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Abstract. The problem of optimizing the parameters of a laser pulse compressor consisting 

of four identical diffraction gratings is solved analytically. The goal of optimization is to 

obtain maximum pulse power, completely excluding both beam clipping on gratings and the 

appearance of spurious diffraction orders. The analysis is carried out in a general form for 

an out-of-plane compressor. Two particular “plane” cases attractive from a practical point 

of view are analyzed in more detail: a standard Treacy compressor (TC) and a compressor 

with an angle of incidence equal to the Littrow angle (LC). It is shown that in both cases the 

LC is superior to the TC. Specifically, for 160-cm diffraction gratings, optimal LC design 

enables 107 PW for XCELS and 111 PW for SEL-100 PW, while optimal TC design enables 

86 PW for both projects.  
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In 100-PW laser projects [1-9], where Nd:glass laser pulses with an energy of about 10 kJ are used 

for pumping, the output pulse energy is limited by the laser induced damage threshold of 

compressor diffraction gratings. The damage threshold of gratings by nanosecond pulses is much 

higher than by femtosecond ones [10]. Therefore, despite a less energy incident on the last grating 

than on the first one, the laser damage threshold of the last grating is of major importance. Thus, 

the maximum output energy 𝑊 is proportional to squared beam size 𝑑, threshold value of fluence 

𝑤𝑡ℎ (in the plane normal to the beam wave vector), reflection coefficient 𝑅 of the grating, and fill-

factor 𝜂 taking into account fluence inhomogeneity in the beam:    

𝑊 = 𝑅𝜂𝑤𝑡ℎ𝑑2.     (1) 

Here, we assume that the beam has a square cross section. Increasing 𝑤𝑡ℎ and 𝑅 is a technological 

task, that is beyond the scope of this paper. The fill-factor 𝜂 depends on the energy and spectral 

properties of the spatial noise of the beam, in particular, on rms and effective spatial frequency 

[11]. Both these parameters can be significantly reduced by using an asymmetric compressor [5, 

12-14] or a compressor with an out-of-plane geometry [15]. The purpose of this work is to search 

for the following compressor parameters: angle of incidence on the first grating 𝛼, distance 

between the gratings along the normal 𝐿, and groove density 𝑁 that allow obtaining the maximum 

value of 𝑊. Bearing in mind that 𝑤𝑡ℎ does not depend on the angle of incidence 𝛼 on the grating 

[16, 17], we will assume that 𝑤𝑡ℎ, 𝑅 , and 𝜂 are constants which do not depend on the compressor 

parameters. Thus, an optimal compressor design (𝛼, 𝐿, 𝑁) is a design that ensures a maximum 

value of 𝑑2. Note that in the expression (1) 𝑅 is to the power of one rather than four, as laser 

induced damage restrictions are important only for the last grating.  

The main restriction on increasing 𝑑 is the fact that on the second grating the beam size should not 

be larger than the grating length 𝐿𝑔. A standard compressor [18] consists of identical gratings, with 

the gratings of the first and second pair being antiparallel to each other, see Fig. 1a. We will further 
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call such a compressor a Treacy compressor (TC). TC is used in the vast majority of high-power 

lasers [19]. The maximization of 𝑑 was considered in [20] in the 𝜔0 ≫ Ω  approximation (𝜔0 is 

center frequency and Ω is bandwidth). For pulses with a duration less than 50 fs, this 

approximation is not accurate. However, in this case it can be readily shown that, for a given 

dispersion of a chirped pulse and given 𝑁, 𝑑 is proportional to 𝑐𝑜𝑠𝛼. Then, from (1) it can be 

found that for increasing 𝑊 it is necessary to decrease 𝛼. However, the decrease in 𝛼 makes 

decoupling impossible, i.e. the condition that the second grating must not overlap with the input 

beam cannot be fulfilled. It is obvious that decoupling is impossible if 𝛼 ≈ 𝛼𝐿, where 𝛼𝐿 is the 

Littrow angle. As will be shown below for a general case, i.e. outside the 𝜔0 ≫ Ω approximation, 

at certain parameters an optimal compressor is TC with 𝛼 < 𝛼𝐿.  

For 𝛼 ≈ 𝛼𝐿, decoupling may be provided employing an out-of-plane compressor [21] that is used, 

for example, for spectral beam combining [22] and for compressing narrow-beam pulses [23]. In 

this work we propose to use an out-of-plane compressor for increasing output power by decreasing 

𝛼 down to 𝛼 = 𝛼𝐿 and 𝛼 < 𝛼𝐿 inclusive. Both multilayer dielectric [24] and gold gratings [16, 24] 

in the out-of-plane geometry may have a reflection coefficient 𝑅 almost the same as in the out-of-

plane geometry. It is important to note that for 𝛼 = 𝛼𝐿 the out-of-plane compressor “turns out” to 

be plane again (Fig. 1 b), which greatly simplifies its experimental implementation. Such a 

compressor will be referred to as LC. LC has a number of additional advantages [24], one of which 

is the use of multilayer dielectric gratings the reflection band of which rapidly narrows with 

increasing (𝛼 − 𝛼𝐿), which makes them unfit for TC in wideband lasers [25]. An important issue 

of radiation polarization in the out-of-plane compressor was discussed in detail in Ref. [24]. 

