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Abstract. A universal unfolding of a discrete dynamical system f0 is a manifold F
of dynamical systems such that each system g sufficiently near /0 is topologically
conjugate to an element / of F with the conjugacy tp and the element / depending
continuously on/0. An infinitesimally universal unfolding of/0 is (roughly speaking)
a manifold F transversal to the topological conjugacy class of/0. Using Nash-Moser
iteration we show infinitesimally universal unfoldings are universal and (in part II)
give a class of examples relating to moduli of stability introduced by Palis and De
Melo.

PART I. GENERAL THEORY

0. The philosophy of unfoldings
(0.1) Let us imagine we are studying a space 2 of objects which we call 'systems'.
We suppose this space is endowed with an equivalence relation g ~ / and a topology.
For each/e 9) we denote its equivalence class by:

C(f) = {ge2):g~f}.

Our object is to classify elements of ® up to equivalence. As a first step we should
classify elements in some neighbourhood ? c S of a particular element/oe 2> which
we understand. The simplest case will be when there is only one element in the
classification:

»=C(/o). (1)

In this case one says that /0 is rigid or structurally stable. When 3) is a smooth
manifold and the equivalence classes C(/)<=2> are smooth manifolds one often
solves (1) by solving the 'linearized equation'

T}2> = TjC(f) (2)

and applying (a suitable version of) the implicit function theorem.
When /o is not rigid the local classification problem is attacked as follows. One

considers (germs of) submanifolds F<= 2> at/0 (i.e. / o e F ) . Such an F is called a
deformation or unfolding of f0. When we can solve

« c U C(f) (3)

we say that F is universal. (Some authors say 'versal' as the element fe F such that
geC(f) need not be uniquely determined by ge CS. In other contexts, F is called
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422 J. W. Robbin

a 'slice'.) Equation (3) says that the elements of F are 'normal forms' for perturba-
tions g Of /<,.

The appropriate linearized version of (3) is that C(/) and F intersect transversally:

which in terms of tangent spaces is expressed by the equation

Tf2)=TjC(f) + TfF. (4)

Again one often proves (4)=>(3) using the implicit function theorem.

(0.2) Two particularly successful examples of this philosophy are Thom's Elemen-
tary Catastrophe theory (henceforth called E.C. theory) and Mather's theory of
singularities of maps. (For a good exposition of E.C. theory see [25]; for an exposition
of Mather's theory see [4] and the original references cited there.)

Let us review the high points of E.C. theory. Take for the space 3 of systems the
ring 3 = M2

n c %n of germs at the origin of smooth real valued functions which
vanish, together with the first derivatives at the origin. We take the equivalence
relation to be right-equivalence:

where Diffn denotes the group of germs of diffeomorphisms which fix the origin.
Thus g and / are equivalent if they differ by a smooth change of coordinates. We
may take as topology the topology induced by the map %n^Jx(n) which sends a
germ to its formal power series at the origin (/°°(n) is a product of infinitely many
copies of U). The tangent space to C(f) a t / i s given by the product of the maximal
ideal with the so-called 'Jacobian ideal' of/, i.e. the ideal generated by the partials
of/:

To see this note that a typical element / e T,C(f) has form

where <p, e Diffn is a curve through the identity: (po(x) = x. Thus

where f,(0) = 0 (i.e. £ e i j as (p,(0) = 0. We see that / is infinitesimally rigid - i.e.
satisfies (2) - exactly when the matrix of second partials is non-degenerate. We
expect that in that case / should be rigid as well. Indeed, this is so: that is precisely
the content of the Morse lemma ( / is right equivalent to any quadratic form having
the same signature as £ djdjf(O)XjXj).

Now let us consider an unfolding of form F = {fy: -yeF} where F is an open
neighbourhood of the origin in W. We then have for f=fy the tangent space
TfF = A(y)W where A(y):W-*3 is the linear map given by

d_

dt y+ly , = 0 '
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The transversality condition (4) can be expressed by saying that the p-dimensional
real vector space spanned by the partials dfy\dyk is a vector space complement to
the ideal generated by x,dj/r According to the C00 preparation theorem, if this is
true for y = 0 it is true for y in a neighbourhood of 0. As an application we conclude
that (with n = 1) the unfolding

is universal since x2, x 3 , . . . , xp+x span a complement to the ideal generated by xp+2

(by Taylor's formula).

(0.3) Another instructive example is given by the theory of Lie groups. Here we
take 2 = G a finite dimensional Lie group (e.g. a closed group of matrices) and the
equivalence relation to be conjugacy in the group:

There are no rigid elements since a conjugacy class can never be open (eigenvalues
are invariant under conjugacy) but universal unfoldings play a prominent role in
the theory. In fact, if/0 is a regular element in a cartan subgroup H c G, and F c H
is a neighbourhood of the identity then the unfolding F = {yf0: y e F} is universal.
For example if we take G = GL (n),f0 to be diagonal with distinct eigenvalues, and
H to be the subgroup of all diagonal matrices, this says that any matrix near f0 can
be diagonalized. See e.g. [23] where this approach is exploited.

(0.4) In this paper we study the case where the systems / are discrete dynamical
systems on a compact smooth manifold M, 2 = Diff (M), where Diff (M) denotes
the group of smooth diffeomorphisms f: M^> M. There are several equivalence
relations which have been studied in this context; it is instructive to see what happens
in simple examples if we take the obvious equivalence relation, viz. conjugacy in
the group. (We call this smooth conjugacy.) We endow Diff (M) with the C°° topology.

Suppose f, ge Diff (M) are smoothly conjugate. Then there exists <peDiff(M)
with

for n = 1 and hence all integers n. Suppose x is a periodic point of period n of
/ : f(x) = x Then y = <p{x) is a periodic point of g and

Dg{y)" = D<p{x)Df{x)nD<p{xy\

This shows that the eigenvalues of Df(x)" are invariant under smooth conjugacies.
It follows that no rigid system can have any periodic points.

It is unknown whether any rigid systems exist (the author believes they do) but
the most well studied systems have periodic points and so cannot be rigid.

Hence let us seek 'universal' unfoldings, say for the simplest systems: the gradient-
like systems. If / is gradient-like its non-wandering set consists of finitely many
hyperbolic fixed points, and so by Sternberg's linearization theorem M can be
covered by finitely many coordinate charts on which / is linear. It is tempting to
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imagine that a universal unfolding can be constructed by simply varying the eigen-
values at the fixed points, but this is not so.

To see why let us suppose that M = [0, 1] and f:M^M satisfies:

/(0) = 0; /(1) = 1;

0<a=/ ' (0 )<Kfe=/ ' ( l ) ;

f(t)<t, Q<t<\. (5)

Choose diffeomorphisms a:[0, l)-»[0, oo) and )3:(0, l]->[0,oo) which linearize/:

(a°/°a~')(x) = ax

and note that a and /? are unique if we impose the conditions a'(0)= 1
Indeed if ifi: [0, oo)-* [0, oo) satisfies \f>{ax) = atjj{x) then i/KO) = 0 and

= lim a~"il>(a"x) =

It follows that we can assign an invariant -y/eDiff ((0, oo)) to / via the formula
yf = p°a~\ We note that yf satisfies the condition yf(ax) = byf(x) but is subject to
no further restriction. Thus the smooth conjugacy class of/ has infinite codimension
in Diff (M). Note further that/ interpolates a flow (i.e. there is a group homomorph-
ism U -*• Diff (M): / -»/' with / = / ' ) if and only if the conjugacy invariant has form
yf(x) = xT, where aT = b (i.e. T = log a/log b). This is essentially lemma 3 (page 172)
of [8].

This phenomenon occurs quite generally, viz. any time the basins of a sink and
source overlap. Thus (at the present state of knowledge) one must use a different
equivalence relation to obtain finite dimensional universal unfoldings.

(0.5) Hence we impose a coarser equivalence relation and seek rigid systems and
universal unfoldings for it. This relation is topological conjugacy i.e. conjugacy in
the group Homeo(M) of all homeomorphisms of M. Hence the topological con-
jugacy class of /€ Diff (M) is defined by:

C(f) = {<p°f°(p->: <p e Homeo (M)}n Diff (M).

There is no reason to suppose that C(f) is in any sense a submanifold of Diff (M);
note that is not even the orbit of a group action since <po/°<p~' need not be smooth.
Nonetheless, we shall see that the infinitesimal methods described above apply.

For the equivalence relation of topological conjugacy, rigid discrete dynamical
systems are called structurally stable. Note that the map/: [0, l]-» [0,1] of the interval
defined above is structurally stable; indeed if g also satisfies (5) we may define a
conjugacy <p by choosing any homeomorphism (p:[f(\)A]-*[g(i),5] and extending
it to a homeomorphism <p:[0, l]-»[0,1] by the equations:

for 0< t < 1 when n is chosen so that J~"(t) e \f{^), 3]. Reflect on the fact that <p can
be a difieomorphism on the open interval and that one can estimate quite precisely
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how rapidly the derivatives of <p blow up as we approach the endpoints. This is the
key to the constructions described below.

(0.6) We attempt to prove /eDiff(M) is structurally stable using the implicit
function theorem. Thus for each ge Diff (M) we must solve

g = <p°f°<P~l (6)

for <p e Homeo (M). Rewrite this in the form

f°g~]°<P=f°<P°f~1- (7)

If we take g = g, where t -* g, is a curve through / we should be able to solve for
<p = <p, where t -» q>, is a curve through the identity. Hence differentiating at t = 0 gives

U - / # ) £ = w (8)

where

Here w, f are elements of #?(M), a space of continuous vector fields on M, and
/#:#f(M)-»3f(M) is a linear operator on this space. Hence the solvability of (8)
for C in terms of w is the appropriate linearized version of structural stability; if
/ e Diff (M) satisfies this then / is called infinitesimally stable. Since the maps
C°(M, M)^-C°(M, M), <p-*f°g~1°(p,fo<p°f~1 are differentiate (as maps of
Banach manifolds) the hypothesis t h a t / is infinitesimally stable (with #?(M) =
%°{M), the space of continuous vector fields) implies that we can solve (8) for <p
in terms of g. This is carried out in [16]. Actually Robbin uses a slightly different
space 9£{M) = d£f{M) of vector fields which enables him to prove that the solution
of (7) is a homeomorphism so that (6) holds. This is all quite easy; the hard part
is to prove certain geometric conditions {viz. Axiom A and strong transversality)
imply infinitesimal stability. The conjecture that Axiom A and strong transversality
is equivalent to structural stability is due to Smale [21]; the other direction is still
open. Mane [10] however has proved that infinitesimal stability (with 3£{M) =

is equivalent to Axiom A and strong transversality.

(0.7) Now we apply the same reasoning to an unfolding F. To prove it universal
we must still solve (6) but now <pe Homeo (M) and / e F are the unknowns.
Reasoning as before with an additional curve t-*f,eF we obtain a linearized
equation

(l-fm)£+P = w (9)
where
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so that /3€^°°(M) and /3°/e TfF. Note that (when F is finite dimensional) the
solvability of (9) for £ and j8 in terms of w implies that 1 - / # has finite dimensional
co-kernel; i.e. that its image has finite codimension. 4

We must confront two difficulties that weren't present before. In the first place
the map F x C°(M, M) -* C°(M, M), (f, <p) ->f°<p°f~l is not differentiate as a map
of Banach manifolds since <p is only continuous. (However the map (f, <p)->/°g~'°<p
is differentiable.)

However the map

F x Cr+S(M, M) -> C'{M, M),

is of class Cs: since there is a loss of differentiability one is tempted to try to solve
using Nash-Moser iteration; but this would give a smooth conjugacy <p and hence,
as we have seen, cannot cover any known examples.

The second difficulty seems to be related: Mane [10] shows that when %{M) =
i£*(M) the condition that 1-/# should have finite dimensional co-kernel implies
Axiom A and strong transversality and hence that / is structurally stable. This seems
to suggest that the method cannot lead to non-trivial universal unfoldings.

The solution is to use a space 3£{M) of vector fields with

This space must be 'adapted' to the unfolding F which means that equation (7)
satisfies the hypotheses of the Nash-Moser implicit function theorem. In particular,
the map F x %(M) -» %(M), (f, £) -»/#f is C°° although there is a 'loss of differentia-
bility'. (The topology of 3£{M) is given by a countable family of norms like that of

(0.8) In part I of the present paper we implement this program. For the convenience
of the reader we have included a proof of the Nash-Moser implicit function theorem
in the form in which we use it. In § 13 we state the conjecture on universal unfoldings
analogous to Smale's structural stability conjecture in that it asserts that certain
geometric conditions on an unfolding imply that it is universal. In part II we work
out in detail an example and present some additional theoretical material (e.g. the
'tame' preparation theorem) which we feel is not yet in its final form.

