ON ANALYTIC FUNCTIONS WITH REFERENCE TO AN INTEGRAL OPERATOR

R. Parvatham and T.N. Shanmugam

Let $E=\{z:|z|<1\}$ and let

$$
H=\{\omega: \text { regular in } E, w(0)=0,|\omega(z)|<1, z \in E\} .
$$

Let $P(A, B)$ denote the class of functions in E which can be put in the form $(1+A w(z)) /(1+B w(z)),-1 \leq A<B \leq 1$, $w(z) \in H$. Let $S^{*}(A, B)$ denote the class of functions $f(z)$ of the form $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ such that $z f^{\prime}(z) / f(z) \in P(A, B)$. If $f(z) \in S^{*}(A, B)$ and $g(z) \in S^{*}(C, D)$ then, in this paper the radius of starlikeness of order $\beta(\beta \in[0,1))$ of the following integral operator

$$
F(z)=\frac{m+1}{(g(z))^{m}} \int_{0}^{z} t^{m-1} f(t) d t, m>1,
$$

is determined. Conversely, a sharp estimate is obtained for the radius of starlikeness of the class of functions

$$
f(z)=2^{-1}(g(z) F(z))^{\prime}
$$

where $g(z)$ and $F(z)$ belong to the class $S^{*}(A, B)$.

Received 24 June 1983.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/83 $\$ \mathrm{~A} 2.00+0.00$.

1. Introduction

Let S denote the family of functions $f(z)$ which is regular and univalent in the unit disc E and which satisfy the conditions $f(0)=0=f^{\prime}(0)-1$. Let $S^{*} \subset S$ denote the class of starlike functions, namely those members of S which map E onto a domain that is starlike with respect to the origin. Libera [6] showed that if $f(z) \in S^{*}$ then

$$
F(z)=\frac{2}{z} \int_{0}^{z} f(t) d t
$$

also belongs to S^{*}. The converse problem was treated by Livingston [7]. Bernadi [2] proved that, if $f(z) \in S^{*}$,

$$
F(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t
$$

also belongs to S^{*}.
We denote by $S^{*}(\alpha)$ the class of functions $f(z)$ defined in E, regular in E with normalization $f(0)=0=f^{\prime}(0)-1$ and $\operatorname{Re}\left\{z f^{\prime}(z) / f(z)\right\}>\alpha, \alpha \in[0,1)$. Karunakaran $[4]$ proved that if $f(z) \in S^{*}(\alpha)$ and $g(z) \in S^{*}(\gamma)$ for $\alpha, \gamma \in[0,1)$, then

$$
F(z)=\frac{2}{g(z)} \int_{0}^{z} f(t) d t
$$

is β starlike for $|z|<\sigma$ where σ is a function of α, β, γ.
The following class was defined and its properties were studied by Janowski [3].

DEFINITION 1. Let

$$
H=\{w: \text { regular in } E: w(0)=0,|w(z)|<1, z \in E\}
$$

Let $P(A, B)$ denote the class of functions in E which can be put in the form $(1+A w(z)) /(1+B w(z)),-1 \leq A<B \leq 1, w(z) \in H$. Let $S^{*}(A, B)$ denote functions of the form

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \text { such that } z f^{\prime}(z) / f(z) \in P(A, B) .
$$

Equivalently $S^{*}(A, B)$ denotes the class of functions

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

regular in the unit disc E and satisfying the conditions

$$
\frac{z f^{\prime}(z)}{f(z)} \propto \frac{1+A z}{1+B z}, \quad z \in E, \quad-1 \leq A<B \leq 1 .
$$

In this paper we determine the radius of β starlikeness of

$$
F(z)=\frac{m+1}{(g(z))^{m}} \int_{0}^{z} t^{m-1} f(t) d t, m>1
$$

where $f(z) \in S^{*}(A, B)$ and $g(z) \in S^{*}(C, D)$. In the last section we examine the converse problem and obtain a sharp result.

2. Lemmas

In this section we state some lemmas which will be used to establish our theorems.

LEMMA 1. Let $p(z) \in P(A, B)$. Then, for $|z| \leq r<1$,

$$
\frac{1-A r}{1-B r} \leq \operatorname{Re} p(z) \leq \frac{1+A r}{1+B r} .
$$

Proof. This follows from the fact that the function $\tau(z)=(1+A z) /(1+B z)$ maps the disc $|z| \leq r$ onto the interior of the circle with the line segment $[(1-A r) /(1-B r),(1+A r) /(1+B r)]$ as diameter and $p(z)$ is subordinate to $(1+A z) /(1+B z)$.

