UNION CURVES IN A SUBSPACE V_{n} OF A RIEMANNIAN \boldsymbol{V}_{m}

M. K. SINGAL

1. Introduction. A union curve on a surface in a euclidean 3 -space, relative to a given congruence is characterized by the property that its osculating plane at each point contains the ray of the congruence through that point. Springer (2) and Pan (1) have studied union curves in a hypersurface V_{n} of a Riemannian V_{n+1}. In the present paper we proceed to obtain the equations of union curves in a subspace V_{n} of a Riemannian V_{m}.
2. Subspaces of V_{m}. Consider a subspace V_{n} of co-ordinates $x^{i}, i=1$, $2, \ldots, n$ and positive-definite metric

$$
\begin{equation*}
d s^{2}=g_{i j} d x^{i} d x^{j} \tag{2.1}
\end{equation*}
$$

imbedded in a V_{m} of co-ordinates $y^{\alpha}, \alpha=1,2, \ldots, m$ and positive-definite metric

$$
\begin{equation*}
d s^{2}=a_{\alpha \beta} d y^{\alpha} d y^{\beta} . \tag{2.2}
\end{equation*}
$$

For points of V_{n}, the y 's are expressible as functions of the x 's, the matrix

$$
\left\|\frac{\partial y^{\alpha}}{\partial x^{i}}\right\|
$$

being of order n. The coefficients of the fundamental forms of V_{m} and V_{n} are connected by the relations

$$
\begin{equation*}
g_{i j}=a_{\alpha \beta} y_{, i}^{\alpha}{ }^{\alpha}{ }^{\beta}{ }_{j} \tag{2.3}
\end{equation*}
$$

where (,) followed by an index indicates the covariant derivative with respect to the x with that index.

In V_{m} there are $(m-n)$ mutually orthogonal independent unit vectors normal to V_{n}. If $N_{\nu 1}^{\alpha}$ be the contravariant components in the y 's of any such system of unit normals to V_{n}, they must satisfy the relations

$$
\begin{align*}
& a_{\alpha \beta} N_{\nu 1}^{\alpha} N_{\nu 1}^{\beta}=1, \tag{2.4}\\
& a_{\alpha \beta} N_{\nu 1}^{\alpha} N_{\mu 1}^{\beta}=0 \quad(\mu \neq \nu), \tag{2.5}
\end{align*}
$$

and

$$
\begin{equation*}
a_{\alpha \beta} N_{\nu 1}^{\alpha} y^{\beta}{ }_{i}=0 \quad(\nu=n+1, \ldots, m), \tag{2.6}
\end{equation*}
$$

since $y^{\alpha}{ }_{, i}$ are the components of a vector tangential to the curve of parameter x^{i}.
Received November 16, 1961.
3. Tensor derivatives. Let

$$
T_{\beta_{1} \ldots j_{1} \ldots}^{\alpha_{1} \ldots i_{1} \ldots}
$$

be a set of quantities over V_{n} having twofold tensor character indicated by the two types of indices, and let

$$
\left\{\begin{array}{c}
\alpha \\
\beta \nu
\end{array}\right\} \quad \text { and } \quad\left\{\begin{array}{c}
i \\
j k
\end{array}\right\}
$$

be the Christoffel symbols formed with the tensors $a_{\alpha \beta}$ and $g_{i j}$ respectively.
Then

$$
\begin{aligned}
T_{\beta_{1} \ldots j_{1} \ldots ; k}^{\alpha_{1} \ldots i_{1} \ldots ;}=\frac{\partial T \cdots}{\partial x^{\ddot{k}}}+ & \sum_{\tau}\left\{\begin{array}{c}
\alpha_{\tau} \\
\lambda \gamma
\end{array}\right\}\binom{\lambda}{\alpha_{\tau}} T \ldots y_{, k}^{\gamma} \\
& -\sum_{\tau}\left\{\begin{array}{c}
\lambda \\
\beta_{\tau} \gamma
\end{array}\right\}\binom{\beta_{\tau}}{\lambda} T \ldots y_{, k}^{\gamma} \\
& -\sum_{t}\left\{\begin{array}{c}
i_{t} \\
l k
\end{array}\right\}\binom{l}{i_{t}} T \ldots \\
& -\sum_{t}\left\{\begin{array}{c}
l \\
j_{t} k
\end{array}\right\}\binom{j_{t}}{l} T \ldots
\end{aligned}
$$

are the components of a tensor, called the tensor derivative of the tensor $T:::$. Here $\binom{\lambda}{\alpha_{\tau}} T$ denotes that the suffix α_{τ} of $T:::$ is to be replaced by λ.