It is probably not necessary to use the implicit function theorem to attack problems
in this area. Thus Robinson [17] proved the structural stability theorem of Robbin
[16] mentioned above without linearizing and achieved a sharper result to boot. We
prefer the linearization technique on the grounds that it is always easier to solve a
linear equation than a non-linear one. This is because one can combine 'local
solutions' by adding; to do the analogous thing in the non-linear case one must
change the equation. Against this point one could object that the present paper
proves more than we are interested in; we only wanted a homeomorphism <p but
the one we construct in part II is in fact a diffeomorphism on a large open set.
Perhaps the direct approach yields a homeomorphism with less work (without
proving the additional smoothness).
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The examples in part II are essentially versions of the examples of Palis [14] and
De Melo [3]. Note however that these authors do not construct unfoldings in our
sense although their arguments can undoubtedly be improved to do so. The reason
is that the definition of unfolding requires the map g-» (<p,/) to be continuous and
this implies 'continuous unfolding' of the non-transversal intersection of stable and
unstable manifolds in these examples. The existence of (even merely continuous)
unfolding of singularities is relatively deep and requires some form of the C°°-
preparation theorem.

(0.9) This work was conceived during a long stay at the Warwick symposium on
turbulence and dynamical systems in 1980. The author thanks the Mathematics
Institute at Warwick for a very profitable experience. The main theorem was born
in Truro shortly after a stay at Sydney University and the Australian National
University in July 1982. The author also thanks the Mathematics departments of
these two institutes and in particular Mike Field and Derek Robinson, for support,
hospitality, and stimulation. The author is also indebted to the dynamical systems
seminar at Sydney (e.g. Catriona Glenton, Tse-Char Kuo, and Steve Smale) for
suffering a series of talks which must have been beneficial only to the speaker
(author). The writing of the final draft of this paper was supported by National
Science Foundation grant # 144-T167. Finally, thanks to Mike Field, Jon Jacobs,
and the referee for helpful criticisms.

1. Notation
(1.1) Throughout f̂l denotes the natural numbers (= non-negative integers), Z
denotes the integers, IR denotes the real numbers, and E, F, H (possibly with sub-
scripts) denote vector spaces over IR (often infinite dimensional). We denote by
L"(E,, . . . ,£„;F) the space of multi-linear maps from E, x • • • xEn to F; thus using
the canonical identification (these days called 'Currying' by the computer scientists)
we have

L°(F)=F

L"(E,, E2,.. . , En; F) = L(E,, L - ' (E 2 , . . . , En; F))

where L(E, F) denotes the space of linear maps from E to F. Note that even when
E and F are topological vector spaces we do not impose a continuity condition for
membership of L(E, F) and we do not give L(E, F) a topology. This is in contrast
with Banach space theory where L(E, F) denotes the space of continuous linear
maps and is itself a Banch space. The reason is that in the tame category (defined
in § 2) the tame linear operators do not form a tame linear space in any reasonable
sense. We use the abbreviations

L(E) = L(E,E)
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and we denote by L"(E;F) the space of symmetric multilinear maps; i.e. for
A e L"(E; F) and cr a permutation of 1,2,..., n we have

Avi • • • vn = Ava0)- • • va(n),

for i), »BeE.

(1.2) If M is a topological space and X <= M we denote by cl (X) and int (X) the
closure and interior of X in M respectively. If / : M-> N and u: N -> E we denote
by f*u the map/*u:M-»E defined by

(f*u)(x) = u(f(x))

for xeM. When/is bijective we denote by/,, the inverse of/*: (/*t>)(y) = u(/^'(y))
for v: M -* E and j> e JV.

When / : M-» N is a smooth map of smooth manifolds we denote derivative of/
at x e M by:

so that

where c: R -» M is any curve through x (i.e. c(0) = x) and tangent to u (i.e. c(0) = u).
We denote by Tf the tangent map of/; i.e. 7/: TM -» TN covers / and Tf\ TXM =
Df(x).

Let #?°(M) denote the space of continuous vector fields and assume / : M -* N is
a diffeomorphism. We then have isomorphisms f#:%(M)-*%(N),f*:%(N)-*
%{M) defined by

for vefl^iM) and we^°(iV). These operators (like/* and/") are inverse to one
another.

If Z c R " is open we may identify TZ with ZxRm. Strictly speaking a vector
field on Z is a map w: Z -» TZ = Z x Rm of form w(x) = {x, wo(x)) where w0: Z -» Rm.
However we shall not distinguish w and w0 and hence we identify 3f°(Z) = C°(Z)®
Um, where C°(Z) is the ring of continuous functions on Z. Thus if z:M0->Z is a
coordinate patch on M (i.e. Moc M is open and 2 is a diffeomorphism) each
we%°(M) (in fact each we^°(M0)) determines a map z#w:Z-+Um.

(1.3) A vector bundle is a generalization of a vector space i.e. a vector space is a
vector bundle over a point. With that in mind we generalize notations used with
vector spaces to vector bundles. For example if Ex-* M, . . . ,£„-» M, F -» M are
vector bundles over M, L"(£,, . . . , £ „ ; F)-> M denotes the vector bundle whose
fibre at x e M is given by:

Ln(£,, . . . , £ „ ; F)x = L-(£1JO . . . , £nx; Fx).

For example a section <& of the vector bundle L(TM)^> M is the same as a vector
bundle endomorphism $ : TM -» TM covering the identity.
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Now let 3F(M) be a ring of functions on a manifold M. Generally we assume
C°°(M)<= &(M)<= C°(M), where C(M) (r = 0, 1,. . . ,00) denotes the ring of r-
times continuously differentiate real valued functions on M. Now if E is a finite
dimensional vector space then ^(M)®E would denote the ^(M)-module of maps
M->E such that each component (with respect to any basis) lies in ^(M). For
example ^(M)®R" denotes the space of all maps u = (uu ..., un): M-»Rn such
that uu ..., un € &{M). Thus if E -» M is a vector bundle, it is natural to denote
by !?(M)® £ the space of sections of £ represented by elements of 3>(M) in local
coordinates. (This is meaningful as C^iM) c &(M) and 3>(M) is a ring and hence
closed under multiplication C°°(M) x^(M)-» ^(M).) Alternatively we can define
&(M)®E by embedding £ in a trivial bundle: E c M x R " (so that £x<=Rn for
xe M) and defining:

3f(M)®£ = {w€^(M)®Rn: w(x)e£x for all xeM}.

The definition is independent of the embedding as ^(M) is closed under multiplica-
tion by an element of C^iM). We generally use the abbreviations

so that %'{M) is the space of Cr-vector fields on M.

(1.4) We adhere to the convention that \u\r denotes (some variant of) the Cr-sup
norm of u while || u \\ r denotes a more exotic norm determined by the derivatives of
order s r. Thus the norms |M|O reN, determine the topology of C°°{M) and the
norms ||u||ra reN, determine the topology of 3F(M).

(1.5) For/€Diff(M) (the space of C°° diffeomorphisms from M onto Af) and
X c M w e denote by Xf, Xf+, X1' the orbit, the positive orbit, and the negative orbit
of X by / :

neZ

xf+=\jr(x)
neN

xf-=\jrn(x).

2. The tame category
(2.1) Let E be a vector space. An N-norm on E is a sequence of norms

on E which are non-decreasing:

Two Î J-norms are tamely equivalent iff there is an integer p such that for each keN
there exists c = c(k) e R with

\\u\\'k^c\\u\\k+p,
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for all k e N; the ̂ J-norms are equivalent iff this holds with p = 0. An H-normed space
is a vector space E together with an f̂ J-norm on E. (All our results are invariant
under the replacing of an N-norm by a tamely equivalent N-norm; to emphasize
this fact we may define an N-normable space to be a vector space E together with a
tame equivalence class of N-norms on E but generally we shall eschew this ter-
minology.)

A subset U of an F^-normed space E is called open of degree p iff for every uoe U
there exists e > 0 such that

\\u-uo\\p<e=>ue U.

The set U is open iff it is the union (as p varies) of sets which are open of degree
p. This makes the RJ-normed space E into a topological vector space. We shall always
assume that E is complete in this topology.

Let E and F be f^-normed spaces and t / c E be open. A map P: [/-»F satisfies a
tame estimate of degree p iff it is continuous and for every keN there exists c = c(k)
such that we have the 'tame estimate':

||p(M)IU<c(i + H|p+k)

for M e U; the map P is tame of degree p iff every point uoe U has a neighbourhood
L/O

c U such that P\ Uo satisfies a tame estimate of degree p; it is tame iff it is tame
of degree p for some p.

PROPOSITION 1. A composition of tame maps is tame.

In other words, we have a category whose objects are open sets in N-normed spaces
and whose morphisms are tame maps. This category is a generalization of the
category of open sets of Banach spaces and continuous maps between them.

(2.2) If E and F are N-normed spaces so is the product E xF; the C -̂norm is defined
to be:

|| ( « , U ) I U = | | M | U + | | U | U

for (M, u ) eExF , keN.
Given M-normed spaces E , , . . . , Em define a 'multi-norm' by:

m

I k : • • • : " J U = I I k l U k l k l l p - • • I k lip- •• I K lip
i = l

for U] e E | , . . . , um eEm. (The hat indicates that the factor Ikllp is omitted.) For
example:

If p is not present, 0 is assumed:

I k : • • • :"mlU = l k : " " " :"m|lo,fc-

P R O P O S I T I O N 2. A multi-linear map A e L m ( E , , . . . , Em; F) is tame of degree p if and
only if for each k there exists c = c(k) such that

\\Aui • • • M m | | f c < c | | M , : • • • :Mm||p > f c

for u , e E , , . . . , u m e E m .
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Proof. See [5, p. 141].

(2.3) There seems to be no way to make the space of tame multi-linear maps into
an f^J-normed space, but we achieve the same effect by focusing on the evaluation
map. Define

for MGE and u, E E , , . . . , umeEm. Call a map A: [ I c E ^ L m (E, , . . . ,Em; F) a con-
tinuous [resp. tame; resp. tame of degree p] family iff the evaluation map

t /xE , x- • • xEm->F

(w, u,, . . . ,u m )-»i4(u)u , • • • um

is continuous [resp. tame; resp. tame of degree p].

PROPOSITION 3. The family A is a tame family of degree p if and only if it is a
continuous family and for each uoe U there exists a neighbourhood Uo ofu0 in U such
that for each fceM there is c = c{k) such that

||A(u)u, • • • um | | k<c(k)[w:u, : • • • : u J M

for u e Uo, «i e E , , . . . , um e Em.

Proof. See [5, lemma 2.1.7].

(2.4) A m a p P : L/cE-»Fis tame-Cr [of degreep] iff there exist (necessarily unique)
tame [of degree p] families DmP: U^L?(E, F), m = 0 , 1 , . . . , r, with D°P = P such
that

DmP(u)u, •••um = — Dm-lP(u+tul)u2 - u
dt

for u e U; « , , . . . , wmeE; m = 1 , . . . , r.

P R O P O S I T I O N 4. Assume P is tame-Cr+i of degree p and for u,u+heU define
Q(u,h)<=¥ by

r DmP(u)

P(u+h)= I p h m + Q(u, h).
m = i ml

Then for each keN there exists c = c(k) such that
| |<?(u,h) | | t sc[i j :^j^1^IJ ) ; t .

r + \
Proof. Use Taylor's formula.

(2.5) A splitting E = E,©E2©- • -©Em of an M-normed space is called tame iff the
associated projections et e L(E) determined by

1 = e, + e2 + • • • + em

E,. = e,E

are tame. More generally let ./V be an open subset of an N-normed space. A tame
family of splittings of E indexed by Jf is a function which assigns to each
splitting

E = E,(z)©E2(z)©---©Em(z)
such that for each i" = 1 , . . . , m the map et:Jf-* L(E) is a tame linear family.
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(2.6) A family of smoothing operators on the f^-normed space E is a map S: [1, oo) ->
L(E) such that there exists d e N (called the offset of the family) and constants
c = c(q),qeN, satisfying

for w e E and p^q.
The N-normed space E is said to satisfy the interpolation inequalities iff for each

triple p,q,reN with p< <?< r there is a constant c = c(p, q, r) such that

for M e E. Some authors call these 'convexity inequalities' since they have the form

||M||,<C||M||^||U||^"A where 0<A =(r-q)/(r-p)<z 1.

PROPOSITION 5. If E admits a family of smoothing operators with offset d = 0, then
it satisfies the interpolation inequalities.

Proof. Write u = S{t)u +(l -S{t))u to obtain:

| | « | | , s c ( r * - ' ' | | i i | | p + /« - r | | i i | | r ) .

Then take t = (H|r/H|p)1 /< r-*> so that

Example. Let X c R m b e open and denote by 38(X)c C°°{X) the N-normed space
given by

ue33(X)<=>|u|r<oo forallreN,

where \u\r = sup {|5"M(X)|: X e X, \a\ s r}. For X = IRm one can construct (using con-
volutions) a family of smoothing operators with offset d = 0. If X is the interior of
a smooth compact manifold, we construct smoothing operators w -» S(0" by smooth-
ing the function x-» u(x + f~'£(x)) where £ is a vector field which points in on the
boundary. This family has offset d = 1. It seems to be unknown which spaces @){X)
admit smoothing operators and what is the smallest possible offset. On the other
hand, regardless of the nature of the boundary of X the space 53(X) satisfies the
interpolation inequalities if X is convex. (See [5, p. 143].)

