(s-s_{0}\right) T_{1}\left(s_{0}\right) x=0 \text { for all } s \geq s_{0} \tag{3.12}
\end{equation*}
$$

Let $t_{x}>0$ such that $T_{1}\left(t_{x}\right) x=0$ and $T_{1}(t) x \neq 0$ for every $t<t_{x}$.

If $t \geq t_{0} \geq t_{x}$ or $t \geq t_{x} \geq t_{0}$ then $T_{1}(t) x=0$ and hence the inequality (3.10) holds.

If $t_{x} \geq t \geq t_{0} \geq 0$ then from the preceding case (3.10) is also verified.

From Lemma 2.1 it follows that there exist $N_{1}, \nu_{1}>0$ such that

$$
\begin{equation*}
\left\|T_{1}(t) x\right\| \leq N_{1} e^{-\nu_{1}\left(t-t_{0}\right)}\left\|T_{1}\left(t_{0}\right) x\right\| \tag{3.13}
\end{equation*}
$$

for all $t \geq t_{0} \geq 0$ and $x \in X$. This shows that the semigroup $T_{1}(t)$ is exponentially stable.

For $T_{2}(t)$ we consider the function $g:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}_{+}$defined by

$$
\begin{equation*}
g(t)=\int_{t}^{\infty}\left\|T_{2}(u) x\right\|^{-p} d u \tag{3.14}
\end{equation*}
$$

The inequality (3.2) shows that

$$
\begin{equation*}
c^{p} g(t) \leq-\frac{d g(t)}{d t} \tag{3.15}
\end{equation*}
$$

and hence, by integration, we obtain

$$
\begin{equation*}
g(t) \leq g\left(t_{0}\right) \cdot e^{\left(t_{0}-t\right) c^{p}} \text { for all } t \geq t_{0} \tag{3.16}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
g(t) e^{\left(t-t_{0}\right) c^{p}} \leq g\left(t_{0}\right) \leq e^{-p}\left\|T_{2}\left(t_{0}\right) x\right\|^{-p} \tag{3.17}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\int_{t}^{t+1}\left\|T_{2}(u) x\right\|^{-p} d u \cdot e^{\left(t-t_{0}\right) c^{p}} \leq e^{-p}\left\|T_{2}\left(t_{0}\right) x\right\|^{-p} \tag{3.18}
\end{equation*}
$$ for every $t \geq t_{0}$.

If we denote by $\alpha=M e^{\omega}$ then from Lerma 2.4 it follows that

$$
\begin{equation*}
\alpha^{-p}\left\|T_{2}(t) x\right\|^{-p} e^{\left(t-t_{0}\right) c^{p}} \leq c^{-p}\left\|T_{2}\left(t_{0}\right) x\right\|^{-p} \tag{3.19}
\end{equation*}
$$

and hence there is $N_{2}, v_{2}>0$ such that
(3.20) $\left\|T_{2}(t)_{x \|} \geq N_{2} e^{\nu_{2}\left(t-t_{0}\right)}\right\| T_{2}\left(t_{0}\right) x \|$ for all $t \geq t_{0} \geq 0$ and $x \in X$. If $v=\min \left\{v_{1}, v_{2}\right\}$ then from (3.13) and (3.20) it follows that the inequalities (1.4) and (1.5) hold and hence $T(t)$ is exponentially dichotomic.

THEOREM 3.2. The C_{0} semigroup $T(t)$ is exponentially dichotomic if and only if there are $c, p \geq 1$ such that

$$
\begin{equation*}
\int_{0}^{t}\left\|T_{1}(t-s) x\right\|^{p} d s \leq c^{p}\|x\|^{p} \tag{3.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{t}^{\infty}\left\|T_{2}(u) x\right\|^{-p} d u \leq c^{-p}\left\|T_{2}(t) x\right\|^{-p} \tag{3.22}
\end{equation*}
$$

for all $t \geq 0$ and $x \in X$.
Proof. Necessity is obvious from the preceding theorem.
Sufficiency. From the hypothesis (3.21) it results that

$$
\begin{equation*}
\int_{0}^{\infty}\left\|T_{1}(s) x\right\|^{p} d s \leq c^{p} \cdot\|x\|^{p} \quad \text { for all } \quad x \in X \tag{3.23}
\end{equation*}
$$

From Theorem 1.1 and (2.23) it follows that $T_{1}(t)$ is an exponentially stable semigroup. Hence there is $N_{1}, v_{1}>0$ such that
(3.24) $\left\|T_{1}(t) x\right\| \leq\left\|T_{1}\left(t-t_{0}\right)\right\| \cdot\left\|T_{1}\left(t_{0}\right) x\right\| \leq N_{1} e^{-v_{1}\left(t-t_{0}\right)}\left\|T_{1}\left(t_{0}\right) x\right\|$ for all $t \geq t_{0} \geq 0$ and $x \in X$.