Analytical expressions that allow finding the compressor parameters which provide maximum 

values of 𝑑 for both TC and LC will be obtained in Section 2. Optimal designs of both compressors 

for the XCELS project [4] will be discussed in detail in Section 3. An analogous optimization for 

the pulse parameters of the SEL-100 PW project [1, 3, 10] will be made in Section 4.  
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Fig. 1. TC (а) and LC (b). The second half of the compressor (third and fourth gratings) is absolutely 

symmetric to the first one, so it is not shown in the figure. The angle of reflection in the diffraction plane is 

𝛽 < 0, which explains the minus sign in the figure. The angle of reflection in the plane orthogonal to the 

diffraction plane is always equal to the angle of incidence 𝛾.  

II. MAXIMUM BEAM SIZE FOR TC AND LC 

We will first consider a general case of an out-of-plane compressor when the angles of incidence 

on the first grating in two planes 𝛾 and 𝛼 are arbitrary. TC (Fig. 1а) and LC (Fig. 1b) are its 

particular cases at 𝛾 = 0 and 𝛼 = 𝛼𝐿, respectively. Note that, both in TC and LC, the gratings of 

the first and second pairs are antiparallel (mirror) to each other in the planes orthogonal to incident 

beam. The case of non-parallel gratings is considered, for example, in  [26]. Maximum beam size 

will be determined using the following procedure. We choose the coordinate system (𝑥, 𝑦, 𝑧) as 

shown in Fig. 1: the 𝑦-axis is parallel to the direction of the grooves, and the 𝑥-axis in the (𝑥, 𝑧) 

diffraction plane is directed at an angle 𝛼 to the surface of the grating. The coordinate origin 

coincides with the point of incidence of the beam on the first grating. Let us find the spectral phase 

Ψ(𝜔, 𝑘𝑥, 𝑘у) accumulated in the beam on reflection from the first grating, propagation to the 

second grating, reflection from the second grating, and propagation to the 𝑧 = 0  plane. The first 

derivatives of Ψ with respect to 𝑘𝑥, 𝑘у up to the sign are equal to the beam coordinates 𝑋(𝜔) and 

𝑌(𝜔) in the 𝑧 = 0  plane. These coordinates will allow, for geometric reasons, to determine 

maximum beam size 𝑑 depending on the parameters of the compressor and the input pulse. The 

expression for Ψ is available in [18, 27]; in the chosen coordinate system it has the form: 
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Ψ(𝜔, 𝑘𝑥, 𝑘у) = 𝐿𝑘𝑧𝑥 (𝑐𝑜𝑠𝜃 + 𝑐𝑜𝑠 {𝛼 + 𝑎𝑡𝑎𝑛
𝑘𝑥

𝑘𝑧
}),      (2) 

where 𝑘𝑧𝑥
2 =

𝜔2

с2 − 𝑘𝑦
2, 𝑘𝑧

2 =
𝜔2

с2 − 𝑘𝑥
2 − 𝑘𝑦

2, and 𝜃  is the angle of reflection from the grating: 

𝑠𝑖𝑛𝜃(𝜔, 𝑘𝑥, 𝑘у) = −
2𝜋

𝑘𝑧𝑥
𝑁 + 𝑠𝑖𝑛 {𝛼 + 𝑎𝑡𝑎𝑛

𝑘𝑥

𝑘𝑧
}     (3) 

Hereinafter we assume the minus first diffraction order. In the chosen reference frame, the 

transverse wave vectors are related to the incidence angles 𝛼 and 𝛾 as 𝑘𝑥 = 0 , 𝑘у =
𝜔

с
𝑠𝑖𝑛𝛾. Taking 

into account the large beam size we neglect diffraction, i.e. the second derivatives of Ψ with respect 

to 𝑘𝑥, 𝑘у. Then, upon differentiation of (2) with allowance for (3) we find the derivatives of interest 

to us: 

     Ψ𝑘𝑥

′ (𝜔, 𝑘𝑥 = 0, 𝑘у =
𝜔

с
𝑠𝑖𝑛𝛾) = −𝑋(𝜔) = −𝐿

s𝑖𝑛(𝛽+𝛼)

𝑐𝑜𝑠𝛽
   (4) 

  Ψ𝑘𝑦

′ (𝜔, 𝑘𝑥 = 0, 𝑘у =
𝜔

с
𝑠𝑖𝑛𝛾) = −𝑌(𝜔) = −𝐿𝑡𝑎𝑛𝛾

1+cos(𝛽+𝛼)

𝑐𝑜𝑠𝛽
   (5) 

1

2
Ψ𝜔𝜔

′′ (𝜔 = 𝜔0, 𝑘𝑥 = 0, 𝑘у =
𝜔

с
𝑠𝑖𝑛𝛾) = 𝐺𝑉𝐷 = −

𝐿

𝜔0𝑐
𝑐𝑜𝑠𝛾

(𝑠𝑖𝑛𝛼−𝑠𝑖𝑛𝛽0)2

2𝑐𝑜𝑠3𝛽0
,  (6) 

where the angle of reflection 𝛽 = 𝛽(𝜔)  is found from 

        𝑠𝑖𝑛𝛽 = −
2𝜋𝑐

𝜔

𝑁

𝑐𝑜𝑠𝛾
+ 𝑠𝑖𝑛𝛼,          (7) 

and 𝛽0 = 𝛽(𝜔0). The expression for GVD (6) is derived in [21], and the expression  (7) can be 

found in [22, 28]. The expression for 𝐺𝑉𝐷 (6) with allowance for (7) is the same as for 𝐺𝑉𝐷 for 