(2.7) Notes. Our definitions follow [5] and [19]. Hamilton calls N-normed spaces
'graded Frechet spaces' but we prefer the term 'M-normed space' as it suggests the
possibility of generalizing to other index sets. Sergeraert (essentially) calls open
subsets of P«J-normed spaces 'L-objects' and tame maps 'L-morphisms'. We do not
adopt Hamilton's notion of 'tame space' as his tame spaces all admit smoothing
operators with offset d = 0 and it is not clear that this will be true in the applications
we have in mind. Sergeraert also assumes offset d = 0 but the original treatment of
Moser [11] allowed arbitrary offset. The proof of proposition 5 comes from [19, p.
604] or [26, p. 118]. Note the similarity to the abstract interpolation theory exposed
e.g. in [15, p. 32]; see also [12, p. 272].
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3. The tame implicit function theorem
Suppose H, E, IF are N-normed spaces, Z c H , l / c [ are open, zoeZ, uoe U, and
P:Zx[/-»F.

THEOREM. Assume P is tame-C2, that

P(zo,«o) = 0, (1)

and that there is a tame family L:ZxU-> L(F, E) such that

D2P(z,u)L(z,u)v = v

for zeZ,ueU,ve¥. Assume that E admits a family {S(t)\ f > 1} of smoothing
operators and satisfies the interpolation inequalities. Then there is a neighbourhood Zo

of z0 in Z and a continuous map G: Zo-» U such that G(z0) = M0, P(Z, G{Z)) = 0 for
zeZ0.

Proof. We may assume that U has form

l/ = {MeE:| |u-U o | | p<M-'} (2)

where peN and M is a large positive number. Note that we may increase p and
M (thus shrinking U) in the course of the proof without loss of generality; we may
also shrink Z The hypothesis that P is C2 gives inequalities

| |P(z,U)| | ,<M (3)

\\D2P(z,u)u\\q^M\\u\\p (4)

\\P(z,u+u)-P(z,u)-D2P(z,u)u\\q^M\\u\\2
p (5)

for u, u + ue U and ze Z; here p — q is the degree of P.
We shall specify an integer meN below. The hypothesis that P is tame allows

us to conclude that

| |P(z , M ) | | , + m <M(l+H| p + m ) (6)

for zeZ and ue U provided that we assume that ||z||p+m is bounded on Z, i.e. that
Z satisfies

Z^{zeH:\\z\\p+m<M}.

We now define an 'approximate right inverse' to D2P. Let L: [1, oo) xZ x [/-» L(F, E)
be given by L(t, z, u) = S(t)L(z, u). We then have inequalities

\\L(t,z,u)v\\p<Mt»\\v\\q (7)

\\L(t,z,u)v\\p+m<Mtblu:vl (8)

\\v-D2P(z,u)L(t,z,u)v\\q<Mralu:vl (9)

for zeZ, ue U, ueF where I«: t)] = (l + ||w||p+m)||u||,+ ||u||,+m, b=p-r+d,
a = m-b;thedegreeofthetamemapZ xt/xF-»E,(z,M,D)-» L(z, u)visq-r;andd
is the offset of the family S of smoothing operators. We need (7), (8), (9) only when
v = P(z, u) in which case (enlarging M if necessary) they take the form:

||L(l, z, u)P(z, M)||p<M<fc||P(z, «)||, (10)

| |LUz, M )P(z , M ) | | p + m <Mt b ( l+H P + m ) (11)

| |P ( 2 , M ) -D 2 P(z , U )LUz,u)P(z ,«) | | ,<Mr a ( l+H| p + m ) (12)
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for t G [1, oo), zeZ, ue U. Note also that for each fixed t the map

ZxU^E:(z,u)^L(t,z,u)P(z,u) (13)

is continuous. We take

m = S(p-r + d) + \ (14)

so that lb<a. We define G by G{z) = limn^ao un where the sequence un e U is
defined inductively by

un+l = un-LnPn (15)

with the abbreviations Ln = L(tn, z, un), Pn = P(z, un), and where tn -* oo is a sequence
of real numbers specified below. We shall define sequences Sn -> 0 and An -* oo and
establish inequalities

l|wn-"n-ilU=£Sn n > l , (8:n)

l + ll»n||P+m^An «>0. (A:n)

In order to assure that the sequence un is well defined (i.e. that un e U) we require
the inequality

I Sn<M^' (16)

which together with (S:k), k = 1 , . . . , n - 1, (2), and the triangle inequality assures
that Mn_, e £/ (so that un is well-defined).

5fe/j 1. For a sufficiently small neighbourhood Zo of z0 in Z we have (5:1) for z 6 Zo.

Proo/ One takes Z0 = {zeZ: ||u, - M O | | P < 8,} which is open by (13) and (15) (with
«=0).

Step 2. We have (A:0) if

l+IKIIp+m^Ao. (17)

Step 3. We have (5: n + 1) A (A: n)=>(5: n +2) if
2 ^ + 1 / r A n < 5 n + 2 , (18)

+182
n+1<5n+2. (19)

/ By (15) and (10) K+2-un+1| | ; )<M^+1| | .P,1+1 | |<7 and by (15), (12), (5)

| |Pn + 1 | | ,<MfrAn+M52
n + 2 . (20)

Step 4: We have (A: n)=>(A: n+ 1) if

2AnsAn + 1 (21)

2 M ( ^ < A n + 1 . (22)

Proof. By (15) and (11) ||Mn+1 - u n | | p + m s Mtb
n(l +\\un\\p+m). Now use

1 + || "n + l II p+m S 1 + || Un || p + m + || Mn+1 - Un || p + m .

Now note that (8) generalizes to

\\L{t,z,u)v\\p+k<Mkt
blz,u:v\k (8:k)

where

|z, u: uL = (l +||z| |p+k+||w||p+fc)| |i; | | ,-l-| |t)| | ,+t,
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which specializes (making Mk larger) to

\\L(t,z,u)P(z,u)\\p+k<Mkt
b(\+\\z\\p+k + \\u\\p+k) (ll:k)

as before. This estimate holds for z e Zo, u e Uo, and t e [1, oo) without shrinking Zo

or l/0 further and of course Mk is independent of t, z, u.

Step 5. For each k there is a constant Ck such that

l + \\un\\p+k< Ck(\ + \\z\\ p+k)An (23)

provided that

lim— = 0. (24)
"-»«= An+1

Proo/

1 +1| un+l || p+fc < 1 +1| un || p+fc +1| u n + 1 - un || p+k

Hence we can prove (23) inductively if 2(1 + Mkt
b

n)Ln s An+1 so by (24) the inequality
(23) holds for all n > n(k) if it holds for n = n(fc). But for any fixed value of n, (23)
merely expresses the tame estimate on the map z -* un and can be proved (with Ck

depending on n) by induction on n.

Step 6. The sequence un converges uniformly in each norm || • || p+j provided that
there exists / e N such that

I 8«-I>"A:i
/'«x>. (25)

n = l

Proof. Given j let k = Ij. By interpolation

iiuB-«I,-1iip+^cii«n-iiI1_1||
But

by step 5. The result is immediate by the Weierstrass M-test and the inequality (5: n).

Step 7. The limit u = G{z) satisfies P(z, u) = 0 as required.

Proof. Hm||Pn||, = 0by (16), (18), (20).
It remains to find the sequences Ln, Sn, An satisfying (16)-(19), (21), (22), (24),

(25). For this take tn = exp (yXn), Sn =exp (-ayK"), An = exp (/3yX"), with
a, )8, y, X positive. (16) and (17) can be achieved by choosing y large while (18),
(19), (21), (22) take the form:

bK-a+p<-aK2 (18')

b-2a<-aK (19')

1<X (21')

b+p<0K. (22')
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These in turn yield:

b(k-iyl<p, b(2-Kyl<a,

so:

The expression on the left is minimized for .K =4/3 and takes the value 7. This
leads to the solution:

K=4/3, a = (3b+2e)/2, p
where 3e <a-lb.

Now (24) follows from (22'); for (25) we require

- a ( / - l ) + ) 3 < 0 (25')
which is satisfied with / = 3.

Remark. The proof has been arranged so that all the steps follows from the hypotheses
(l)-(9). Thus, if one can construct L(t, z, u)v satisfying (7), (8), (9) one can conclude
the existence of G(z), even if E does not admit smoothing operators. (The interpola-
tion inequalities and the hypotheses (8:k) are required only to obtain convergence
and continuity in the higher norms.)

Notes. We have followed very closely the proof of Sergeraert [19] who in turn
followed Schwartz [18], [18a]. This is also the argument of Moser [11]. Our formula-
tion is slightly different from that of Sergeraert in that he proves the inverse function
theorem whereas we prove the implicit function theorem. Also he proves more;
namely that if P is tame-Cr+2 (and L is tame-Cr), then G is Cr.

Note (as Sergeraert did) that we have not proved that G is tame; indeed, from
step 6 we can only conclude ||G(z)||p+,< C(l +||z||p+3j). Hamilton [5] gives a proof
which yields the tameness of G but his hypotheses would require that both P and
L be tame-C°°; this is tedious to verify (I think) in our applications. Hamilton uses
the original method of Nash [13] defining the solution as the limit of the solution
to a differential - rather than a difference - equation.

An earlier version of the proof presented here had the hypothesis 11 b < a instead
of lb< a. Thanks to Raz Stowe and Mike Field for pointing out the improvement
and indicating that this is in some sense the best possible. As 7b < a leads to K = 4/3
which agrees with Sergeraert, I presume that he followed this reasoning as well.

4. The tame contraction principle
In this section we present another (easier) version of the tame implicit function
theorem. It has stronger hypotheses and a stronger conclusion: viz. that the solution
map G is tame.

Let H and E be ^J-normed spaces, Z c H and [ /cEbe open, zoeZ and uo€ U
and 5: Z x U -»E be C2-tame of degree 0. Assume

S(z0, M0) = "o (1)
and

\\D2S(z,u)"u\\r<C<T"lz,u:ul (2)
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for Z G Z ; u,u+ue U. Here \z, u:u}r = (1 +||z| | r + ||w||r)||u||0 + ||w||n 0 < o - < l , and
the constants C and cr are independent of z, u, u and neN. (They are as usual
allowed to depend on reN.) Note that were it not for the requirement that C and
o- be independent of n, the inequality (2) would follow from the tame estimate on
D2S.

THEOREM. Under these hypotheses there exist neighbourhoods Zo of z0 in Z and Uo

ofu0 in U and a tame map G:Z0^> Uo such that

S(z, M) = U<=>M = G ( Z )

for ze Zo and u e Uo.

Proof. We solve the equation S(z, u) = u by Newton's method:

un+l = un-(l-D2S(z,un)y\un-S(z, uj),

G(z) = limun. (3)
n-*oo

The inverse operator can be calculated via the Neumann series:

(l-D2S(z,u))-lu= I D2S(z,u)"u,

and (2) gives the tame estimate (enlarging C):

||(l-D2S(z,u))-1u|| r<C[z,M:ML (4)

Now

un-S(z, un) = Q(z, «„_,, «„-«„_,), (5)

where Q is defined by

5(z, u+u) = S(z, u)+D2S(z, M)M+Q(Z, U, «),

so that (3), (4), and the appropriate tame estimate on Q yield:

\\un+x-un\\r<Clz, «„_,: Mn-Mn_1Ir||wn-Mn_1||0. (6)

In the case where r = 0 this becomes ||un+1 - Mn||os C||«n -Mn_,||o so that by
induction:

||wn+r-wn||o^5n, (7)

provided that this holds for n = 0 and 8n = (CS0)
2"C~l. Let Eo denote the completion

of E in the norm || • ||0 and for e > 0 let

U0={ueE: ||M-M0||0<e}

[ / J = {M£E 0 : II u-Hollo <e}-

Choose Zo and e > 0 so small that S(z, u) = u has a unique solution ue U* for
z e Z 0 (e.g. by Banach's contraction principle) and shrink Zo further so that (7)
holds for n = 0 when z e Zo. Assume 80 is so small that £ Sn < e.

It remains to prove that the sequence un converges in each norm || • ||r (so that
G(z)e Uo), that u = G(z) solves S{z, u) = u, and that G is tame. First (6) and (7)
imply

||z||r + ||iiII||r + ||un_1||r)5I1_1 (8)
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(for sufficiently large n) which in turn implies

for sufficiently large n, say n > m. By induction we obtain the crude estimate:

| |Un| | r<2"-m(l+||z|| r + ||um||r + ||um_1||r). (9)

But um, wm_, are tame functions of z so that (8) and (9) give

|k + , - M J r <C2" ( l+ | | z | | r )S n . (10)

But X 2"5n < oo so that (10) gives both convergence and a tame estimate. The equation
G(z)-S(z, G(z)) = 0 follows by replacing un and un_, by the limit G(z) in (5).