LEMMA 2 [4]. Suppose $p(z)=[1+A \omega(z)][1+B \omega(z)]^{-1}$ where $-1 \leq A<B \leq 1$ and $w(z) \in H$. Then, for $C \geq B$,

$$
\operatorname{Re}\{C p(z)+(A / p(z))\}-\frac{r^{2}|B p(z)-A|^{2}-|1-p(z)|^{2}}{\left(1-r^{2}\right)|p(z)|} \geq\left\{\begin{array}{lll}
p_{1}(r) & \text { for } & R_{0} \leq R_{1} \\
p_{2}(r) & \text { for } & R_{0} \geq R_{1}
\end{array}\right.
$$

where

$$
\begin{aligned}
& P_{1}(r)=C\left(\frac{1+A r}{1+B r}\right)+A\left(\frac{1+B r}{1+A r}\right), \\
& P_{2}(r)=\frac{2}{1-r^{2}}\left\{(1+A)^{\frac{1}{2}}\left[1+C-\left(D(1+C)+B^{2}+C\right) r^{2}+A\left(B^{2}+C\right) r^{4}\right]^{\frac{1}{2}}-1-B A r^{2}\right\},
\end{aligned}
$$

$$
R_{0}^{2}=\frac{(1+A)\left(1-A r^{2}\right)}{(1+C)-r^{2}\left(C+B^{2}\right)}
$$

and

$$
R_{1}=\frac{1+A r}{1+B r} .
$$

LEMMA 3 [4]. If $w(z) \in H$ and $p(z)=[1+A w(z)][1+B w(z)]^{-1}$ then

$$
\operatorname{Re}\left\{\frac{-z \omega^{\prime}(z)}{[1+A w(z)][1+B w(z)]}\right\}>G,
$$

where

$$
G=\frac{1}{B-A}\left\{\operatorname{Re}\left[\frac{A}{p(z)}+B p(z)\right\}-\frac{r^{2}|B p(z)-A|^{2}-|1-p(z)|^{2}}{\left(1-r^{2}\right)|p(z)|}-(B+A)\right\} .
$$

LEMMA 4 [5]. Let N and D be regular in E, D maps E onto a many sheeted starlike region. $N(0)=0=D(0), N^{\prime}(0)=D^{\prime}(0)=p$ and

$$
\frac{1}{p}\left[\frac{N^{\prime}(z)}{D^{\prime}(z)}\right) \in P(A, B)
$$

Then

$$
\frac{1}{p}\left(\frac{N(z)}{D(z)}\right\} \in P(A, B), \quad p \geq 1
$$

LEMMA 5. Let $p_{1}(z)$ and $p_{2}(z)$ belong to $P(A, B)$; then

$$
\frac{1}{2}\left(p_{1}(z)+p_{2}(z)\right) \in P(A, B)
$$

Proof. This follows easily from Bernadi's result [1].

3. Main theorems

THEOREM 1. Let $f(z) \in S^{*}(A, B)$ and $g(z) \in S^{*}(C, D)$ where

$$
-1 \leq A<B \leq 1 \text { and }-1 \leq C<D \leq 1 \text {. }
$$

Then the function $F(z)$ defined by

$$
F(z)=\frac{m+1}{(g(z))^{m}} \int_{0}^{z} t^{m-1} f(t) d t
$$

is starlike of order β, for $|z|<\sigma$ where σ is given by

$$
\sigma=\frac{L+\sqrt{L^{2}-(1-B) K}}{-K} \text { when } K<0, L>0
$$

where

$$
\begin{aligned}
& L=\frac{1}{2}\{(m-\beta)(D-B)+(D-A)+m(B-C)\} \\
& K=(m-\beta) B D-A D+m B C
\end{aligned}
$$

Proof. Let $J(z)=\int_{0}^{z} t^{m-1} f(t) d t$. Then $F(z)(g(z))^{m}=(m+1) J(z)$ taking the logarithmic derivatives

$$
\begin{aligned}
\frac{z F^{\prime}(z)}{F^{\prime}(z)} & =\frac{z J^{\prime}(z)}{J(z)}-m \frac{z g^{\prime}(z)}{g(z)} \\
& =m+\frac{z J^{\prime}(z)-m J(z)}{J(z)}-m \frac{z g^{\prime}(z)}{g(z)}
\end{aligned}
$$