ТС but with the substitution 𝐿 → 𝐿𝑐𝑜𝑠𝛾;  𝑁 → 𝑁/𝑐𝑜𝑠𝛾. From (2, 3) it can be readily shown that 

this remark is true for all frequency derivatives, i.e. for all dispersion orders. This circumstance 

can be used for high order dispersion management of the entire laser system, including stretcher, 

acousto-optics spectral phase control, and compressor. 
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We will consider only the case when the beam is not clipped on the second grating (the case of 

clipping was considered in detail in a number of works, e.g. [3, 5, 12, 29, 30], and will be briefly 

discussed in Section 4), so we will assume straight away that the beam size on the second grating 

coincides with its length 𝐿𝑔  and height 𝐻𝑔. Taking this into account, from Fig. 1 it can be found 

that  

𝐿𝑔 =
𝑑+|𝑋𝑏−𝑋𝑟|𝑐𝑜𝑠𝛾

𝑐𝑜𝑠𝛼
         (8) 

 𝐻𝑔 =
𝑑+|𝑌𝑏−𝑌𝑟|𝑐𝑜𝑠𝛾

𝑐𝑜𝑠𝛾
+ (𝑑 − |𝑋𝑏 − 𝑋𝑟|)𝑡𝑎𝑛𝛾𝑡𝑎𝑛𝛼,    (9) 

where 𝑋𝑏 = 𝑋(𝜔𝑏),  𝑋𝑟 = 𝑋(𝜔𝑟), 𝑌𝑏 = 𝑌(𝜔𝑏), 𝑌𝑟 = 𝑌(𝜔𝑟), and 𝜔𝑏,𝑟  are the high-frequency and 

low-frequency boundaries of the pulse spectrum. When deriving (8, 9), we took into account that 

𝑋𝑏,𝑟 and  𝑌𝑏,𝑟 are the beam coordinates in the plane perpendicular to the z axis, but not in the plane 

normal to the beam, and also that the gratings are tilted in two planes (second term in (9)). From 

(8, 9) with allowance for (6, 4, 5) we obtain 

   𝐿𝑔 =
𝑑

𝑐𝑜𝑠𝛼
+ 𝐿𝑑𝑖𝑠𝑝

1

𝑐𝑜𝑠𝛾

2𝑐𝑜𝑠3𝛽0

(𝑠𝑖𝑛𝛼−𝑠𝑖𝑛𝛽0)2
|(𝑡𝑔𝛽𝑏 − 𝑡𝑔𝛽𝑟)|  (10) 

𝐻𝑔 = 𝑑 (
1+𝑡𝑎𝑛𝛼𝑠𝑖𝑛𝛾

𝑐𝑜𝑠𝛾
) + 𝐿𝑑𝑖𝑠𝑝

2𝑐𝑜𝑠3𝛽0|𝑡𝑎𝑛𝛾|

(𝑠𝑖𝑛𝛼−𝑠𝑖𝑛𝛽0)2 {
1

𝑐𝑜𝑠𝛾
|

1+cos(𝛽𝑏+𝛼)

𝑐𝑜𝑠𝛽𝑏
−

1+cos(𝛽𝑟+𝛼)

𝑐𝑜𝑠𝛽𝑟
| − 𝑠𝑖𝑛𝛼|(𝑡𝑔𝛽𝑏 −

𝑡𝑔𝛽𝑟)|}     (11) 

where 𝐿𝑑𝑖𝑠𝑝 = |GVD|𝜔0𝑐, and 𝛽𝑏 = 𝛽(𝜔𝑏), 𝛽𝑟 = 𝛽(𝜔𝑟). The absence of beam clipping along the 

𝑥-coordinate leads to limitations on the beam size 𝑑, which follows from (10):  

𝑑 < 𝑑𝑔 = (𝐿𝑔 − 𝐿𝑑𝑖𝑠𝑝
1

𝑐𝑜𝑠𝛾

2𝑐𝑜𝑠3𝛽0

(𝑠𝑖𝑛𝛼−𝑠𝑖𝑛𝛽0)2
|𝑡𝑎𝑛𝛽𝑏 − 𝑡𝑎𝑛𝛽𝑟|) 𝑐𝑜𝑠𝛼.   (12) 

This expression is identical for TC and LC. In the 𝜔0 ≫ Ω approximation, (12) transforms to the 

expression obtained in [20] under this approximation. The second limitation on 𝑑 is the need to 

ensure decoupling of the beams, i.e. non-overlapping of the second grating with the incident beam. 
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For TC, decoupling is attained in the direction of the 𝑥-axis (Fig. 1a). Obviously, for this the 

minimum beam displacement |𝑋𝑚𝑖𝑛 | should be larger than the beam size 𝑑 plus the minimum 

required technological gap 𝑔: 

|𝑋𝑚𝑖𝑛| > 𝑑 + 𝑔.        (13) 