5. N-jet semi-Finslers
(5.1) Let M be a smooth manifold, not necessarily compact and let E-> M be a
vector bundle. A semi-Finsler [resp. a Finsler] on E -» M is a continuous map
0 : E -» [0, oo) such that for each x e M the restriction to the fibre 0|£x is a semi-norm
[resp. a norm]. Two semi-Finslers 0 and 0 ' on E -» M are called locally equivalent
iff there is a continuous function c: M -»(0, oo) such that

for D s Ex, x e M.

PROPOSITION. Any two Finslers on E -» M are locally equivalent. If M is compact, any
two locally equivalent semi-Finslers on E -» M are equivalent.

(5.2) The following trivial observation is useful for constructing semi-Finslers with
specific local properties.

Patching construction. Suppose {M,: ie 1} is a collection of open sets which cover
M and 0 ' is a semi-Finsler on £, = £|M,. Then there is a semi-Finsler 0 o n £ ^ M
such that 0|£j is locally equivalent to 0 ' for each ie I if and only if for each
i,je I, &\Et n £, and 0J|£, n £, are locally equivalent semi-Finslers.

Proof. Use partitions of unity.

(5.3) An r-jet semi-Finsler [resp. r-jef Finsler] on M is a semi-Finsler [resp. Finsler]
on the bundle Jr{M) ->Mof r-jets of real-valued functions on M. Given u E C^iM)
and x 6 M let

HLx = ©(/«(*))
and

|| u || r = sup {|| u || rx: x e A^}.

If we require more precision we may use 0 as a superscript, ||M||°X= ||M||,.?X,

ll"l|f = II «IU but generally it will be clear from the context which semi-Finsler we
are using. When 0 is a Finsler we shall use single bars rather than double:

L = ll"lkx, |«|r=|l"llr-
An N-jet semi-Finsler [resp. N-jet Finsler] is a non-decreasing sequence
= {0r: reN} where 0 r is an r-jet semi-Finsler [resp. r-jet Finsler] such that the
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first one is a Finsler. Thus

ll"l|o,xS||M|ll,x^- • •^ll
and

We call two N-jet semi-Finslers 0 and 0 ' equivalent [resp. locally equivalent] iff for
each reN the semi-Finslers 0 r and 0'r are equivalent [resp. locally equivalent].

An N-jet semi-Finsler determines an N-norm on C™(M); we denote by 8ft(M, 0)
the completion. Thus

ue38(M, 0)<*||u||,.<oo forallrGN.

This is an N-normed space. We denote by 3F{M, 0) = 38(M, 0)ioc the 'localization';
i.e.

ue^(M,0)Oi/>«e33(M,0) for all i/reC"(M).

When M is compact we have !¥(M, 0) = S8(M, 0) while if M is not compact,
^(M,0) is not an N-normed space in any natural way. It is of course an
'NxC"(M)-normed space'where ||u||r>l/, = |l<Mlr for reN, ^ Q M ) .

PROPOSITION. If 0 and 0 ' are equivalent then the corresponding N-norms are
equivalent so that 3ft(M, ©) = S8(M, 0'). If 0 and 0 ' are locally equivalent, then

, 0) = &(M, 0'). In particular, when 0 is an N-jet Finsler we have @(M, 0) =

Of course, we always have the inclusions

Ct{M) c ®(M, 0) cz Jf(M, 0) c C°(M).

(5.4) When 1/cR" is open the bundle Jr(U)^ U is trivial

Jr(U)=UxJr(n)

Jr(n) = Rx L(Un, U) x L2
S(U", R) x • • • x Lr

s(R", R)

with

7
r
M(x) = (u(x), Du(x), D2u(x), • • •, D'u(x))

for w e C°°( U),xe U. There is correspondingly a 'trivial N-jet Finsler' 0triv defined
by

l«|r.x= I |£»k«W|.
k=0

Thus |w|r = sup{|u|rx: XG t/} is the usual Cr-sup norm. We define
S8(C/,0triv) so that

| | forallreR.

(5.5) We can generalize this to define 53(1/) for certain open subsets U'<= M:

LEMMA. Let U <^ M be open with compact closure and let 0 and 0 ' be N-jet Finslers
on M. Then the N-jet Finslers 0| U and &\ U are equivalent so that
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Hence (when U has compact closure) we define 33( U) = 2#( U, 0| U). (The lemma
is of course an easy variant on propositions 1 and 2.)

(5.6) Finally we introduce a bit more notation. Assume that M is compact and that
E -* M and F^ M are vector bundles. Given open V c £ with compact closure we
have 38( V) c C°°( V) as above. Suppose F is embedded as a sub-bundle of a trivial
bundle F c M x B " and define an N-normed space 33 (V, F) by

(qe®(V)®nn

[q(VnEx)<=Fx forallxeM.
(In other words, q: V<= E -* F a fibre preserving C°° map with bounded derivatives
of all orders.) Note that each element qe 38(V, F)<z 33(V)®W has form
qi = (<?,, ... ,qn) where q, e 38 (V) so the N-norm has form

\q\r = sup{\q\ry. ye V}

It is easy to prove that the definition of 33 (V, F) is independent of the embedding
(up to an equivalent renorming).

6. The composition inequality
(6.1) Let M be a compact manifold and 3*(M) be an N-normed space of functions
on M. We assume

with continuous inclusion on the right.

l"lo=||"l|o (1)
for we &(M). (As usual we denote the f̂ -norm of !F(M) by ||u||r and the usual
Cr-sup norm by \u\r.)

Given an open set U<= M xR" define an open set &(M, U)cz&(M)®M" by the
requirement that

ue&(M, t / )o(x , u(x))e U forallxeM.

Thus each u e 3<{M, U) and qeSft(U) determines v: M-*U via the formula

v(x) = q{x,u(x)) (2)
for x e M.

We say that S'(M) satisfies the composition inequality iff (for every U) we have
ve3F{M) and for each r> 1 there is an inequality

h\\r^cY,\q\k\\u\\jr--\\u\\jk, (3)

where c = c{r, U) is independent of q e 38 (U) and we 9{M, U) and the sum is over

all terms with 1 < /c < r and 1 <_ / , , . . . ,jk < r, and _ / !+• • • +A = r.

THEOREM. Assume &(M) satisfies the composition inequalities and the interpolation
inequalities. Then the map

(q,u)->v
is tame-Ck of degree k for each keN.
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Proof. Interpolation gives estimates

Hence

so that if / c 38 (U) x &(M, U) satisfies

{q,u)BJf<*\q\x+\\u\\x<c

we have the estimate

Since the right hand side is homogeneous of degree one in (\q\n \\u\\r) (or by using
the convexity of the log) this gives the tame estimate

\ \ v \ \ r ^ c ( \ q \ r + \\u\\r)

for (q, u) e Ji. The derivative (q, u, q,u)^v of the map (q,u)-*v is given by

v(x) = q(x, u(x)) + D2q(x, u(x))u(x)

which is a map of the same form. The tame estimate on the derivative implies the
continuity of the map by the mean value theorem; this completes the proof.

Remark. Forfixedq one can use the interpolation inequality ||w||;< c||u||f,r~j)/r||u||yr

and obtain the global estimate | |w|| r<c(l +||«| | r) for we &(M, U).

COROLLARY 1. Under the hypotheses of the theorem, &(M) is a tame algebra; i.e.

Proof. Take n = 2, q(x, u, v) = uv, and U = {(x, u, v): \u\ +\v\ < 1} in the remark and
use proposition 2 of § 2.

COROLLARY 2. Under the hypothesis of the theorem, each i(/e C^iM) gives a tame

linear map 3F(M) -» 3F(M) :u-*ipu of degree 0.

Proof. C

(6.2) Now let E -* M be a vector bundle and suppose there is a vector bundle
embedding E c M xR" in a trivial bundle. We define

&(M)®E={ue&(M)®M":u(x)eEx for all xeM}

so we obtain an f^-normed space of sections of E 'of class ^ (M) ' . By corollary 2
this space is well-defined; i.e. using a different embedding gives an equivalent
M-norm.

Suppose F-* M is another vector bundle and U <=• E is an open set with compact
closure. Let

U}
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and let %{U,F) be the N-normed space of (5.6). One easily generalizes the composi-
tion theorem to:

COROLLARY 3. The map

is tame-C of degree r for every reN.

(6.3) Now let 0 be an N-jet semi-Finsler on M. We say that 0 satisfies the composition
inequalities iff for every W-jet Finsler on M xU" there exist continuous functions
c = cr: M xR" H> (0, oo) such that for q e C°°(M xR"), u e C°°(M)® R", we have the
pointwise estimate:

where v is given by (2) and the indices in the sum range as in (3) and y = (x, u(x))
e M xR". (Note that the definition is meaningful even when M is non-compact.)

PROPOSITION. If the N-jet semi-Finsler 0 satisfies the composition inequalities and M
is compact, then the N-normed space !F(M, 0) satisfies the composition inequalities.

Proof. This is immediate from Faa di-Bruno's formula for the higher derivatives of
a composition of maps. Note that in particular an N-jet Finsler satisfies the composi-
tion inequality so we recover the result that the map

9B([/)xC°°(M, U)+C°°(M)

(q,u) + v

is tame-C of degree r.

(6.4) Notes. This section follows [5, p. 147]. See also [6]. The formula of Faa
di-Bruno is (in the one dimensional case)

Dr(qoU)(x) = £ cDkq(u(x))Dj'u(x) • • • Dj"u(x),

where the sum is over indices as in (3) and c = c(k,ju... ,jk, r) are certain integers.
(See e.g. [7, p. 50].) In the general case the formula is true if the multiplication on
the right is appropriately interpreted; see e.g. [1, p. 3]. Thanks to Bob Welland for
pointing out that the formula there only holds on the diagonal; the authors neglected
to symmetrize the right hand side (mea culpa).

7. Unfoldings
Let M be a compact manifold. An unfolding is a pair (F,f0) where F is a finite
dimensional submanifold of Diff (M) and/oe F; we call/othe centre of the unfolding
and say F is an unfolding of f0.

Two unfoldings (F,/o) and {F',f0) are germ-equivalent iff/o=/o and cSr\F =
(gnF' for some neighbourhood $ of f0 in Diff (M). We are interested only in the
germ (i.e. germ-equivalence class) of the unfolding. Thus we are always free to
'shrink F\ i.e. to replace F by an open neighbourhood 8 n F o f / 0 i n F. We shall
often abuse language and denote an unfolding by F rather than by (F,/o).
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We state the definition more precisely: a subset F c Diff(M) is an unfolding of
/o iff there is a finite dimensional vector space F, an open neighbourhood F of the
origin in F, and a map F-» F: y^fy satisfying the following conditions

(i) the evaluation map FxM-»M:(y, x)-»/,,(*) is smooth;

UQ fy\y=O=fo\
(iii) the map y-*fy maps F bijectivity onto F ;
(iv) for each -yeF the linear map A(y):F-> atf°(M) defined by

is injective.

Remark. We could if we like use a more general definition; namely we could define
an unfolding with centre / 0 to be a map F-» Diff (M): y-*fy satisfying (i) and (ii).
The reason is that if f is a submanifold of F containing 0 such that for F = Tof c F
the restriction A(0)|F is injective, then we may shrink f and obtain an unfolding

which satisfies (i)-(iv). (This is by the implicit function theorem.) The theorems we
prove about unfoldings satisfying (i)-(iv) can be reformulated as (more general)
theorems about unfoldings satisfying (i), (ii); the general case can then be reduced
to the special case by judiciously choosing the submanifold f. (We work with the
more restrictive definition since it is more suggestive geometrically and makes the
notation somewhat less cumbersome.)

Now for / e Diff (M) let C(f) denote the topological conjugacy class of/:

C(/) = ( r / ° <P~'k e Homeo (M)} n Diff (M).

Roughly speaking, the unfolding F is universal iff there is a neighbourhood ^ of
/<, in Diff (M) such that

/EF

Make the (unwarranted) assumption that the sets C{f) are submanifolds of finite
codimension in Diff (M) and that they fit together nicely (like the orbits of a group
action). We can then solve (1) by the implicit function theorem, if we can solve it
infinitesimally; i.e. if

T/S=T,C(f) + TfE (2)

(Note that (2) expresses the idea that the 'submanifolds' C{f) and F are transverse
a t / )

Let us examine (2) more closely. Suppose N is another smooth manifold (even-
tually we take M = N) and that feC°°(M,N) i.e. that / :M->N is smooth. If
U-> CX{M, N): f-»/, is a smooth curve through / (i.e. / \,=0=f) we expect that /
defined by

'-£4- (3)
lies in the tangent space 7}C°°(M, N) to the manifold C°(M, N) at the point /
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This leads to the definition

7}C°°(M, AT) =

where ^ ( / ) denotes the vector space of vector fields along / :

lf(x)e Tfix)N for all xeM

Now if We C™(M, N) is a submanifold and fe W we define TfWc %(f) by the
condition tha t / e TfW iff there is a curve f-»/, as above with/,£ W for all teU.