Setting $N(z)=z J^{\prime}(z)-m J(z)$ and $D(z)=J(z)$ we have $N(0)=0=D(0)$. By a lemma due to Bernardi [2], $D(z)$ is a $m+1$ valent starlike for $m=1,2, \ldots$,

$$
\frac{N^{\prime}(z)}{D^{\prime}(z)}=\frac{z f^{\prime}(z)}{f(z)} \in P(A, B)
$$

Therefore, by Lemma 4 ,

$$
\frac{N(z)}{D(z)} \in P(A, B)
$$

Also, since $g \in S^{*}(C, D)$,

$$
\frac{z g^{\prime}(z)}{g(z)} \in P(C, D)
$$

Hence

$$
\frac{z F^{\prime}(z)}{F(z)}=m+p_{1}(z)-m p_{2}(z)
$$

where

$$
\begin{aligned}
& p_{1}(z)=\frac{z J^{\prime}(z)-m J(z)}{J(z)} \in P(A, B) \\
& p_{2}(z)=\frac{z g^{\prime}(z)}{g(z)} \in P(C, D)
\end{aligned}
$$

Using Lemma 1 ,

$$
\operatorname{Re}\left\{\frac{z F^{\prime}(z)}{F(z)}\right\} \geq m+\frac{1-A r}{1-B r}-m \frac{1+C r}{1+D r}
$$

Now $\operatorname{Re}\left\{z F^{\prime}(z) / F(z)\right\} \geq \beta$ whenever

$$
(m-B)+\frac{1-A r}{1-B r}+\frac{1+C r}{1+D r} \geq 0,
$$

that is,

$$
\begin{equation*}
K^{2}+2 L r+(1-\beta)>0 \tag{I}
\end{equation*}
$$

where

$$
\begin{aligned}
& K=(m-B) B D-A D+m B C, \\
& L=\frac{1}{2}\{(m-B)(D-B)+(D-A)+m(B-C)\} .
\end{aligned}
$$

In other words $\operatorname{Re}\left\{z P^{\prime}(z) / F(z)\right\} \geq \beta$ for $|z|=r<\sigma=\frac{L+\sqrt{L^{2}-(1-\beta) K}}{-K}$, where $K<0$ and $L>0$.

COROLLARY 1. When $g(z)=z$ in Theorem 1 we get

$$
F(z)=\frac{m+1}{z^{m}} \int_{0}^{z} t^{m-1} f(t) d t
$$

and

$$
\frac{z F^{\prime}(z)}{F(z)}=\frac{z J^{\prime}(z)-m J(z)}{J(z)} \in P(A, B)
$$

where $\mathcal{J}(z)$ is as defined in Theorem 1. Therefore $F \in S^{*}(A, B)$.
This result is a particular case of Theorem 1 in [5].
COROLLARY 2. When $m=1$ and $A=1-2 \alpha, B=-1, C=1-2 \gamma$, $D=-1$ in the above theorem, we get Theorem 1 of [4].

4. Converse problem

THEOREM 2. Let $g(z) \in S^{*}(A, B)$ and $F(z) \in S^{*}(A, B)$. Let us define $f(z)$ by $F(z) g(z)=2 \int_{0}^{z} f(t) d t$ or equivalently, $f(z)=2^{-1}(F(z) g(z))^{\prime} ;$ then for $|z|=r$,

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)} \geq\left\{\begin{array}{lll}
P_{1}(r) & \text { for } & R_{0} \leq R_{1}, \\
P_{2}(r) & \text { for } & R_{0} \geq R_{1},
\end{array}\right.
$$

where

$$
\begin{aligned}
P_{1}(r) & =\frac{1}{B-A}\left\{(3 B-2 A)\left(\frac{1+A r}{1+B r}\right)+A\left(\frac{1+B r}{1+A r}\right)-2 B\right\}, \\
P_{2}(r) & =\frac{2}{B-A}\left\{\left[\frac{(1+A)(1+3 B-2 A)\left(1-A r^{2}\right)}{1-r^{2}}-\frac{\left(B^{2}-1\right)\left(1-A r^{2}\right) r^{2}}{1-r^{2}}\right]^{\frac{1}{2}}-\left[\frac{1-A B r^{2}}{1-r^{2}}\right]-B\right\}, \\
R_{0}^{2} & =\frac{(1+A)\left(1-A r^{2}\right)}{(1+3 B-2 A)-r^{2}\left(1+3 B-2 A+B^{2}\right)}
\end{aligned}
$$

and

$$
R_{1}=\frac{1+A r}{1+B r} .
$$

These bounds are sharp for $R_{0} \leq R_{1}$.