Throughout the present paper we shall use (;) followed by an index to indicate the tensor-derivative with respect to the x with that index.
4. Congruences of curves in V_{n}. Let us consider a set of $(m-n)$ congruences of curves, one curve of each of which passes through each point of the subspace V_{n}. Let $\lambda_{\tau 1}^{\alpha}$ be the contravariant components in the y 's, of a unit vector in the direction of the congruence λ_{τ}. Since the vector λ_{τ} is, in general, not normal to V_{n}, it may be expressed linearly in terms of $y_{, i}^{\alpha}$ and the set of normals $N_{\nu 1}^{\alpha}$. Thus

$$
\begin{equation*}
\lambda_{\tau 1}^{\alpha}=t_{\tau 1}^{i} y_{, i}^{\alpha}+\sum_{\nu} c_{\nu \tau} N_{\nu 1}^{\alpha} \tag{4.1}
\end{equation*}
$$

where the parameters $t_{\tau 1}^{i}$ and $c_{\nu \tau}$ are such that if $\theta_{\nu \tau 1}$ is the angle between the vectors $N_{\nu 1}^{\alpha}$ and $\lambda_{\tau 1}^{\alpha}$ then

$$
\begin{equation*}
c_{\nu \tau}=\cos \theta_{\nu \tau 1}=a_{\alpha \beta} \lambda_{\tau 1}^{\alpha} N_{\nu 1}^{\beta} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
1-t_{\tau 1}^{i} t_{\tau 1 i}=\sum \cos ^{2} \theta_{\nu \tau 1} \tag{4.3}
\end{equation*}
$$

for

$$
a_{\alpha \beta} \lambda_{\tau 1}^{\alpha} \lambda_{\tau 1}^{\beta}=a_{\alpha \beta}\left(t_{\tau 1}^{i} y_{, i}^{\alpha}+\sum_{\nu} c_{\nu \tau} N_{\nu 1}^{\beta}\right)\left(t_{\tau 1}^{j} y^{\beta}{ }_{, j}+\sum_{\nu} c_{\nu \tau} N_{\nu 1}^{\beta}\right)
$$

or

$$
1=g_{i j} t_{r 1}^{i} t_{r 1}^{j}+\sum_{\nu} c_{\nu \tau 1}^{2}
$$

5. Union curves in V_{n}. A curve in a subspace V_{n} of a Riemannian V_{m} is a union curve relative to a set of $(m-n)$ congruences $\lambda_{\tau 1}$ if $\lambda_{\tau 1}(\tau=n+1$, $\ldots, m)$ are tangential to the osculating variety of C (that is, the variety determined by the tangent to C and the first curvature vector of C in V_{m}) at every point of C, that is, if there exists a linear relation between the vectors $\mathbf{t}, \lambda_{\tau 1}(\tau=n+1, \ldots, m)$ and \mathbf{q}, where \mathbf{t} is the unit tangent vector to C and \mathbf{q} is the first curvature vector of C relative to V_{m}.

Let $\phi_{\tau 1}$ be the angle which $\lambda_{\tau 1}$ makes with the tangent to C, then, by (4.1) we have

$$
\begin{align*}
\cos \phi_{\tau 1} & =a_{\alpha \beta} \lambda_{\tau 1}^{\alpha} y_{, j}^{\beta} \frac{d x^{j}}{d s}=a_{\alpha \beta}\left[t_{\tau 1}^{i} y_{, i}^{\alpha}+\sum_{\nu} c_{\nu \tau} N_{\nu 1}^{\alpha}\right] y_{, j}^{\beta} \frac{d x^{j}}{d s} \tag{5.1}\\
& =g_{i j} t_{\tau 1}^{i} \frac{d x^{j}}{d s},
\end{align*}
$$

by virtue of (2.3) and (2.6).
Let $\xi_{\tau 1}^{\alpha}$ be the contravariant components of a unit vector at a point P of the curve C in V_{n} which satisfies the following conditions:
(1) It is linearly dependent on $\lambda_{\tau 1}$ and the unit tangent vector \mathbf{t}.
(2) It is orthogonal to t.