Now if / is a diffeomorphism, i.e. fe Diff (M, N) there is a linear isomorphism
given by

for xe N. Thus take M = N and apply /„, to both' sides of (2):

/*( T/S) =/* Tf(C)(f) +/* 7}F. (2')

Since $<= Diff (M) is open we have

ft(T/S) = Z(M). (4)
For we3£(M) we expect

w €/„, 1>C(/)» w = — cp, o/o <p7' O/- ' | ,_0

for some curve R-» Homeo (M) through the identity (i.e. (p,|,=0= e = identity map
of M). This gives

/^F/C(/) = (1 - / # )^ (M) , (5)

where the linear operator /#:#?(M)-*#?(M) is defined by f#<p = Tf°<p°f~x for
<p e #f(M) (i.e./#(?(x) = Df(y)<p(y) where y =/" ' (x) , x e M). Finally in the notation
of (iv) note the equation

/1|[TyF = A(y)F<=af(Af) (6)

f o r / = / r , yeT. We thus reformulate (2') in the form

ir(M) = ( l - / # m M ) + / l c 7 } F , (2")

which asserts that for any we$£(M) there exists £ = <p£,3f(M) and /3 = A{y)ye
%{M) satisfying

w = ( l - / # K + j8, pef*TfE (7)

The solvability of (7) implies that the image of (1 - /# ) has finite codimension,
i.e. that dimcoker (1 - / # )<d im (F)<oo. (This as we have just seen expresses the
idea that the conjugacy class C{f) has finite codimension.) We may express this
by requiring a linear map u>{f): ^(M)-»F, where F is a finite dimensional vector
space such that

ker (»(/)) <=im(l-/#). (8)

Given (8) we can solve (7) if the additional hypothesis
&>(/)|/*T}F->F is surjective (*)

is satisfied.
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Now as we indicated in (0.7) there is no hope of solving (7) if 3£{M) denotes
some familiar space of vector fields say %{M) = C°{M)®TM or %(M) =
C'X'(M)®TM. We shall however show that sometimes one can solve (7) get 9€(M) =
&{M)®TM with ^(M) a suitable M-normed space of functions between CX(M)
and C°(M). Roughly, we call the unfolding Fpreversal if it satisfies (8), i.e. if C{f)
has finite codimension and infinitesimally universal if (in addition) it satisfies the
transversality condition (*). In §§ 8,9 we show how to make these heuristic consider-
ations precise and apply the tame implicit function theorem to prove:

THEOREM A. An infinitesimally universal unfolding is universal.

8. Spaces adapted to an unfolding
(8.1) Let M be a compact manifold, FcDiff(M) an unfolding, and ^(M) an
M-normed space of functions on M:

Definition. The space !F(M) is adapted to the unfolding F iff it satisfies the following
conditions:

(i) S'(M) satisfies the composition inequalities of § 6;
(ii) 2F(M) satisfies the interpolation inequalities of (2.6);
(iii) SF{M) admits a family of smoothing operators as in (2.6);
(iv) the map F x &(M) -> 9{M\ (f u) -*f*u is tame-C2;
(v) there exists reN and C > 0 such that for ue &(M),x,ye M there exists

neZ with

\u(r(x))-u(f(y))\^C\\u\\rd(r(x),f(y)),
(where d is any metric on M compatible with the usual differential structure on
M; i.e. such that the co-ordinate charts are Lipeomorphisms on compact sets).

As usual put %{M) = &(M)®TM, 2(M) = &{M)®L(TM), and note that (i), (ii)
and (2.2) give a tame bilinear map

(8.2) The purpose of this crucial definition is to enable us to rewrite the equation

g = <P°f°<p~\ (1)

which involves g e Diff (M), <p e Homeo (M), and fe. F in the form

P(w,£y) = 0, (2)

which involves w€^°°(M), £e#?(M), and yeT. In other words we are going to
rewrite an equation on a non-linear space as a (non-linear) equation on a linear space.

To do this let exp: TM-* M be a smooth exponential map: i.e. for each xe M
expx = exp | TXM is a diffeomorphism onto an open subset of M and

expx(0) = x

D expx (O)JC = x
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for x e M, x e TXM. (We require no relation to sprays or geodesies.) Given
£6 %°{M) = C°(M)® TM define exp (£): M-* M by exp (£)(*) = exp (£(*)). Thus
the equation

£) (3)

establishes a bijective correspondence between 3£°{M) and a neighbourhood of the
identity map in C°(M, M) and the equation

g = exp(w)°/0 (4)

(where f0 is the centre of the unfolding F) establishes a bijective correspondence
between a neighbourhood of 0 in #"°( M) = C°°{M)®TM and a neighbourhood ®
of/oin Diff(M).

Fix a finite dimensional vector space F, a neighbourhood T of 0 in F, and a bijection

Y^F:y^f=fy (5)
as in § 7.

Fix a neighbourhood Sifc ST(M) x%{M) xT of the origin. If 5«f is sufficiently
small there are maps Qi:'X-^ #?(M), i = 1,2, defined by

/ " r f = exp {
/og- 'c ( p = exp(f + <?2(w, £ -y)),

where <p,g,f are determined from ,̂ w, y by (3), (4), (5). (Q, does not depend
on w.)

Define P: #?-» ̂ (M) by:

P(w, f, y) = (l - / # ) f + Q2(w, f, y)-Oi(w, f, y).
(8.3) We assume that ZF(M) is adapted to F and derive some basic properties of
these constructions.

I. The maps

determined by (3), (4), (5) are continuous.
(From now on assume (g, <p,f) and (w, £, y) are related by (3), (4), (5).)

II. Equation (2) holds if and only if

f°<P°f-]=f°g~l°<p. (V)

Hence P(0,0,0) = 0.

III. The map P is tame-C2.
Proof of III. Shrink $f and construct a neighbourhood U of the zero section in TM
so that the maps <?, have form
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where the maps y-* qx and (w, y)-» q2 are tame-C°° into 58(t/, TM). (Thus q{, q2

are fibre preserving: q^U nTxM)cz TXM for xeM.) Now use (i), (ii), (iii) and
corollary 3 of (6.2).

IV. The partial derivative D2P: 2ff-> L(3£{M)) has form

where D2P = D2P(w, £, y), <I>j = ̂ (w, £, y) and the <&; are given by maps <£,: 5if->
i?(M) such that the evaluation maps

are tame and $*((), 0,0) = 0.

Proof of IV. <£, is the derivative along the fibre of qt. The vanishing follows from
the equations D2(?,(0,0,0) = 0 and Q2(0, £, 0) = 0.

V. The partial derivative D3P:$f-> L(F, %(M)), (which is tame by III) satisfies
D3P(0,0, 0)y = A(0)y, where A(y) :¥^ f^TfF is the isomorphism of § 7(iv).

Proof of V. P(0,0, y) = Q2(0,0, y), exp (Q2(0,0, y)) =/o/0-'.

VI. If (1') holds and £ is sufficiently small, then cp is a homeomorphism (so that
(1) holds).

Proof of VI. This is the purpose of (v) of definition (8.1). (See [16, p. 462].) We
shall sketch the proof under the simplifying hypothesis that M is an affine manifold
(e.g. or torus) so that the exponential map has form expx (x) = x + x Assume (1').
Then

g"o(p = (pcf" (1")

for neZ. Since <p is homotopic to the identity and M is compact, <p is surjective
so it is enough to prove <p is injective. Thus we assume <p(x) = <p(y) and prove x = y.
By (1") we may replace x,y by f{x),f"(y) for some n to obtain:

Thus if C| |£| | r<l,x = >' follows from

9. Universal, preversal, and infinitesimally universal unfoldings
We continue the notation of §§ 7, 8.

Definition. The unfolding F is universal iff there is a neighbourhood ^ of f0 in
Diff(Af) and continuous maps $-» Homeo (M):g-> tp, <§-» F:g-*f such that

g = <p°f°(p~1

for ge'S. (The topology on Homeo (M) is the topology it inherits as a subset of
C°(M, M).)

Now define T:2(M) xF^>L(%(M)) by

T(*,/)f = (l+*)/„£

for <De 2(M),fe F, (e%(M).
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Definition. The unfolding F is preversal (with respect to the N-normed space
which is by assumption adapted to F) iff there is a neighbourhood Jfc Z£(M) x F
of (0,/0), a finite dimensional vector space F, a tame family J:N-> L(#?(M)), and
a continuous family w: Jf-* L{3£(M), F) such that we have

(i-r(*,/))f = w (D
whenever (<£,/) e ̂ V" and f, w e 3f(M) satisfy

f = / ( * , / ) w, (2)

* > ( * , » = 0. (3)

The unfolding is infinitesimally universal (with respect to 9;(M)) iff in addition it
satisfies the 'transversality condition'

(By continuity (*) will hold for (4>,/)e *V with V̂ sufficiently small if it holds at

(*,/) = (0,/0).)

THEOREM A. An infinitesimally universal unfolding is universal.
Proof. According to I, II, VI from § 8 it is enough to produce a neighbourhood 38
of 0 in 3T(M) and a continuous map 9B<= 2f°°(M)-»af(M) x l \ w-*(£,y), such
that P(w, f, y) = 0 for weM. According to the tame implicit function theorem and
III of § 8 it is enough to produce a tame map

(w, £,y, w)-*(i,y)
which is linear in w and satisfies

D2P(w, (, y)i + D,P(w, (, y)y=w.

By IV this may be rewritten in the form

( l - r ( * , / ) ) f + A(w,f,r)y=w1 (4)

where

A(w, c y) = (1 +<J>2(w, C y)rlD3P(w, c y),

w, = (l+*2)- 'w.

By continuity, V, and (*) we may choose y so that

and then solve (4) by taking £ = /(4>,/)(w, - A(w, I, y)-y). The tame estimates follow
from the tame estimates on / and IV of § 8.

10. Level decompositions
A level decomposition respecting fe Diff (Af) is a collection

ô> Sit Rt, S2,..., Sh Rt

of open subsets of M satisfying the following conditions:

(i) M c R u S where R = ( J U RI, S = Uj= i Sj;
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(ii) c\(Rl)ncl(Rj) = 0
cl(S,)ncl(S,) = 0
c\{Sj)ncl(Ri) = 0
c\(Sj)nc\(fn(Sj)) = 0

(in) f(c\(Si+]vMt))<zMt,

where M? = UJ=0
 RJ u 5> M r = U|=i Rj+i u Sj (in these unions take So = /?,+i = 0) .

A /ere/ decomposition respecting an unfolding F is one respecting each/e F Note
that the conditions are open so that a decomposition respecting f0 respects a
neighbourhood Fo of/0 in F.

Now define

n«(/)=n

wm,/)= u n rw ,

wu(ft.-,/)=u n m ) ,
m>0 nam

so that ftj(/)= W'(ilhf)n Wu{flhf) and we have two decompositions

i = 0

of M into disjoint /-invariant sets.
These definitions are inspired by the 'spectral decompositions' and 'nitrations' of

Smale [20] but we assume no hyperbolicity of fl,-. For us the decomposition serves
a 'bookkeeping' purpose. An orbit in W(Clj)n Ws(ilt) (this implies i^j) can be
thought to 'originate' in ilj and 'terminate' in ft,. On its journey it passes successively
through the sets Rj, Sj, i?,.,, S,_,,..., Sj+1, J?,. It has at least one point and at most
two points in each Sk where j > k > i and so these strips serve as 'fundamental
domains'. The recurrent behaviour occurs in the sets Rt. The strip S, serves as an
'interface' between J?,_, and Rt.

By (iii) an orbit cannot leave and re-enter some /?,. Moreover (ii) and (iii) imply

Thus ft,(/) is a (compact) isolated invariant set and Rt is an invariant set and an
isolating neighbourhood for it. (The terminology is from [2].) Thus

n=0

for any neighbourhood Nt of ftf(/) in /?,.
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PROPOSITION 1. Let Nt be any neighbourhood of O,(/0) in Rt. Then there is a
neighbourhood Fo off0 in F and open sets P", P* c Rt such that

Ri = NiuP'iuP",

W"(ni,f)ncl(P>) = 0,

W(nbf)ncl(P?) = 0,

forfe Fo. Thus for a suitably large m

f-(cl(P'l))ncL(Rl) = 0,

forfe Fo and n > m.

PROPOSITION 2. Given TV, as in proposition 1 (for each i = 0, 1,...,/) there is an
integer m and a neighbourhood Fo o / / 0 in F such that for each fe Fo and each xe M
we have f"{x)£ [_}l=0 Ntfor at most m values of n eZ .

Proof. From the open cover M = LJi=0 N{ extract a finite subcover M =
L : and take m = 2 I mj

11. Local preversality
Continue the notation of § 9. In particular, assume &(M) is adapted to the unfolding
F.

Definition. Let JVcMbe open. Say that F is preversal at N (with respect to
iff there is a neighbourhood ./V*c j?(M) xF of (0,/o), a finite dimensional vector
space E, a tame family J:M-* L('X(M)') and a continuous family 8\N^> L($£(M),F)
such that we have

«l-T(<t>J)U)\N=w\N (0)
whenever (&,f)eJf and £ we^(M) satisfy £ = /(*, /)w, 5(«I>,/)w = 0.
Remark. It is enough to define J(<J>,/) w and ^(O,/)^ under the additional assump-
tions that supp (<!>), supp (w)c Z, where ZcM is an open set satisfying
cl(JVu/" ' (W))cZ for (*,/)e^V. For then we may choose ipeC^(Z) with

==i and take

Since T(*,/)^|iV= T(«^<D,/) |̂A/, w|iV = il/w\N, for 4 i v e f ( M ) it follows that / '
and S' satisfy (0) if / and S do. The linear maps $ -» ip<t>, w -* i/»w are tame so that
J', 8' are tame if J and 8 are.