Then using this inequality and the proof of the preceding theorem we obtain that $T(t)$ is exponentially dichotomic.

As a particular case (when $P_{2}=0$) we obtain Datko's result:
COROLLARY 3.1. Let $T(t)$ be a c_{0} semigroup of linear operators defined on the Bonach space X. The following statements are equivalent:
(i) $T(t)$ is exponentially stable;
(ii) there are $c, p \geq 1$ such that

$$
\begin{equation*}
\int_{0}^{\infty}\|T(t)\|^{p} d t \leq c^{p} \tag{3.25}
\end{equation*}
$$

(iii) there exist $c, p \geq 1$ such that

$$
\begin{equation*}
\int_{0}^{\infty}\left\|T^{(}(t) x\right\|^{p} d t \leq c^{p} \cdot\|x\|^{p} \quad \text { for } a Z Z \quad x \in X \tag{3.26}
\end{equation*}
$$

Proof. Is obvious from Theorems 3.1 and 3.2.
REMARK 3.1. In the proofs of Theorem 3.1 and that of the equivalence $(i) \Leftrightarrow$ ($i i$) from the preceding corollary we have not used Datko's theorem.

THEOREM 3.3. A necessary and sufficient condition for the C_{0} semigroup $T(t)$ to be exponentially dichotomic is the existence of positive constants m, c and $p \geq 1$ such that

$$
\begin{equation*}
\int_{t}^{\infty}\left\|T_{1}(u-t)\right\|^{p} d u \leq c^{p} \tag{3.27}
\end{equation*}
$$

$$
\begin{equation*}
\left\|T_{2}(t+1) x\right\| \geq m\left\|T_{2}(t) x\right\|, \tag{3.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\infty}\left\|T_{2}(s) x\right\|^{p} d s \leq c^{p}\left\|T_{2}(t) x\right\|^{p}, \tag{3.29}
\end{equation*}
$$

for all $t \geq 0$ and $x \in X$.
Proof. Necessity is a simple verification.
Sufficiency. From

$$
\begin{equation*}
\int_{0}^{t}\left\|T_{1}(t-s)\right\|^{p} d s=\int_{0}^{t}\left\|T_{1}(s)\right\|^{p} d s \leq \int_{t}^{\infty}\left\|T_{1}(u-t)\right\|^{p} d u \leq c^{p} \tag{3.30}
\end{equation*}
$$

and the proof of Theorem 3.1 it follows that the inequality (3.13) holds.
Let $t_{0} \geq 0$ and $x \in X$. Let now f be the real function

$$
\begin{equation*}
f: \mathbf{R}_{+} \rightarrow \mathbf{R}_{+}, \quad f(t)=\int_{0}^{t}\left\|T_{2}(s) x\right\|^{p} d s \tag{3.31}
\end{equation*}
$$

From the above inequality (3.29) we have that

$$
\begin{equation*}
f(t) \leq c^{p} \cdot \frac{d f(t)}{d t} \tag{3.32}
\end{equation*}
$$

and hence by integration it follows

$$
\begin{equation*}
e^{-c^{-p}\left(t-t_{0}\right) / c^{p}} f\left(t_{0}+1\right) \leq f(t) \leq c^{p} \cdot\left\|T_{2}(t) x\right\|^{p} \tag{3.33}
\end{equation*}
$$

for every $t \geq t_{0}+1$.
On the other hand from (2.18) and (3.29) it results that there exists $m>0$ such that

$$
\begin{align*}
f\left(t_{0}+1\right) & \geq \int_{t_{0}}^{t_{0}^{+1}}\left\|T_{2}(s) x\right\|^{p} d s \geq \alpha^{-p_{i}}\left\|r_{2}\left(t_{0}+1\right) x\right\|^{p} \tag{3.34}\\
& \geq m^{p} \alpha^{-p}\left\|T_{2}\left(t_{0}\right) x\right\|^{p}, \text { where } \alpha=m e^{\omega} .
\end{align*}
$$