We may write

$$
\begin{equation*}
\xi_{\tau 1}^{\alpha}=a_{\tau 1} \frac{d y^{\alpha}}{d s}+b_{\tau 1} \lambda_{\tau 1}^{\alpha} . \tag{5.2}
\end{equation*}
$$

Multiplying (5.2) by

$$
a_{\alpha \beta} \frac{d y^{\beta}}{d s}
$$

and summing over α, we have

$$
\begin{equation*}
0=a_{\tau 1}+b_{\tau 1} \cos \phi_{\tau 1} \tag{5.3}
\end{equation*}
$$

because of (5.1) and Condition (2).
Using (5.3), we may write (5.2) as

$$
\begin{equation*}
\lambda_{\tau 1}^{\alpha}=\frac{d y^{\alpha}}{d s} \cos \phi_{\tau 1}+\frac{1}{b_{\tau 1}} \xi_{\tau 1}^{\alpha} . \tag{5.4}
\end{equation*}
$$

Since $\lambda_{\tau 1}^{\alpha}$ and $\xi_{r 1}^{\alpha}$ are components of unit vectors, from (5.4) we have

$$
1=a_{\alpha \beta} \lambda_{\tau 1}^{\alpha} \lambda_{\tau 1}^{\beta}=a_{\alpha \beta}\left(\frac{d y^{\alpha}}{d s} \cos \phi_{\tau 1}+\frac{1}{b_{r 1}} \xi_{\tau 1}^{\alpha}\right)\left(\frac{d y^{\beta}}{d s} \cos \phi_{\tau 1}+\frac{1}{b} \xi_{\tau 1}^{\beta}\right)
$$

or

$$
\begin{equation*}
\frac{1}{b_{\tau 1}}=\sin \phi_{\tau 1} \tag{5.5}
\end{equation*}
$$

(5.2) may now be written as

$$
\begin{equation*}
\xi_{\tau 1}^{\alpha}=\lambda_{\tau 1}^{\alpha} \operatorname{cosec} \phi_{\tau 1}-\frac{d y^{\alpha}}{d s} \cot \phi_{\tau 1} . \tag{5.6}
\end{equation*}
$$

Using (4.1), (5.6) may be written in the form

$$
\begin{equation*}
\xi_{\tau 1}^{\alpha}=\left(t_{\tau 1}^{i} \operatorname{cosec} \phi_{\tau 1}-\frac{d x^{i}}{d s} \cot \phi_{\tau 1}\right) y_{, i}^{\alpha}+\sum_{\nu} c_{\nu \tau 1} N_{\nu 1}^{\alpha} \operatorname{cosec} \phi_{\tau 1} \tag{5.7}
\end{equation*}
$$

The set of $(m-n)$ linear equations (5.7) in the quantities $N_{\nu 1}^{\alpha}$, when solved, yield,

$$
\begin{equation*}
N_{\sigma 1}^{\alpha}=\sum_{\tau}\left[\xi_{\tau 1}^{\alpha} \sin \phi_{\tau 1}-\left(t_{\tau 1}^{i}-\frac{d x^{i}}{d s} \cos \phi_{\tau 1}\right) y_{, i}^{\alpha}\right] C_{\sigma \tau} \tag{5.8}
\end{equation*}
$$

where $C_{\sigma \tau}$ is the normalized cofactor of $c_{\sigma \tau}$ in the determinant $\left|c_{\sigma \tau}\right|$.
Also, we have

$$
\begin{equation*}
q^{\alpha}=y_{, i}^{\alpha} p^{i}+\sum_{\nu} \Omega_{\nu \mid i j} \frac{d x^{i}}{d s} \frac{d x^{j}}{d s} N_{\nu 1}^{\alpha} \tag{5.9}
\end{equation*}
$$

where p^{i} and q^{α} are the contravariant components of the first curvature vectors \mathbf{p} and \mathbf{q} of C in V_{n} and V_{m} respectively (3).