For 𝛼 > 𝛼𝐿 (the case in Fig. 1а), 𝑋𝑚𝑖𝑛 = 𝑋𝑟, and for 𝛼 < 𝛼𝐿, vice versa, 𝑋𝑚𝑖𝑛 = 𝑋𝑏. Taking this 

into account, from (4, 13) we obtain for TC the following expression 

   𝑑 < 𝑑𝑖 = 𝐽𝐿𝑑𝑖𝑠𝑝 − 𝑔        (for TC),   (14) 

where 

𝐽 = {

s𝑖𝑛(𝛽𝑟+𝛼)

𝑐𝑜𝑠𝛽𝑟

2𝑐𝑜𝑠3𝛽0

(𝑠𝑖𝑛𝛼−𝑠𝑖𝑛𝛽0)2 𝑓𝑜𝑟 𝛼 > 𝛼𝐿

|s𝑖𝑛(𝛽𝑏+𝛼)|

𝑐𝑜𝑠𝛽𝑏

2𝑐𝑜𝑠3𝛽0

(𝑠𝑖𝑛𝛼−𝑠𝑖𝑛𝛽0)2 𝑓𝑜𝑟 𝛼 < 𝛼𝐿

 .                              (15) 

The expression analogous to (14) was presented in [20] in different notation. For LC, decoupling 

occurs in the direction of the 𝑦-axis and requires that the minimum beam displacement |𝑌𝑚𝑖𝑛 |𝑐𝑜𝑠𝛾 

should be larger than (𝑑 + 𝑔). Since the gratings are tilted in two planes, then strictly speaking, 𝑔 

is a function of the angles 𝛼 and 𝛾, but further for simplicity we will assume 𝑔 = 𝑐𝑜𝑛𝑠𝑡. The most 

stringent condition for decoupling is for frequency 𝜔𝑏: |𝑌𝑏|𝑐𝑜𝑠𝛾 > 𝑑 + 𝑔. With this taken into 

account, from (5) we obtain  

𝑑 < 𝑑𝑖 = 𝐼𝐿𝑑𝑖𝑠𝑝 − 𝑔      (for LC),        (16) 

where 

 𝐼 = |𝑡𝑎𝑛𝛾|
1+cos(𝛽𝑏+𝛼)

𝑐𝑜𝑠𝛽𝑏

2𝑐𝑜𝑠3𝛽0

(𝑠𝑖𝑛𝛼−𝑠𝑖𝑛𝛽0)2
.     (17) 

In addition to meeting the conditions (12) and (14, 16), it is demanded that there be no diffraction 

orders other than the minus first one. This condition is always more stringent for radiation with 
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frequency 𝜔𝑏. Let us introduce the function 𝛱(𝛼), which is equal to zero if at least one of these 

diffraction orders is  

𝛱(𝛼) = {
0 𝑖𝑓 𝑠𝑖𝑛𝛼 < 1 −

2𝜋𝑐

𝜔𝑏

𝑁

𝑐𝑜𝑠𝛾
  𝑜𝑟 𝑠𝑖𝑛𝛼 >

4𝜋𝑐

𝜔𝑏

𝑁

𝑐𝑜𝑠𝛾
− 1 

1 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
 .    (18) 

The two conditions in the top line correspond to the first and minus second order of diffraction, 

respectively. Thus, the maximum beam size 𝐷, determined by simultaneous fulfillment of the three 

above conditions, has the form: 

𝐷 = 𝑚𝑖𝑛{𝑑𝑔; 𝑑𝑖} ∙ 𝛱(𝛼),     (19) 

where 𝑑𝑔 and 𝛱(𝛼)   are found from (12) and (18) for both compressors, and 𝑑𝑖 from (14) for TC 

and from (16) for LC. Note that the above expressions for LC are valid for any out-of-plane 

compressor, i.e. for any angle 𝛼, as we have not used the condition 𝛼 = 𝛼𝐿 when deriving these 

expressions.   

It is convenient to conduct further discussion on the example of specific parameters of a 

compressed pulse, which will be addressed in the next two sections. Here, for reference we provide 

useful formulas for 𝐿 and 𝛼𝐿 that follow from (6) and (7): 

𝐿 = |GVD|𝜔0𝑐
1

𝑐𝑜𝑠𝛾

2𝑐𝑜𝑠3𝛽0

(𝑠𝑖𝑛𝛼−𝑠𝑖𝑛𝛽0)2    (20) 

𝑠𝑖𝑛𝛼𝐿 =
𝜋𝑐

𝜔0

𝑁

𝑐𝑜𝑠𝛾
 .      (21) 

 

III. OPTIMIZATION OF TC AND LC FOR XCELS PROJECT  

Let us consider the parameters for the XCELS project [4]: 𝐿𝑔 = 138 cm , 𝜆0 = 910 nm, Δ𝜆 =