Now let Ro, Su ..., R, be a level decomposition respecting F.

Definition. Say that the level decomposition is locally preversal iff for each
i = 0, 1 , . . . , / there is a neighbourhood N, of fij(/0) such that F is preversal at JV,.

Recall that S = Sl u • • -u S, and define ^(S)o = {w€^(M): supp (w)c S}.

THEOREM. Aŝ wwie the level decomposition is locally preversal. Then their is a neighbour-
hood JfcJ£(M)xF of (0,/0), a finite dimensional vector space E, a tame family
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J: Jf^> L{%(M)) and a continuous family 8: Jf-* L{%(M), E) such that we have

(l-T(<l>,f))C-weZ(S)0

whenever (<t>,f)eJf, C,we%{M) satisfy C = J(<&,f)w, 8($,/)w = 0.

Proof. In other words we can solve the equation (1 - T)£ = »v on M\S. Take N=Nt

in definition of 'preversal at N' to obtain Jfh E,, Jt, 8, and define

Jf = Jf0 n JV, n • • • n V̂,

E = EoxE, x- • • xE,

S = (So, « „ . . . , 8,).

Shrink -A" further to obtain the decomposition Rt, = N,,u P*u P" as in § 10. This
gives an open cover

i = 0

so a suitable partition of unity gives a decomposition

f=
i=0 i=0

(1)

where wf = ( l -T(*, / ) )J , (* , / )w, w, = wj + wr, supp(wj)<= P?, supp (wr)«= ^ ,
and supp (w') c S. (We can assume that wf vanishes on N, for i ̂ j by multiplying
by a suitable cut-off function; hence the left hand side of (1) vanishes on
JVou- • -uN,.) Let

where

The series converge pointwise since by proposition 1 of § 10 each contains only
finitely many terms. (They do not converge uniformly however.) Clearly

d-T{^,f)Ci = ^ (2)
supp (wf)•=/?,., (3)

so we replace £ by (/>,£ for a suitable cut-off function i//, and investigate the extent
to which this invalidates (2).

We take i/», e C^iM) satisfying

^| i i iu / - | ( l i 1 - )= l , (4)

/(supp («/0) u supp (if,) <= S,_, u /?, u S,; (5)

(we take S,-_, = 0 if i = 0). First note that (shrinking Jf if necessary) proposition 1
of § 10 gives an m independent of (<!>,/) e Jf with
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for n > m. Hence tfi£i may be represented by a finite series so that the map w -* tyh
is tame. Let

A, = (/(supp (t/0) u supp (

so that A,c $._, u s, and let wj denote the error in (2) when & is replaced by i/>,̂ :

wl + w;. (6)

We claim supp(wJ)cAj. Clearly H>!(X) = 0 whenever i/<(x) = (/>(/"'(x)) = 1 since
T(4>,/)i/>^= T(4>,/)£ at such a point x. Hence w>;|/?, = 0. In particular, w[(x) = 0
at any value of x where w,(x)=0. On the other hand wJ(x) = O at any x where
i/f(x) = i/'(/~1(x)) = 0 and w,(x) = 0 for then the three other terms of (6) vanish.
Hence vt>!(x) ^ 0 only when x & /?, and either tj/(x) # 0 or i/»(/~'(x)) ^ 0 as required.

We now put

so that (1) and (6) give

I
i=0

where w"= w'+XJ=0
 w'i- Hence supp (w")<= S as required.

12. The interface condition
Continue the notation of §§9, 10, 11. Define N-normed subspaces by:

X(S,)0 = {w e 3£{M): supp (w) c S;}.

We say that the unfolding F satisfies the interface condition (with respect to the
space S'(N) and the level decomposition) iff there exist peN, cre(0,1)<=R, a
neighbourhood JVC Z£(M) X F of (0,/0), finite dimensional vector spaces F , , . . . , ¥,,
tame families IT], TT": N^> L(9£{SJ)0, 3£{M)) and continuous families SjiJf-*
L(af(5j)0, Fj), j = 1 , . . . , / , satisfying:

(i) w = 77-;($,

whenever ($ , / ) € ̂  and w e ^(Sj)0, satisfy ej(<I>,/)»v = 0. Here we use the abbrevi-
ation:

and c= c(k) is independent of <I>, /, w and n.

THEOREM B. Assume that the level decomposition is both locally preversal and satisfies
the interface condition. Then the unfolding F is preversal (with respect to
Hence if it also satisfies the additional transversality condition

it is infinitesimally universal and hence (by theorem A) universal.
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Proof. Let / : J V - » L ( ^ ( M ) ) , 5: •#"-> L(#f(M),E), denote the maps constructed in
§ 11, so that 8(<&,f)w = 0, £ = J(<$>,f)w, imply that

f-T(4>,/)f=w+I u>.
J=I

where w, e #?(S,)0. Define

F = ExF, x- • • xF,

7 = 1

where

The tame estimates

follow from (ii) and the formula for summing a geometric series. This gives the
tameness of the map ,yVx#f(M)-> %(M), (4>,/, w)^>£ The continuity of the map
/ x f ( M ) - » E , (4>,/, w)^a)(<P,f)w and the equation

are immediate.

We now give a criterion for verifying (*) in terms of 5 and su..., et.

Remark Condition (*) holds if 8(*,/)(/! |c7>F) = E and

£,(#, /){(/* TfF) n ker (S(* , / ) ) n af(^)0} = Fy

fory= 1 , . . . , / . (As usual it is enough to check these conditions at (<&,/) = (0,/0).)

13. Summary and prospects
(13.1) Robbin [16] proves:

THEOREM A. An infinitesimally stable diffeomorphism is structurally stable.

THEOREM B. A locally Anosov diffeomorphism is infinitesimally stable.

THEOREM C. A diffeomorphism satisfying Axiom A and the strong transversality
condition is locally Anosov.

We have extended two thirds of this trilogy to unfoldings.

THEOREM A. An infinitesimally universal unfolding is universal.
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THEOREM B. An unfolding which admits a locally preversal level decomposition satisfy-
ing the interface condition is preversal {and hence infinitesimally universal if it also
satisfies the transversality condition).

Conjecture C. An unfolding whose centre satisfies Axiom A, the no-cycle condition,
and the strong finite codimension condition is isomorphic to an unfolding which
has a locally preversal level decomposition satisfying the interface condition.

We define the terminology used in conjecture C.

Definition. Call two unfoldings (F,/o) and (F',f'o) isomorphic iff fo=f'o and
there exists a homeomorphism {F,fo)-*(F',f'o):f-*f and a continuous map
F-* Homeo (M):/-» q> such that

f=<P°f°(p~*
for/eF.

PROPOSITION. Suppose (F,/o) and (F',/o) are isomorphic. Then F is universal if and
only if F' is.

For references on 'Axiom A' and the 'no cycle condition' see [22] (the updated and
annotated version of [20]). From our point of view the most important consequence
is that the stable and unstable manifolds

Ws{x,f) = {yeM: lim d{fn(x),f"{y) = 0}
fl^oo

are actually (immersed) manifolds for each x e M. This justifies the following.

Definition. A diffeomorphism / satisfies the strong finite codimension condition iff
for each xeM (the sets Ws(x,f) and W"(x,f) are immersed manifolds and) the
codimension of the singularity of the intersection of Ws(x,f) and W"(x,f) at x is
finite. In particular, / satisfies the strong transversality condition iff for each x this
codimension is zero, i.e. Ws(x,f) and W(x,f) intersect transversally at x.

(13.2) We now sketch the 'proof of conjecture C.

Step 1. Using Axiom A and the no-cycle condition construct the 'spectral decompo-
sition'

n(/)=no(/)un,(/)u---uft/(/)
of the non-wandering set of/; then construct a corresponding level decomposition.
Here one follows [20]; a level decomposition is more or less the same thing as a
'filtration'. Fix neighbourhoods Nt of ft,-(/).

Step 2. Construct the tame splittings

#T(JV{) =£?( / )© £?(/)©£?(/) , (1)

which are invariant under / # . Roughly speaking, the spectrum of
/#|£f(/) , /#|£?(/), /#|£?(/) should lie inside, near, outside the unit circle but since
we are using N-normed spaces rather than Banach spaces this must be expressed
in terms of tame asymptotic estimates. The splitting will in general be different from
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the one determined by the hyperbolic structure of Cl,. In particular, usually it will
not come from a splitting of the tangent bundle. This means that £J, %°, %" will
not be invariant under multiplication by a real valued function and the projections
onto the summands will not be local (i.e. pointwise denned).

Step 3. It is at this point we must define the space ^(M). Introduce t̂ -jet semi-
Finslers 0, on N{ and prove the asymptotic tame estimates. The 0, will be chosen
so that certain derivatives can blow up at W(Slhf) or W-"(nf,/). Replace F by an
isomorphic unfolding to achieve the conditions

W(a , , / ) n JVf = W'(abf0) n N, (2)

for e = s, u, i = 0 , 1 , . . . , / . Thus ®i\Nt will be independent of/

Step 4. Use the tame contraction principle to define perturbed splittings

af(N{) = «;(*,/)es?(*,/)0 *;•(*,/) O)
which are invariant by T(4>,/). Take E, = g?(0,/0) and define 5,-(*,/): af(JV{)-»E,-
to be the projection on £?($,/) by (3) followed by the projection on Ef by (1). Thus

ker («,(*,/)) = *?(*,/)© »r(*,/)
and the operator Ji(®,f):9?(N{)^!%(N{) is defined using Neumann series. This
verifies local preversality.
Step 5. At each point x e Sk of the interface set determine i and j with i < k s j so
that

xeWs(ni ; /o)nWu(n, , / o) . (4)

Then use a tame version of the C°° preparation theorem of Malgrange-Mather (et
al) to obtain a neighbourhood U of x and a decomposition

W| [ / = < ; ( $ , / , t/)W + < ; ( * , / , t/)W (5)
with

(6.s)

(6.u)

Then piece these together to achieve a decomposition

w = 77 (̂<D,/)w + *£(*,/) w

for we 3f(Sk)0. The decomposition (5) will require a hypothesis

ex(1),/)M' = 0

where ex(4>,/) e L(aP(Sk)0, Fx) and the dimension of Fx is related to the codimension
of the singularity of the intersection (5). (In particular, we should have dim (Fx) = 0
if the intersection is transversal.)

Step 6. Prove the following compatibility condition. Each point xeSk has a neigh-
bourhood U such that for w e 3£{Sk)0 we have

(7.s)

(7.u)
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for i<fc</ By proposition 2 of § 10 there is a bound independent of x on the
number of points on the orbit of x which are not in No u Nt u • • • u Nh Whenever
we are in some N, a tame asymptotic estimate holds. This verifies the interface
condition.

(13.3) In part II we shall carry out this program for a specific class of examples.
The examples are restricted to make the technicalities as manageable as possible;
our only aims are to show that the theory of part I is not vacuous and to provide
some guidance in the general case. We see the following obstacles to proving
conjecture C in full generality.

(13.3.1) The splittings are not local; hence equations (5), (6), (7) are meaningless.
We need a weaker condition, say 'locality at the stable and unstable manifolds' to
circumvent this difficulty.

(13.3.2) We do not know good general techniques for constructing N-jet semi-
Finslers. Finding smoothing operators seems to be a problem. In part II we have
to work fairly hard to construct the N-jet semi-Finsler near the source and the sink.
This seems absurd; nothing can go wrong there. (Famous last words!) Mike Field
has suggested a way around this. He proves a 'hybrid tame implicit function theorem'.
(Of course, I prefer to do it my way.)

(13.3.3) I do not know the appropriate generalization of the tame preparation
theorem (see § 16 in part II) from 1 to n dimensions. This is because the correspond-
ing argument for germs loses too much differentiability in the induction step.
Probably the way around this difficulty is to incorporate the loss in the M-jet
semi-Finsler. Thus suppose that for each reN there exists k = k( r) > r so that for x e S

Then &(S, 0) = C°°(5) as sets but the N-normed spaces &{S, 0) and C°°(5) will
not be tamely equivalent.

PART II. ANALYSIS OF AN EXAMPLE

14. Overview
In part II we carry out the program sketched in the 'proof of conjecture C given
in § 13 for a simple example. Some general theory is also given (e.g. the 'tame
preparation theorem' of § 16) but this theory is probably not yet sufficiently general
to handle conjecture C in general (although it does suffice for the example). In this
introductory section we show how to solve

(1-/#)£ = * (0
under the hypothesis

w w = 0. (2)

We shall worry neither about perturbing /# to T(<t>,f) nor convergence. (The
construction of the f^-normed space 2F(M) in which the various series converge is
motivated by the heuristic argument and is given in detail in the sequel.)
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(14.1) The diffeomorphism / : M -> M has a non-wandering set consisting of a sink
a0, two saddles fl, and ft2,

 a n d a source a3. Thus M is a two-dimensional torus.
We assume W ( n , ) \ n , c : Ws(n0), W s ( a 2 ) \ a 2 c W(Cl3), and define

wus = r(o,)nr(n2).
Thus cl (Wus) = W"su(l ,uf t 2 and

M = ws(a0) u ci (wus)u wu(a3).

