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1. Introduction. A union curve on a surface in a euclidean 3-space, 
relative to a given congruence is characterized by the property that its 
osculating plane at each point contains the ray of the congruence through 
that point. Springer (2) and Pan (1) have studied union curves in a hyper-
surface Vn of a Riemannian Vn+\. In the present paper we proceed to obtain 
the equations of union curves in a subspace Vn of a Riemannian Vm. 

2. Subspaces of Vm. Consider a subspace Vn of co-ordinates x\ i — 1, 
2, . . . , n and positive-definite metric 

(2.1) ds = gij dxldxj 

imbedded in a Vm of co-ordinates y, a = 1, 2, . . . , m and positive-definite 
metric 

(2.2) ds2 — aa^dyady^. 

For points of Vn, the y's are expressible as functions of the x's, the matrix 

dy"\\ 
II dx* II 

being of order n. The coefficients of the fundamental forms of Vm and Vn are 
connected by the relations 

(2-3) gij = aap ya
Ay^ 

where (,) followed by an index indicates the covariant derivative with respect 
to the x with that index. 

In Vm there are (m — n) mutually orthogonal independent unit vectors 
normal to Vn. If N"i be the contravariant components in the y's of any such 
system of unit normals to Vni they must satisfy the relations 

(2.4) dapNttNÎ! = 1, 

(2.5) aa^:Xi-0 Qi*v), 

and 

(2.6) a^Na
vly^ = 0 (v = n + 1, . . . , m), 

since ya
ti are the components of a vector tangential to the curve of parameter x\ 
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3. Tensor derivatives. Let 
1 P1...J1... 

be a set of quantities over Vn having twofold tensor character indicated by the 
two types of indices, and let 

ilf and hi) 
be the Christoffel symbols formed with the tensors aaj3 and gtj respectively. 

Then 

ra::fc.-^+z{*}C>:»i 

E L ; K X ) ^ 
T" 

T\\\ 

are the components of a tensor, called the tensor derivative of the tensor 

T~-. Here ( 12" denotes that the suffix aT of T-~ is to be replaced by X. 

w 
Throughout the present paper we shall use (;) followed by an index to 

indicate the tensor-derivative with respect to the x with that index. 
4. Congruences of curves in Vn. Let us consider a set of (m — n) con­

gruences of curves, one curve of each of which passes through each point of 
the subspace Vn. Let X"i be the contravariant components in the y's, of a 
unit vector in the direction of the congruence XT. Since the vector XT is, in 
general, not normal to Vn, it may be expressed linearly in terms of ya

yi and 
the set of normals Na

vi. Thus 
(4.1) A?i = /ri3\*+ T.cVTNa

vl 
V 

where the parameters t\\ and cVT are such that if dVTi is the angle between the 
vectors Na

v\ and X"i then 
(4.2) cVT = cos 0„ri = da^KiN^i 

and 

(4.3) 1 — tlitrii = S c o s 2 ^FTI 

for 
a^X?iX?i = aa^tiiy

a
fi+ E c,TNjty(tj

TrfJ+ E cVTN^ 

1 = gijtTltrl + Z ^ CVT\. 
or 
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5. Union curves in Vn. A curve in a subspace Vn of a Riemannian Vm 

is a union curve relative to a set of (m — w) congruences àTi if àTi(r = w + 1, 
. . . , m) are tangential to the osculating variety of C (that is, the variety 
determined by the tangent to C and the first curvature vector of C in Vm) at 
every point of C, that is, if there exists a linear relation between the vectors 
t, àri(r = n + 1, . . . , m) and q, where t is the unit tangent vector to C and 
q is the first curvature vector of C relative to Vm. 

Let 4>ri be the angle which XTi makes with the tangent to C, then, by (4.1) 
we have 

(5.1) cos <t>ri = aapKiy^-f- = aaÀ tliya
ti + J2 cVTNv\ b ^ - j -

- gifirl ^ , 

by virtue of (2.3) and (2.6). 
Let £"i be the contravariant components of a unit vector at a point P of 

the curve C in Vn which satisfies the following conditions: 
(1) It is linearly dependent on lTi and the unit tangent vector t. 
(2) It is orthogonal to t. 
We may write 

(5.2) & = Orl4£ + brl\"rl. 

Multiplying (5.2) by 

and summing over a, we have 
(5.3) 0 = aTi + bri cos 0Tl 

because of (5.1) and Condition (2). 
Using (5.3), we may write (5.2) as 

(5.4) X;i = ^ c o s 0 T i + ^ & . 

Since A"i and £"i are components of unit vectors, from (5.4) we have 

1 = a^XriXri = a<*0\~T~ c o s ^Tl + h~~ ^Tl)\dJ c o s ^ r l ~*~ h ^ 7 

or 

(5.5) T— = sin 0Ti. 

(5.2) may now be written as 

(5.6) C\ = Xri cosec <$>T\ — - 7 - cot <j>r\-
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Using (4.1), (5.6) may be written in the form 

(5.7) (£i = u*i cosec <j)Tl — — cot 4>Ti)y"i + X) cVTiNa
vi cosec <j>Ti. 

The set of (m — n) linear equations (5.7) in the quantities iV"i, when 
solved, yield, 

(5.8) Nai= 2 &sin 0TI - Uli — -j- cos 0Ti )y°t y^s(j 

where CffT is the normalized cofactor of car in the determinant \c<TT\. 
Also, we have 

(5.9) s ' = y y + i ; o H . i | , | : i v ; i 

where £* and g°= are the contra variant components of the first curvature 
vectors p and q of C in Vn and Vm respectively (3). 

Using (5.8), (5.9) may be written as 

(5.10) q" = fj 
(J'Y (L'Y i (L'Y i I 

f~ ÇT
0""&"d7V'1_"ï7cos*rvH 

/J'Y (J'Y 

+ A*, £"i sin <£TiC„TOv| ^ —r- —=— , 

Since each àT is linearly dependent on t and %Th by the definition of a union 
curve, t, \r and q must be linearly dependent; r = n + 1, . . . , m. Again,, 
since t is orthogonal to ^Ti and q, it follows that ÇTi and q must be linearly 
connected (r = n + 1, . . . , m). Therefore, from (5.10) we find that the 
equations of a union curve are 

(5.11) p'-^u^^-^cos^C^O. 

The quantities 

/T'Y* /T'Y* / /7/Y* \ 

(5.12) „ ' = p* - E Qrllj — —{t*Tl - — c o s *Tl)C„ 

are the components of a vector in Vn, which may be called the union curvature 
vector in analogy with the corresponding result for a curve in a hypersurface 
Vn of a Vn+1 (2). 

The magnitude of this vector is called the union curvature of the curve whose 
unit tangent vector has components in (dx1)/ (ds) in the x's. The union curva­
ture vector is a null vector for a union curve, and consequently the union 
curvature of a union curve is zero. 

6. A particular case. If m = n + 1, Na
vl = Na, dVT = 6, 

https://doi.org/10.4153/CJM-1963-011-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1963-011-5


UNION CURVES 105 

<t>Tl — </>, Carl — 
COS d ' 

and equations (5.1) reduce to 

(6.1) p* - O , , - ^ " ^ - ^ - ^ c o s ^aec» = 0 

which are the equations of a union curve in a hypersurface Vn of a Riemannian 
Ftt+1. Also (5.12) reduces to 

(6.2) ri'^P*- Vij^lhW - ^ r c o s «Jsecl ds ds \ ds 

which are the components of the union curvature vector of a curve in Vn (2). 
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