150 nm, 𝑔 = 2 cm, and 2GVD=-4.4 ps2. Here, 2GVD is the dispersion of two grating pairs, i.e. 
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like above, GVD is the dispersion of one grating pair. As an example, the dependence of a number 

of parameters on 𝛼 for 𝑁 = 1050/mm is plotted in Fig. 2. The yellow line shows the Littrow 

angle for clarity. The green curve 𝑑𝑔 (12) corresponds to the restrictions on the beam size imposed 

by the condition of the absence of beam clipping. The blue curve 𝑑𝑖 corresponds to the restrictions 

on the beam size imposed by the need for decoupling in the diffraction plane for TC (14) (Fig. 1a) 

and in the orthogonal plane for the out-of-plane compressor (16) (Fig. 1b). The black meander 

shows the range of angles in which there are no other diffraction orders (18): the first order is 

possible to the left of the meander, and the minus second order to the right. Finally, the red dashed 

curve combines the three above restrictions for the 𝐷(𝛼) relation (19). The maximum value of this 

curve corresponds to the maximum beam size (at N=1050/mm) and, therefore, the maximum 

output energy and pulse power after the compressor. The behavior of the curve 𝐷(𝛼) greatly 

depends on 𝑁 for both TC and LC (Fig. 3). The curves in Fig. 3а (for ТС) have two local maxima. 

At large 𝑁 the global maximum is at 𝛼 > 𝛼𝐿, and at small 𝑁 at 𝛼 < 𝛼𝐿 . 

a)    b)   

Fig. 2. Restrictions on maximum beam size at 𝐿𝑔 = 138 сm, N=1050/mm for TC (a) and for out-of-plane compressor 

at 𝛾 = 13° (b): green curve for 𝑑𝑔 (12) – no beam clipping on the grating; blue curve for 𝑑𝑖 (14), (16) – decoupling 

needed; black meander 𝛱(𝛼) (18) – range of angles without other diffraction orders (18): the first order is possible to 

the left of the meander and the minus second order to the right; red dashed curve combines all restrictions and shows 

𝐷(𝛼) (19); yellow line shows the Littrow angle for clarity. 
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a)   b)  

Fig. 3. Maximum beam size 𝐷(𝛼) for TC (a) and for out-of-plane compressor (b) for 𝐿𝑔 = 138 сm and N=950/mm 

(blue), N =1200/mm (green), N=1400/mm (red). 

 

The parameters of an out-of-plane compressor can be optimized in a wide range of angles 𝛼, 

including 𝛼< 𝛼𝐿. All the above expressions are valid for any 𝛼. In what will follow we will restrict 

consideration to the case of LC (𝛼 = 𝛼𝐿, Fig. 1b) that is interesting from the practical point of 

view. Recently, the possibility of developing gratings having length 𝐿𝑔 = 160 cm  and parameters 

of a compressor with such gratings have been discussed in the literature [5, 16]. Here, we will find 

parameters of the optimal compressor for XCELS for two options: 𝐿𝑔 = 138 cm  and  𝐿𝑔 =

160 cm.  

The maximum size of the beam 𝐷, both in LC and TC, depends on two parameters: 𝑁 and 𝛼 for 

TC and 𝑁 and 𝛾 for LC. For each 𝑁 there exists an optimal value of the angle 𝛼𝑜𝑝𝑡 or 𝛾𝑜𝑝𝑡 at which 

𝐷 has a maximum. The relations 𝐷𝑜𝑝𝑡(𝑁) = 𝐷(𝑁, 𝛼𝑜𝑝𝑡) for TC and 𝐷𝑜𝑝𝑡(𝑁) = 𝐷(𝑁, 𝛾𝑜𝑝𝑡) for 

LC are shown in Fig. 3а,b by triangles for 𝐿𝑔 = 138 cm and by squares for 𝐿𝑔 = 160 cm. For 

𝐿𝑔 = 138 cm, the maximum value of the beam size 𝐷𝑚 is the same for LC and TC. For TC, 

𝐷𝑜𝑝𝑡(𝑁)  has a well pronounced maximum at 𝑁 = 950/mm, whereas for LC, conversely, a 

plateau in the 𝑁 = (1000 … .1250)/mm range. This is an advantage of LC, since it gives freedom 

to choose N. The choice of a specific value of N may be made, for example, for reasons of a higher 

efficiency, a higher laser induced damage threshold of the grating, etc. Note that 𝐷𝑚=78 cm is 
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much larger than the beam diameter in the initial XCELS design (see Table 1). An analogous 

plateau in the 𝑁 = (950 … .1150)/mm range is observed in the 𝐷𝑜𝑝𝑡(𝑁) function for LC at 𝐿𝑔 =

160 cm. In this case, LC is obviously more preferable, since it enables a larger value of 𝐷𝑚: 96 cm 

versus 86 cm for TC.  

a)  b)  

Fig. 4. Curves for compressor parameters for XCELS for TC (a) and LC (b) with grating length 𝐿𝑔 = 138 cm  (blue) 

and 𝐿𝑔 = 160 cm  (red). Squares and triangles – beam size 𝐷𝑜𝑝𝑡  at optimal angles 𝛼 and 𝛾, circles and diamonds – 

difference between incidence angle in the diffraction plane and Littrow angle (𝛼 − 𝛼𝐿)  (а) and incidence angle in the 

plane orthogonal to the diffraction plane 𝛾 (b); plus signs and asterisks (b) – grating height 𝐻𝑔.    