(14.2) Now to solve (1) we may assume without loss of generality that supp (w)<= Z
where Z is a neighbourhood of cl (Wus). Indeed if w\Z = 0 then w = wu + ws where
supp(wu)c: WU(O3), supp(ws)c Ws(n0), so (1) is solved by

where

r=
n = 0

(14.3) Next we assume that there are coordinate systems z, = (x,,>>,): M^R 2 , t = 1,2,
which linearize / at a,-. Thus a, e M,, c l ( W " s ) c Z c M , u M2, and:

where 0</u.i < 1 < A,,0< A2< K^t2. We write w = w, +w2 where supp (Wj)c M,;
the arguments for i = 1 and i = 2 are the same (replace / by J~]) so we suppose
without loss of generality that supp (w) c Mi.

We first try to solve (1) by the Neumann series

£=!/>• (3.s)

Note that if supp (w) c {\yi\ < L} then supp (/# w) c {|_y,| < /u"L}, so that (3.s) conver-
ges on M if it converges on M,. To investigate this write

so that

€i(x,y)= I Aru1(A7"x,M7">'),
n=0

The series for 17, converges as m, < 1. The series for £, apparently diverges as A, > 1
however if we differentiate twice with respect to x we obtain

which also converges.
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(14.3) We have reduced to the case

ui(x,y) = ulo(y)+un(y)x

vl(x,y) = 0.

In this case we try the other Neumann series

S = -lf?w- (3.u)

This gives

7],(x,y) = 0

&o(y) = - I *i"uMy) (4.0)

£u(y) = - I uu(tfy). (4.1)

This series for f,0 converges as A,> 1; as /u., < 1 the series for £,, also converges
provided that

«,i(0) = 0 (5)

and u u satisfies a Holder estimate.
We have solved (1) on M{. We cannot stop here however for the series (3.u)

blows up on M2. Indeed since supp (w) c M,, £ will be invariant b y / # near fl2 and
n3. Near O3 this causes no problem, for any invariant vector field which is continuous
on W"(ft3)\O3 and vanishes at fl3 is automatically continuous at fl3. Near ft2

however we are only assured of continuity if £2 = 0.

(14.4) To get a feeling for how to attack this problem, assume the W"s consists of
a single orbit W"s = {f"(p): neZ} and that 5 is a small neighbourhood of p. We
assume further that the coordinate systems z, and z2 are related by formulae

y2=c(yt) (6)

on S. (We shall relax these assumptions somewhat in § 22.) Instead of seeking the
solution of (1) in the form z,#£ = (£,,()) we allow Zi#£ = (£i, Vi) but impose the
condition that Z2#£ = (0, T/2) SO that £ will be continuous on M2. Thus we seek £
such that zI#£ = (£, 77,), f = 1,2, where

(y)x (7)

where f10, ^n are given by (4.0) and (4.1) as before and the 77̂  are to be determined.
(6) and (7) give the overlap relations

, &(x + b(y), c(y)) = f (x, y)+b'(y)Vl(x, y)

t]2(x + b(y), c(y)) = c'(y)Vl(x, y)
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on S which reduce to:

Now c'(y) 5*0 so it is enough to solve the first two equations to obtain a solution
on S. Once we have the solution on 5, the invariance

assures that rj, is continuous on M, and hence that £ is continuous on M. Now we
see that we can solve by dividing through by b'(y); this requires that at any zero
of b', £,0 and fn vanish to the same order as b'.

Now W{il2) = {x2 = 0}, Ws(n,) = {x, = 0}, so by (6)

Thus the order of the zero of b' at y\{p) is the degree of tangency of W"(n2) and
Ws(n,) at p. If this degree is r we require the 2r conditions

k = 0 , 1 , . . . , r— 1 for solving (1). This in addition to (5) and the analogous condition
u2i(0) = 0 (to handle the case supp (w)c M2) gives 2r+2 sufficient conditions for
solving (1). (We have solved (1) on a neighbourhood of cl (Wus)\ we have already
argued that this is enough.)

(14.5) We now argue that these 2r +2 conditions are necessary as well as sufficient;
i.e. that dimcoker(l - /#) = 2r+2. For this we construct 2r+2/#-invariant linear
functionals Su S2, a>u ..., w2n They are given by:

(8h w) = a,M,(o,o)
ao

for j= 1 , . . . ,2r where zi#w = (uh vt), i = 1,2 and e, is defined by:

for j = 1 , . . . , r. We are assuming d'b(yx(p)) = 0 for j = 0, 1 , . . . , r and the overlap
relations give

= ul{x,y)+b'(y)vi(x,y),

so that the definition of e, is independent of the choice of i = 1,2.
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The convergence of the bi-infinite series is easy; in fact

I {er+i,f?w)= I ^ - ' ( d . a r ' u i X O . c j

where cn = ^"yiip), c~n — t*>"yi(p)- These series clearly converge (the convergence
in the case of «r+, requires that (5,, w) = 0 for i = 1, 2). The required invariance

is also immediate.

(14.6) Finally let us ask what must be the nature of the N-normed space !P(M) in
order that these constructions converge. We have required that d{«j exist on Mf

and that d̂ w, exist near p. As we must allow perturbations of/# and we solved near
p by dividing by b' some form of the C°° preparation theorem will be required.
Hence we insist that elements of SF(M) be C°° near p. These requirements together
with the requirement that 2F(M) be adapted to the unfolding, essentially determine
the definition of 3F(M) given below.

15. The tame division theorem
For each open interval / c R let W{1) denote the Banach space of C-functions
/:/-»IR with bounded derivatives of order ^r:

where | / | r = Y.rk=0sup {\dkf{t)\: te I}. Thus the N-normed space 38(7) is defined by

reN

Denote by Sp the p-dimensional vector space of all (real) polynomials u:R-*R of
degree <p:

ueSpe>u(t)= £ Ujtp'J,

for teU and suitable uu ... ,upeU.

THEOREM. Let 7<=K fee an open interval about 0 and goe 38(7) fee regular of order

p at 0:
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Then there exists an open interval Ja I about 0, a neighbourhood Jf ofg0 in 38(7) a
tame family q:Jf^> L(98(J), 98 (J)) and a continuous family h:,V-» L(98(/), Sp) such
that

f=g-q+h (1)

(on J) for g e l j e » ( / ) , ? = q(g)/, and ft = n(g)/

Proo/ Each cut-off function 0e C"(/) gives a linear map S3(/)-» 98 (R): g-» 0g so
there is no loss of generality in assuming I = U.

We shall use the C°°-division theorem as formulated by Sergeraert [19, p. 636]
(See also [9].) This asserts the existence of mappings

Q:C°°(R)xRxSpH>R

H:C°°(R)xSp->Sp

satisfying the equation:

= (t"+u(t))Q(f,t,u)+H(f,u){t) (2)

for / e C°°(R), u e Sp, and t e R. Moreover Q(f t, u) and H(f u) are R-linear in /
for fixed {t, u) and C°° in (t, u) for fixed / and we have estimates:

)k+p+4 (3)

for fceN, / € 9 8 ( R ) , ueX where X<=SP is compact and C = C(k, X) and:

\\{4P.m+p+4 (4)

for r, keH, fe 98(R), (r, w) e Y where Yc R xSp is compact and C = C(r, k, Y).
(We require the inequalities (3) and (4) only for fc<2).

We will now imitate the proof of the preparation theorem from the division
theorem as in [24]. (Wall's formulation involves a finite dimensional parameter z;
we take g itself as the parameter.) First note that (3) together with the Lipschitz
estimates

\D{H(f, v) - D{H{f u)\ =£ L\v - «|,

with L = sup {\D{+1 H{f, u + t(v- u))\: 0< t < 1} give that the map u -»(/-* H(/, «))
is (essentially) a map Sp^ L(98'(R), Sp) of class Ck~[ for / = (4p- l)fc+p+4. (One
uses uniform continuity to extend the m a p / ^ H{fu) to 98'(R).) The evaluation map

is a continuous bilinear map so we have extended H to a map H: S8'(R) xSp-* Sp

of class Ck~' (as a map between Banach spaces). Note that exactly the same
reasoning shows that Q extends to a map

? ( ) p
of class Ck~\ We now take fc = 2 so that l = 9p+2. Thus H: S89p+2(R) x S p ^ Sp

class C Similarly (with r = fc = 1) Q: 985p+3(R) xR x Sp -»R is continuous.
Next take / = go and u = 0 in (2) to obtain

= fQ{go,t,0)+H{go,0)(t).

is
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Since g0 is regular of order p we conclude that

H(g0,0) = 0 (5)

Q(g0,0,0)*0. (6)

Now let {ey},j = O, 1, ...,p- 1, be the basis of Sp determined by ej{i) = ti and
differentiate (2) in the direction e, and evaluate at u = 0 , / = g 0 . The result is the
identity:

0 = ejQ0 + epQx + D2H(g0,0)«y (7)

where Q0(t) = Q(g0, t, 0), <?,(/) = D3Q(g0, t, 0)e,, Differentiate (7) (repeatedly) in t
and set / = 0. The result shows that the matrix representing the linear transformation
D2H(g0, 0): Sp -»Sp with respect to the basis {e,-} is triangular, and by (6) the diagonal
entries are not zero. We conclude

det(D2J/(g0,0))*0. (8)

Now (5) and (8) are the hypotheses of the (Banach space) implicit function theorem.
This gives a neighbourhood Jf of g0 and a C1 map P I J V C ®9p+2(U)-> Sp satisfying

P(go) = 0 (9)

H(g,P(g)) = 0 (10)

for g e U. By (6) and the continuity of Q we may shrink M and find an interval J
about 0 and a positive real number 5 so that

0<SsQ(g,t,P(g)) (11)

for g&Jf and < e closure (J). We now define:

h(g)f=H{f,P(g))

(q(g)f)U) = <?U ', P(g))/Q(g, t, P(g))

for geJfn 9S(U) c SS9p+2(R), / e S8(R), and f e / The tame estimates follow from
(11) and (4) (with fc = 0). Read P(g) for u in (2) to obtain

f(t) = (t"+P(g)(t))Q(f, t, P(g))+P(f, g)(t)

and read g fo r / and P(g) for M in (2) and use (10) to obtain:

g(t) = (f+P(g)(t))Q(g,t,P(g)).

These equations imply (1).

16. The tame sub-module perturbation theorem
We continue the notation of § 15. Our aim is to present a tame version of a well-known
variant of the C°°-preparation theorem of Malgrange and Mather.

THEOREM. Let I be an interval about 0 in U and suppose

Aoe98(I)®L(n',nn),

Boe®(I)®L(Um,Rn).

Assume that there is a tame linear map &(I)®R"-> S8(/)®IRm: F-> Go and a con-
tinuous linear map 3B(I)®W-*Rl:F^> HO, such that

o + Bo(t)Go(t) (1)
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for te I. Then there exists an interval / c / about 0, a neighbourhood
{L(U',U")xL(Um,U")} of (A0,B0), a tame map Jfx®(I)®U"-> 38(/)®Rm,
{A,B,F)^G, which is linear in F and a continuous map Jfx^(I)®U"^Ul,
{A, B, F) -> H, also linear in F such that

F(t) = A(t)H+B(t)G(t) (2)

for (A, B)eJfandFe ®(I)®W.

Proof. The analogous statement for germs is corollary 5.6 of theorem 5.5 (entitled
the 'Preparation Theorem') of [25]. We shall mimic the proof given there. Our proof
will be more wordy since it contains implicitly a proof of the preparation theorem
and since we have not developed a theory of quotient modules in the tame category.
Note also that in [25] the variable t can be multi-dimensional; whereas here it is
one-dimensional. The reason is that the inductive argument in the preparation
theorem is not valid in the tame category. (See (13.3.3).)

We shall view elements of W as column vectors so that an element of L(Um, R")
is a matrix with m columns. This explains the title of the theorem: equation (1)
says that the columns of the matrix Ao span an /-dimensional complement in the
module £38(/)®R" to the submodule generated by the columns of Bo (the ring is
S3(/)); equation (2) says that this remains true when Ao and Bo are perturbed to
A and B. If there were no loss of differentiability in the map F-> Go this would
follow trivially by Banach space arguments.

We now proceed with the proof. We assume Jf is sufficiently small that the
constructions we give are well denned. We use Greek letters to denote quantities
(which depend on A and B and) which vanish when A = Ao and B = Bo.

Note that (1) implies an equation

F(t) = A(t)H0 + B(t)G0(t) +«(/).