Using (5.8), (5.9) may be written as

$$
\begin{align*}
q^{\alpha}=y_{, i}^{\alpha}\left[p^{i}-\sum_{\nu, \tau} \Omega_{\nu \backslash l j} \frac{d x^{l}}{d s} \frac{d x^{j}}{d s}\left(t_{\tau 1}^{i}-\right.\right. & \left.\left.\frac{d x^{i}}{d s} \cos \phi_{\tau 1}\right) C_{\nu \tau}\right] \tag{5.10}\\
& +\sum_{\nu, \tau} \xi_{\tau 1}^{\alpha} \sin \phi_{\tau 1} C_{\nu \tau} \Omega_{\nu \mid i j} \frac{d x^{i}}{d s} \frac{d x^{j}}{d s}
\end{align*}
$$

Since each λ_{τ} is linearly dependent on \mathbf{t} and $\xi_{\tau 1}$, by the definition of a union curve, $\mathbf{t}, \boldsymbol{\xi}_{\tau}$ and \mathbf{q} must be linearly dependent; $\tau=n+1, \ldots, m$. Again, since \mathbf{t} is orthogonal to $\xi_{\tau 1}$ and \mathbf{q}, it follows that $\xi_{\tau 1}$ and \mathbf{q} must be linearly connected $(\tau=n+1, \ldots, m)$. Therefore, from (5.10) we find that the equations of a union curve are

$$
\begin{equation*}
p^{i}-\sum_{\nu, \tau} \Omega_{\nu \mid l j} \frac{d x^{l}}{d s} \frac{d x^{j}}{d s}\left(t_{\tau 1}^{i}-\frac{d x^{i}}{d s} \cos \phi_{\tau 1}\right) C_{\nu \tau}=0 . \tag{5.11}
\end{equation*}
$$

The quantities

$$
\begin{equation*}
\eta^{i}=p^{i}-\sum_{\tau, \nu} \Omega_{\nu \backslash l j} \frac{d x^{l}}{d s} \frac{d x^{j}}{d s}\left(t_{\tau 1}^{i}-\frac{d x^{i}}{d s} \cos \phi_{\tau 1}\right) C_{\nu \tau} \tag{5.12}
\end{equation*}
$$

are the components of a vector in V_{n}, which may be called the union curvature vector in analogy with the corresponding result for a curve in a hypersurface V_{n} of a V_{n+1} (2).

The magnitude of this vector is called the union curvature of the curve whose unit tangent vector has components in $\left(d x^{i}\right) /(d s)$ in the x 's. The union curvature vector is a null vector for a union curve, and consequently the union curvature of a union curve is zero.
6. A particular case. If $m=n+1, N_{\nu 1}^{\alpha}=N^{\alpha}, \theta_{\nu \tau}=\theta$,

$$
\phi_{\tau 1}=\phi, \quad C_{\sigma \tau 1}=\frac{1}{\cos \theta},
$$

and equations (5.1) reduce to

$$
\begin{equation*}
p^{i}-\Omega_{l j} \frac{d x^{l}}{d s} \frac{d x^{j}}{d s}\left(t^{i}-\frac{d x^{i}}{d s} \cos \phi\right) \sec \theta=0 \tag{6.1}
\end{equation*}
$$

which are the equations of a union curve in a hypersurface V_{n} of a Riemannian V_{n+1}. Also (5.12) reduces to

$$
\begin{equation*}
\eta^{i} \equiv p^{i}-\Omega_{l j} \frac{d x^{l}}{d s} \frac{d x^{j}}{d s}\left(t^{i}-\frac{d x^{i}}{d s} \cos \phi\right) \sec \theta \tag{6.2}
\end{equation*}
$$

which are the components of the union curvature vector of a curve in V_{n} (2).

References

1. T. K. Pan, On a generalisation of the first curvature of a curve in a hypersurface of a Riemannian Space, Can. J. Math., 6 (1954), 210-216.
2. C. E. Springer, Union curves of a hypersurface, Can. J. Math. 2 (1950), 451-460.
3. C. E. Weatherburn, An introduction to Riemannian geometry and tensor calculus, Cambridge (1950).

Ramjas College, Delhi