 

The circles and diamonds in Fig. 4a correspond to the dependence of (𝛼 − 𝛼𝐿) on 𝑁. It is clearly 

seen that for large 𝑁, 𝛼 > 𝛼𝐿, which corresponds to a standard compressor design for high-power 

lasers. At the same time, for small 𝑁, maximum beam size 𝐷𝑚 is attained at 𝛼 < 𝛼𝐿. This is also 

well seen in Fig. 3a (left maximum in the blue curve above the right maximum). We are not aware 

of the usage of ТС with 𝛼 < 𝛼𝐿 in high-power lasers. The circles and diamonds in Fig. 4b show 

𝛾(𝑁) at which 𝛼 = 𝛼𝐿. In the region of the 𝐷𝑜𝑝𝑡(𝑁) plateau, i.e. at 𝑁 = (950 … .1200)/mm, 𝛾 =

10° … 20°, which falls within the range where the efficiency of the gratings almost does not 

decrease [16, 24].  

Table 1. Compressors parameters  

 
XCELS 

  𝜆 = (910 ± 75) nm  

SEL-100 PW 

𝜆 = (925 ± 100) nm 
 

𝐿𝑔 = 138 cm 𝐿𝑔 = 160 сm 𝐿𝑔 = 160 cm  
TC ([4]) TC (new) LC TC LC TC LC 

𝑁, 1/mm 1200 950 1100 950 1000 1000 1100 
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𝛼, degree 46.2 12.2 30.5 36.0 27.4 38.8 31.3 

𝛾, degree 0 0 11.6 0 11.2 0 14.8 

𝐷𝑚, cm 66 78 78 86 96 75 85 

𝐻𝑔, cm 66 78 94 86 112 75 110 

𝑊𝑎, J 1006 1410 1410 1720 2130 1284 1670 

𝜏, fs 20 20 20 20 20 15 15 

𝑃, PW 50 71 71 86 107 86 111 
a) given that 𝑅𝜂𝑤𝑡ℎ = 0.231 𝐽/cm2 in the plane normal to the beam 

 

It is worth noting the LC drawback: the grating height 𝐻𝑔 is larger than the beam size. The dashed 

curves in Fig. 4b show 𝐻𝑔(𝑁) plotted by the expression (11). At the same time, the increase in 𝐻𝑔 

required for LC is not so great – compare the curves for 𝐻𝑔(𝑁) and 𝐷𝑜𝑝𝑡(𝑁), and may well be 

implemented in practice. In any case, 160cm-long gratings have a height of about 100cm, which 

is just a little bit smaller than the requirements for LC for XCELS and SEL-100 PW, see Table 1. 

Still another LC drawback is that in a general case the choice of input beam polarization is 

nontrivial. This issue was studied in detail in [24]. From the analysis made in [24] it follows that 

vertical incident polarization, when the field is normal to the direction of the grooves, is optimal 

(Fig. 1b). The experiment [24] carried out at 𝛾 = 15° showed that in this case the reflection 

coefficient of one grating R and the efficiency of the entire compressor differ negligibly from the 

corresponding parameters at 𝛾 = 0. These results were obtained for a wavelength of 800 nm and 

N = 1480/mm; they need clarification for other wavelengths and groove densities.  

The main parameters of TC and LC for the XCELS project are presented in Table 1. For 

comparison of different designs, it also contains values of maximum beam energy 𝑊 calculated 

by the expression (1), given that 𝑅𝜂𝑤𝑡ℎ = 0.231 J/сm2, which corresponds to 𝑅 = 0.92 and to 

the value of safe fluence 𝜂𝑤𝑡ℎ =0.251 J/сm2 in the plane normal to the beam, i.e. 0.174 J/cm2 on 

the grating surface at 𝛼 = 46° [4]. Note that this is a rather conservative estimate, since gratings 

with 𝑤𝑡ℎ = 0.4 J/cm2 and 𝑤𝑡ℎ = 0.57 J/сm2  in the plane normal to the beam are reported in [31] 

and [16], and 𝜂 = 1.31 [4, 10] or 𝜂 = 1.41 [5] are considered in the literature for 𝜂. The FTL pulse 
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in XCELS has a duration of 17 fs, whereas the values of maximum power in Table 1 are given for 

a 20 fs pulse that is more real in practice. It is clear from the table that the new TC and LC designs 

with a grating length of 138 cm allow increasing the output power by a factor of 1.42, i.e. up to 

71 PW. With the use of 160х112-cm gratings in LC, over 100 PW may be achieved. 

 

IV. COMPRESSOR FOR SEL-100 PW  

Let us consider the parameters for the SEL-100 PW project [1, 3, 10, 32]: 𝐿𝑔 = 160 cm , 2GVD=-

4.2 ps2, 𝜆0 = 925 nm, Δ𝜆 = 200 nm, and 𝑔 = 2 cm. For these values, the optimal parameters for 

TC and LC are listed in Table 1. Since the pulse spectrum width in the SEL-100 PW is 1.33 times 

larger than in XCELS, for a correct comparison we assume the 15-fs pulse duration to be 1.33 

times shorter than in XCELS. It is seen from the table that, for a grating size of 160x75 cm, the 

optimal design of the TC provides an output power of 86 PW. In this case, the angle of incidence 

𝛼 differs from the Littrow angle only by 11.5 degrees. LC allows achieving a significantly higher 

power of 111 PW with 160x110-cm gratings. The angle γ in this case, despite being larger than in 

the other designs presented in Table 1, still falls within the range in which the grating efficiency 

almost does not reduce [16, 24].  