Finally, we obtain

$$
\begin{equation*}
\left\|T_{2}(t) x\right\| \geq N_{3} e^{\nu_{2}\left(t-t_{0}\right)} \cdot\left\|T_{2}\left(t_{0}\right) x\right\|, \tag{3.35}
\end{equation*}
$$

for all $t \geq t_{0}+1$ and $x \in X$, where

$$
\begin{equation*}
N_{3}=\frac{m}{c} \cdot e^{-c^{-p} / p} \quad \text { and } \quad v_{2}=\frac{1}{p c^{p}} . \tag{3.36}
\end{equation*}
$$

If $t_{0} \leq t \leq t_{0}+1$ then from (2.17) and (3.35) we obtain
(3.37) $\left\|T_{2}(t) x\right\| \geq \frac{\left\|T_{2}\left(t_{0}+1\right) x\right\|}{\alpha} \geq \frac{N_{3} e^{\nu_{2}}}{\alpha}\left\|T_{2}\left(t_{0}\right) x\right\| \geq \frac{N_{3}}{\alpha} e^{\nu_{2}\left(t-t_{0}\right)} \cdot\left\|T_{2}\left(t_{0}\right) x\right\|$ and hence
(3.38) $\left\|T_{2}(t) x\right\| \geq \frac{N_{3}}{\alpha} e^{\nu_{2}\left(t-t_{0}\right)}\left\|T_{2}\left(t_{0}\right) x\right\|$ for all $t \geq t_{0} \geq 0$ and $x \in X$.

If $N_{2}=N_{3} / \alpha$ and $v=\min \left\{v_{1}, v_{2}\right\}$ then (1.4) and (1.5) are
satisfied and hence $T(t)$ is exponentially dichotomic.
COROLLARY 3.2. Let $T(t)$ be a C_{0} semigroup of linear operators defined on a Banach space X. Then $T(t)$ is exponentially dichotomic if and only if there exist $m, c>0$ and $p \geq 1$ such that

$$
\begin{align*}
& \int_{t}^{\infty}\left\|T_{1}(u-t) x\right\|^{p} d u \leq c^{p} \cdot\|x\|^{p}, \tag{3.39}\\
& \int_{0}^{t}\left\|T_{2}(s) x\right\|^{p} d s \leq c^{p} \cdot\left\|T_{2}(t) x\right\|^{p}, \tag{3.40}
\end{align*}
$$

and

$$
\begin{equation*}
\left\|T_{2}(t+1) x\right\| \geq m\left\|T_{2}(t) x\right\|, \tag{3.41}
\end{equation*}
$$

for all $t \geq 0$ and $x \in X$.
Proof. Similar to the proof of Theorem 3.2.

References

[1] A.V. Balakrishnan, Applied functional analysis (Applications of Mathematics, 3. Springer-Verlag, New York, Heidelberg, Berlin, 1976).
[2] R. Conti, "On the boundedness of solutions of ordinary differential equations", Funkcial. Ekvac. 9 (1966), 23-26.
[3] W.A. Coppel, Dichotomies in stability theory (Lecture Notes in Mathematics, 629. Springer-Verlag, Berlin, Heidelberg, New York, 1978).
[4] J.L. Dalecki and M.G. Krein, Stability of solutions of differential equations in Banach spaces (Translations of Mathematical Monographs, 43. American Mathematical Society, Providence, Rhode Island, 1974).
[5] R. Datko, "Extending a theorem of A.M. Liapunov to Hilbert space", J. Math. Anal. Appl. 32 (1970), 610-616.
[6] R. Datko, "Uniform asymptotic stability of evolutionary processes in a Banach space", SIAM J. Math. Anal. 3 (1973), 428-445.
[7] José Luis Massera and Juan Jorge Schäffer, "Linear differential equations and functional analysis, I", Ann. of Math. (2) 67 (1958), 517-573.
[8] José Luis Massera, Juan Jorge Schäffer, Linear differential equations and function spaces (Pure and Applied Mathematics, 21. Academic Press, New York and London, 1966).
[9] Mihail Megan and Petre Preda, "On exponential dichotory in Banach spaces", Bull. Austral. Math. Soc. 23 (1981), 293-306.
[10] Kenneth J. Palmer, "Two linear system criteria for exponential dichotomy", Ann. Mat. Pura Appl. (4) 124 (1980), 199-216.
[11] P. Preda and M. Megan, "Admissibility and dichotomy for C_{0}-semigroups", An. Univ. Timigoara Ser. Stint. Mat. 18 (1980), 153-168.
[12] Petre Preda and Mihail Megan, "Nonuniform dichotomy of evolutionary processes in Banach spaces", Bull. Austral. Math. Soc. 27 (1983), 31-52.

University of Timisoara,
Department of Mathematics,
Bul. V. Pârvan nr. 4,
1900 - Timisoara,
RS Romania.