Proof. By the definition of f we have

$$
2 f(z)=(F(z) g(z))^{\prime}=F^{\prime}(z) g(z)+F(z) g^{\prime}(z)
$$

$$
\begin{equation*}
\frac{z f(z)}{F(z) g(z)}=\frac{\frac{1}{2}}{2}\left(\frac{z F^{\prime}(z)}{F(z)}+\frac{z g^{\prime}(z)}{g(z)}\right) . \tag{2}
\end{equation*}
$$

Using Lemma 5, we get

$$
\begin{equation*}
\frac{z f(z)}{F(z) g(z)}=p(z) \in P(A, B) \tag{3}
\end{equation*}
$$

Hence $z f(z)=F(z) g(z) p(z)$; taking logarithmic derivatives we get

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\frac{z g^{\prime}(z)}{g(z)}+\frac{z F^{\prime}(z)}{F(z)}+\frac{z p^{\prime}(z)}{p(z)}-1 . \tag{4}
\end{equation*}
$$

Using (2) and (3) in (4),

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=2 p(z)+\frac{z p^{\prime}(z)}{p(z)}-1 \tag{5}
\end{equation*}
$$

Now

$$
p(z)=\frac{1+A w(z)}{1+B w(z)}
$$

for some $\omega(z)$ regular such that $\omega(0)=0$ and $|\omega(z)|<1, z \in E$. Therefore

$$
\frac{z p^{\prime}(z)}{p(z)}=-\frac{(B-A) z w^{\prime}(z)}{[1+A w(z)][1+B w(z)]}
$$

using Lemma 3 we get

$$
\operatorname{Re}\left\{\frac{z p^{\prime}(z)}{p(z)}\right\} \geq \frac{1}{B-A}\left\{\operatorname{Re}\left(\frac{A}{p(z)}+B p(z)\right\}-\frac{r^{2}|B p(z)-A|^{2}-|1-p(z)|^{2}}{\left(1-r^{2}\right)|p(z)|}-(B+A)\right\}
$$

Now
$\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}$
$=2 \operatorname{Re}(p(z))+\operatorname{Re}\left(\frac{z p^{\prime}(z)}{p(z)}\right)-1$,
$\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}$
$\geq 2 \operatorname{Re}(p(z))+\frac{1}{B-A}\left\{\operatorname{Re}\left(\frac{A}{p(z)}+B p(z)\right\}-\frac{r^{2}|B p(z)-A|^{2}-|1-p(z)|^{2}}{\left(1-r^{2}\right)|p(z)|}-(B+A)-1\right\}$
$\geq \frac{1}{B-A}\left\{\operatorname{Re}\left\{(3 B-2 A) p(z)+\frac{A}{p(z)}\right\}-\frac{r^{2}|B p(z)-A|^{2}-|1-p(z)|^{2}}{\left(1-r^{2}\right)|p(z)|}-2 B\right\} ;$
applying Lemma 2 with $C=3 B-2 A$ we get the required result. Taking the function $g_{1}(z), F_{1}(z)$ defined as

$$
\frac{z g_{1}^{\prime}(z)}{g_{1}(z)}=\frac{1+A w_{1}(z)}{1+B w_{1}(z)}=\frac{z F_{1}^{\prime}(z)}{F_{1}(z)}
$$

we see that the corresponding functions $z f_{1}^{\prime}(z) / f_{1}(z)$ attains the bound $P_{1}(r)$ for $w_{1}(z)=z$ at $z=r$ whenever $R_{0} \leq R_{1}$.

References

[1] S.D. Bernardi, "Special classes of subordinate functions", Duke Math. J. 33 (1966), 55-67.
[2] S.D. Bernardi, "Convex and starlike univalent functions", Trans. Amer. Math. Soc. 135 (1969), 429-446.
[3] W. Janowski, "Some extremal problems for certain families of analytic functions I", Ann. PoZon. Math. 28 (1973), 297-326.
[4] V. Karunakaran, "Certain classes of regular univalent functions", Pacific J. Math. 61 (1975), 173-182.
[5] G. Lakshma Reddy and K.S. Padmanabhan, "On analytic functions with reference to the Bernardi integral operator", Bull. Austral. Math. Soc. 25 (1982), 387-396.
[6] R.J. Libera, "Some classes of regular univalent functions", Proc. Amer. Math. Soc. 16 (1965), 755-758.
[7] A.E. Livingston, "On the radius of univalence of certain analytic functions", Proc. Amer. Math. Soc. 17 (1966), 352-357.

The Ramanujam Institute for Advanced Study in Mathematics,
University of Madras,
Madras 600 005,
India;

Department of Mathematics,
Anna University,
Madras 600 025,
India.