It is important to note that the analysis made in this work completely excludes beam clipping by 

gratings. The design of the two-grating compressor for the SEL-100 PW presented in [5] implies 

strong clipping. This leads to three effects that reduce the focal intensity: pulse stretching due to 

narrowing of the spectrum, loss of radiation energy, and deterioration of focusability. In the 

example numerically calculated in [5], the losses were approximately 11%, 7.8% and 15%, i.e. 

more than 35% in total. It is worthy of note that these losses cannot be compensated by increasing 

pulse energy at the compressor input, as clipping does not reduce fluence on the last grating. 
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Therefore, according to (1) the compressor [5] enables 35% lower focal intensity than a 

compressor without clipping for the same values of 𝑤𝑡ℎ, 𝑅, 𝜂, and 𝑑.  

Comparison of the compressor parameters for XCELS and SEL-100 PW with 160-cm long 

gratings shows that for TC the maximum achievable power is the same – 86 PW; whereas for LC 

the SEL-100 PW power is 4% higher – 111 PW versus 107 PW. However, from a practical point 

of view, the XCELS option is preferable, since for a narrower pulse spectrum, the requirements 

for both the compressor gratings and the rest of the optics are lower. At the same time, XCELS 

requires 1.33 times higher pulse energy, hence, DKDP crystals with √1.33 = 1.15 times larger 

size are required. 

All spatio-temporal phenomena in the out-of-plane compressor are the same as in the Treacy 

compressor if the compressors are symmetric: 𝐿2 = 𝐿1; 𝑁2 = 𝑁1; α2 = α1;  γ2 = γ1, where the 

indices “1” and “2” correspond to the first and second grating pairs. All the compressor variants 

discussed above are symmetric. At the same time, they can be easily modified into asymmetric 

compressors that ensure reduction of fluence fluctuations due to the time delay of high-frequency 

spatial harmonics [13, 15] or spatial dispersion of the output beam [5, 12, 14]. In asymmetric 

compressors, grating pairs differ from each other: 𝐿2 ≠ 𝐿1 [5, 12, 14]; 𝑁2 ≠ 𝑁1, 𝛼2 ≠ 𝛼1 [13]; 

𝛾2 ≠ 𝛾1 [15]. Note that 𝛾2 and 𝛾1 can have not only different absolute values, but also signs. For 

example, LC with 𝛾2 = −𝛾1, in which gratings of the first and second pairs are parallel in the y-

plane and antiparallel (mirror) in the x-plane, are 2 times shorter and 2 times wider than for the 

case 𝛾2 = 𝛾1. For 𝛾1 ≈ 10°, fluence fluctuations are radically suppressed. The drawback of such 

a compressor is an additional increase in the grating height 𝐻𝑔. 

 

V. CONCLUSION  
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Since in high-power femtosecond lasers the output pulse energy is limited by the laser induced 

damage threshold of the last diffraction grating of the compressor, the optimal compressor design 

is the one ensuring maximum size of the output beam. For given parameters of a chirped pulse 

(central frequency, bandwidth, GVD) and a given diffraction grating length 𝐿𝑔, an analytical 

expression has been obtained for the maximum beam size 𝐷, at which both beam clipping on the 

gratings and the appearance of spurious diffraction orders are completely excluded. Using this 

expression, it is easy to find optimal compressor parameters that allow obtaining maximum D: the 

distance between the gratings along the normal L, the groove density N, the angle of incidence on 

the first grating in the diffraction plane α, and the angle of incidence on the first grating outside 

the diffraction plane γ. 

The analysis was performed in a general form for an out-of-plane compressor, i.e. for arbitrary 

values of the angles 𝛼 and 𝛾. Two particular “plane” cases attractive for practical reasons were 

considered: a standard Treacy compressor (𝛾 = 0, Fig. 1а) and a Littrow compressor with an 

incidence angle equal to the Littrow angle (𝛼 = 𝛼𝐿, Fig. 1а). The Littrow compressor almost 

always ensures a larger value of 𝐷 than the Treacy compressor. For the TC compressor, 𝐷(𝑁) has 

a well pronounced maximum determining the choice of 𝑁 (Fig. 4а). For LC, 𝐷(𝑁) has a form of 

a plateau (Fig. 4b), which allows choosing 𝑁 within this plateau for technological reasons: the 

larger the reflection coefficient, the higher the laser damage threshold.  

Optimal TC and LC designs that enable a substantial output power increase (by tens of percent) 

were calculated for the pulse parameters of the XCELS and SEL-100 PW projects. In particular, 

for 160-cm long diffraction gratings, the optimal TC design allows obtaining 86 PW for both 

projects, and the optimal LC design 107 PW and 111 PW for XCELS and SEL-100 PW, 

respectively.  
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Figures and tables 

    
 

Fig. TC (а) and LC (b). The second half of the compressor (third and fourth gratings) is 

absolutely symmetric to the first one, so it is not shown in the figure. The angle of reflection in the 

diffraction plane is 𝛽 < 0, which explains the minus sign in the figure. The angle of reflection in 

the plane orthogonal to the diffraction plane is always equal to the angle of incidence 𝛾. 

a)    b)   

Fig. 2. Restrictions on maximum beam size at 𝐿𝑔 = 138 сm, N=1050/mm for TC (a) and for out-

of-plane compressor at 𝛾 = 13° (b): green curve for 𝑑𝑔 (12) – no beam clipping on the grating; 

blue curve for 𝑑𝑖 (14), (16) – decoupling needed; black meander 𝛱(𝛼) (18) – range of angles 

without other diffraction orders (18): the first order is possible to the left of the meander and the 
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minus second order to the right; red dashed curve combines all restrictions and shows 𝐷(𝛼) (19); 

yellow line shows the Littrow angle for clarity. 

 

a)   b)  

Fig. 3. Maximum beam size 𝐷(𝛼) for TC (a) and for out-of-plane compressor (b) for 𝐿𝑔 =

138 сm and N=950/mm (blue), N =1200/mm (green), N=1400/mm (red). 

 

 

a)  b)  

Fig. 4. Curves for compressor parameters for XCELS for TC (a) and LC (b) with grating length 

𝐿𝑔 = 138 cm  (blue) and 𝐿𝑔 = 160 cm  (red). Squares and triangles – beam size 𝐷𝑜𝑝𝑡 at optimal 

angles 𝛼 and 𝛾, circles and diamonds – difference between incidence angle in the diffraction plane 

and Littrow angle (𝛼 − 𝛼𝐿)  (а) and incidence angle in the plane orthogonal to the diffraction plane 

𝛾 (b); plus signs and asterisks (b) – grating height 𝐻𝑔.  

https://doi.org/10.1017/hpl.2024.18 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2024.18


Accepted Manuscript 

 
 

 

 21 

 

 

 

 

 

 

Table 1. Compressors parameters  

 
XCELS 

  𝜆 = (910 ± 75) nm  

SEL=100 PW 

𝜆 = (925 ± 100) nm 
 

𝐿𝑔 = 138 cm 𝐿𝑔 = 160 сm 𝐿𝑔 = 160 cm  
TC ([4]) TC (new) LC TC LC TC LC 

𝑁, 1/mm 1200 950 1100 950 1000 1000 1100 

𝛼, degree 46.2 12.2 30.5 36.0 27.4 38.8 31.3 

𝛾, degree 0 0 11.6 0 11.2 0 14.8 

𝐷𝑚, cm 66 78 78 86 96 75 85 

𝐻𝑔, cm 66 78 94 86 112 75 110 

𝑊𝑎, J 1006 1410 1410 1720 2130 1284 1670 

𝜏, fs 20 20 20 20 20 15 15 

𝑃, PW 50 71 71 86 107 86 111 
a) given that 𝑅𝜂𝑤𝑡ℎ = 0.231 𝐽/cm2 in the plane normal to the beam 
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Figure and table captions 

Fig. 1. TC (а) and LC (b). The second half of the compressor (third and fourth gratings) is 

absolutely symmetric to the first one, so it is not shown in the figure. The angle of reflection in the 

diffraction plane is 𝛽 < 0, which explains the minus sign in the figure. The angle of reflection in 

the plane orthogonal to the diffraction plane is always equal to the angle of incidence 𝛾. 

 

Fig. 2. Restrictions on maximum beam size at 𝐿𝑔 = 138 сm, N=1050/mm for TC (a) and for out-

of-plane compressor at 𝛾 = 13° (b): green curve for 𝑑𝑔 (12) – no beam clipping on the grating; 

blue curve for 𝑑𝑖 (14), (16) – decoupling needed; black meander 𝛱(𝛼) (18) – range of angles 

without other diffraction orders (18): the first order is possible to the left of the meander and the 

minus second order to the right; red dashed curve combines all restrictions and shows 𝐷(𝛼) (19); 

yellow line shows the Littrow angle for clarity. 

 

Fig. 3. Maximum beam size 𝐷(𝛼) for TC (a) and for out-of-plane compressor (b) for 𝐿𝑔 =

138 сm and N=950/mm (blue), N =1200/mm (green), N=1400/mm (red). 

 

Fig. 4. Curves for compressor parameters for XCELS for TC (a) and LC (b) with grating length 

𝐿𝑔 = 138 cm  (blue) and 𝐿𝑔 = 160 cm  (red). Squares and triangles – beam size 𝐷𝑜𝑝𝑡 at optimal 

angles 𝛼 and 𝛾, circles and diamonds – difference between incidence angle in the diffraction plane 

and Littrow angle (𝛼 − 𝛼𝐿)  (а) and incidence angle in the plane orthogonal to the diffraction plane 

𝛾 (b); plus signs and asterisks (b) – grating height 𝐻𝑔.  

Table 1. Compressors parameters   
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