Also the columns of Ao(0) and Bo(0) span Rm so (shrinking / if necessary) we have
a linear map

®(i)®nn -* ®(i)®{L(n', w) x L(um, or)}
n^(©,r)

such that

for t e /. This gives:

0 + @(t)}+B(t){G0(t)+T(t)}. (3)
Apply (3) column by column to obtain a matrix Lo and a map (A, B) -»(A, X) such
that

tA(t) = A(t){Lo+A{t)} + B(t)X(t). (4)
Thus L O GL(R' ) , A€S8(J)®L(R') and Xe S8(/)®L(R', R"). This implies

d(t)A(t) = B(t)Y(t) (5)

where d(t) = det (tE -L- A(<)) and

Y(t) = X(t){tE-L0-A(t)}i

with E the / x / identity matrix and t denoting the transposed matrix of cofactors.
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When A = 0, d is a monic polynomial of degree /; hence d is regular of order p < /.
Thus by the tame division theorem there is a tame map 58(7) xJf-> 98(/), ( / A, B)->
fp, linear i n / and continuous maps 33(1) xjV->R, (f, A, B)^ft, i = 0, 1,.. .,p-\,
such that

0 + z ' '/ (6)
i = 0

for teJ. As in (4) we have

fM(0 = A(t){Lj +Aj(t)} + BXj(t) (7)

for 7=0, 1 , . . . , p — 1 and applying (6) component by component gives

Aj(t) = d{t)APJ{t)+Pj! f'A,-, (8)
i = 0

By (5), (7), and (8):

" 8ijE-Aij} = A(t)Lj+B(t){Y(t)Apj(t)+Xj(t)}, (9)
i=O

where 5,7 is the Kronecker 5. Define A,ke L(U') by

V {5,^-A1>}{5,,£+A,fc} = 5i,£, (10)

so that (9) and (10) give

tkA(t) = A(t)Pk+B(t)Qk(t) (11)

for k = 0, 1 , . . . , p - 1 where:

Qk(t)=
PI{Y(t)Apj(t)+Xj(t)}{8jkE+\jk}.

Apply (6) to the & from (3) to obtain

®(t) = d(t)@p(t)+"z tk@k (12)
(c=0

and substitute (12) in (3) and use (5) to obtain:

0 + "z tk@k)+B(t){Y(t)®p(t)+G0(t)+r(t)}. (13)
J
)

k = 0 J

Finally (13) and (11) give (2) with

H = H0 + "l Pk0k
fc = 0

G(t) = G0(t)+T(t) + Y{t)&p(t) + V Qk(t)Qk.
k=0

The required estimates are easy since all our constructions were either explicit C°
functions of other constructions or defined by the tame division theorem.
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17. M-jet semi-finslers on Um

(17.1) For each multi-index aeNm let 0a:R
m->[(),oo) be a continuous function.

This determines an f̂ -jet semi-Finsler 0 on Um via the formula

for w:Rm^R and xeRm where ||«|| r>x=I|a|sr0a(x)|aaw(x)| and the sum is over
all multi-indices a = (a,, • • •, am) of degree \a\ = ot\ + • • • + am < r. As usual put

H | r = sup{||u||r,x:xe0r}

and recall the N-normed space 33(0) = 38(Rm, 0) of (5.3)

ue33(0)o| |u| | r<oo forallreN.

We generally use the abbreviations #f(0) = 33(0)®IRm, i?(0) = 33(0)® L(Rm).

PROPOSITION. Assume that for each pair (a, /3) of multi-indices we have a 'pointwise
multiplication inequality'

0«+/3(x)£cai0(x)0a(x)©0(x) (1)

/orx e Rm w/iere ca p: Rm -> [0, oo) is continuous. Then given k,reN there is a continuous
function c = crk:U

m -+U such that we have the 'pointwise composition inequality'

\\v\\r,^c(x)Z\q\y,x,u\\u\\iuX- • • M^ (2)

where v(x) = q(x, u(x)), \q\y,x,u
 = l(9T^)(x, M(X))|, and the sum is over all multi-indices

y = (p, S)eNm xNk and i,,.'. '., i, satisfying |-y| = |j3|+|S|< r, i ,+- • • +i, = |6|.

/ This is immediate from Faa di-Bruno's formula

Remark If all the cas are constants so are the crk.

COROLLARY. AS in corollary 1 of § 6 //us implies that 3§(0) is a 'fame algebra'

\\uv\\r<c\\u:v\\r (2)

(17.2) We give some examples.

Example 1. Take 0 a = 1 for all a. Then 38(0) = 33(Rm) where 33(Um) is the space
of all functions having bounded derivatives of all orders. This is a tame algebra.

Example 2. Take m = 1,

©000=1

where p is a rea\ number with 0 < p < \. Then ^ (©) is a tame algebra.

Example 3. Let m = \,

©r(x) = l r>2.

Then elements of 38(0) may grow no faster than quadratically (but u(x) = x2 is an
element of 38(0)) so it is not an algebra.
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PROPOSITION. All three of the examples admit a family of smoothing operators with
offset d = 0 and hence (by the proposition of (2.6)) satisfy the interpolation inequalities:

H|,<c|KH|? 0)
for C = C(q,p,r),p<qs,r where

a = (r-q)/(r-p), 0 = (q- p)/(r- p).

Proof. For example 1 use convolutions. For example 3 note the isomorphism

R2x58(F$H38(0):(a, b, v)^u

u(x) = a+bx+\ v(s)dsdt.
Jo Jo

For example 2 use a cut-off function to express any element in the form M, + u2 with
supp(w,)c[-2, 2], supp (w 2 )c |R\ [ - l } 1]. Clearly w2 lies in 38(R) so we may smooth
it with convolutions. For w, note the map

38(0)^38( IR)©[R©38([R) :M->(U + , u0, u_)

where v±(t) = {u(±e')-u(0)) e~pt, vo = w(0). This map is injective and in fact is an
isomorphism if 0 is replaced by a locally equivalent N-jet semi-Finsler

This follows from the formula

(drv)(t)= i ck(d
ku)(e') e"k-p)

with cr = 1.

(17.3) PROPOSITION. Suppose f:Um ^Um is a linear automorphism of form

f(x) = (A,x,, X2x2,..., \mxm)

forx = (xu ... ,xm)eUm withku . . . , Am>0. Suppose the N-jet semi-Finsler 0 satisfies
inequalities:

Aa®a(x)<vr®a(f(x)) (4)

for each multi-index a with \a\ < r. Then the automorphism/*: 38(0) -> 38(0) satisfies:

ll/*«llr=S>v||u||r. (5)
Proof. da(f*u)(x)&a(x) = \a(dau)(f(x))@a(x).

COROLLARY 1. For 0 as in example 2 andf:U^U given by f(x) = Ax with A < 1 we
have (after a suitable renorming)

H/*"l|rsA2H|r
for all u e 38(0) with w(0) = du(0) = 0.

(17.4) T H E O R E M (Dynamical product estimate). Assume 0 satisfies (I) so that 38(0)

is a tame algebra. Let fas in proposition (2) satisfy (4), andAe 38(®)®L(Uk). Define
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a linear operator

T: 38(0) ®Rfc

Tu=f*(Au)
forue 93(@)®Rfc. Assume @0= 1, the inequalities (3), and that T satisfies the estimate

||TM||0<o-||u||0 (6)

for some o- with 0< a< 1. Then for each r there is a constant C = C{r) such that for
n > l :

| | r - U | | r sCnV| |A:u | | r . (7)

Pfoo/ Since / * is an algebra homomorphism we have the formula

T"u = (f*A)(f*2A) • • • (f*"A){f*"u).

Applying 3a with \a\< r gives a formula

d"(Tnu)=JiM

where each term M is of form M = {dpwf*A} • • • {dl3i")f*"A}{dyf*nu}, a =
/3(1) + - • -+p(n) + y, and where there are (n + l)r<Cnr terms in all.

We first show that each M satisfies the pointwise estimate;

|M(x)|0a(x)<a7"K|--- |A, | | l / , | , (8)

where Uy = ^(d'u)(fn(x))@y(x), Ak = (^U)y(d^}A)(f (x))Q,U)(x),andj=j(k),
k = 1, . . . , / , are precisely those integers with /3(j(fc)) ^ 0. This follows by double
induction on n and \r\ using (6) in the case where M has form M = TM', and the
crude estimate

in the case where M has form M = {^(/*A)}/*M' with /3 = 0(1) +0.
Now by (4) and (8) we obtain

with b(k) = \p(j{k))\, c = \y\ so that \a\ = b{l) + - • -+b(l)+c. Now take the sup on

x and use interpolation.

Remark By enlarging a (slightly) and C (a lot) we may replace C«V" by Co-" in
(7).

18. An N-jet semi-finsler on R2

(18.1) Define as in § 17 an N-jet semi-Finsler © on R2 by the formulae

for i = 0, 1; fcal. (Here p > 0 is a small positive number specified more precisely
below.) As in § 17 this gives an N-normed space:

forallreN,
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where

]|«||r = supp{||u||r,z:zeR2}

ll"llr,z= I \(.d\d{u){x,y)\Q^x,y)
i+jsr

for z = (x, y) € U2.

PROPOSITION 1. If u e 38(0) f/iew M is continuous on U2 and C°° on y^O. Moreover
the partial derivatives df w are C°° for k s 0 and bounded for k > 2. Forj > 1 f/ie mixed
partials d\ dJ

2u blow up at worst like \y\p~J as y-*0.

PROPOSITION 2. The functions 0j, satisfy the pointwise inequalities:

Qyix, y) < (4 + 4x2)0,-r(x, y)Qrr(x, y),

for i = i' + i", j =j' +j". (Hence proposition 1 of § 17 applies.)

PROPOSITION 3. The N-normed space ^ ( 0 ) admits a family of smoothing operators
with offset 0 and hence satisfies the interpolation inequalities.

Proof. As in examples 2 and 3 of § 17.

(18.2) Now fix n, A,,A2elR satisfying 0 < / i < K A 1 < A 2 and define an unfolding
FcDiff (R2)by

/ £ F o / ( x , y) = (Ax, py)

for some A e(A,, A2).

PROPOSITION 4. Let ty e C^(U2) be a cut-off function. Then the map

Fx 38(0)

is tame-Cr of degree r for each reN.

Proof. For A e (Al5 A2) and fc< r let

~(0
Then

v(x, y) = <A(x, y)xk{d'lu){kx,

so the estimate | |u | | ps C||w||p+fc is obvious. As v is linear in u this gives the desired
tame estimates. For continuity note the inequalities

for k<r, 1 <_/, k+j<r, (x,y)esupp(tp), and A, Aoe (A,, A2). Take the sup over
(x, y), note that

a!ai/*« = AV/*aiaiii
and use the triangle inequality to obtain the Lipschitz estimate

||/*M-/0*M||r_1<c||u||r|A-A0

which (with the tame estimate) easily implies the continuity of the map (/, u)-» v.
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(18.3) Now fix A and hence/and recall the abbreviation %{<&) = 38(0)®R2. Define
by:

for w = (u, «) e af(0). (Thus / # ' = / # . )
We shall define an/#-invariant splitting

To this end define projection operators e0, e,, e2 by:

(1)

(e2v)(x,y)=\ I (afo)U
Jo Jo

where t> is any vector valued function defined on R2. Note the formulae:

v = eoV + eiV +e2v;

e2=e ••

and

reo(au)

\_e2(au)

eoa 0 0
exa eoa 0
e2a a — eoa a

eou-

etu

e2u_

Define the splitting (1) by

Also define a linear functional 5 ( / # ) : ^f(0)-»R by:

<«(/-), w> = (a,M)(0,0).

PROPOSITION. For o- = max {A~V '", fj.1 ~", /JL"} we have for r > 2:

wfti/e i/ (5( / # ) , w) = 0 f/iis /ast inequality can be improved:

Hence if p is sufficiently small that <r< 1, tfie operator/# is {except for an invariant
one dimensional space on which it is the identity) hyperbolic in each of the norms || • || r .
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Proof.This all follows from (17.3). We include some inequalities for future reference:

ll/*w||o=Hlo,
eou = u=M

e,v =

(up to equivalent norms). Note also the sharper inequality

0,«)(o,o) = i
provided that p > 0 is sufficiently small that 1 < A/u.".

19. The splitting mod e2.
In § 20 we study a perturbation Tw=f%(au +bv, cu +dv) of the operator/# of § 18;
here we study it modulo higher order terms in x.

We take © to be the N-jet semi-Finsler (on R) of § 17 example 2 and denote by
8P the algebra

We write elements of SP as matrix valued functions of y:

where u0, M,:R-»IR with ||MO||,, | |ui|| r<oo.
Thus U=U(y) is identified with the map w:R2-»IR given by u{x,y)

"o(y)+Ui(y)x so we define / * : &-» 9 and / ^ : 0>-> 9 by:

uo(fiy)

(/*U)(y) = [A-i°^(At'-|
)
 } Uo(°-y)

where / is as in § 18. Let

Ao =0=Lo

): ||A-A0||0< e}

THEOREM. For e > 0 sufficiently small there are tame maps

such that

: t /e 0>}, gs(A) = {(HV, V):
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Proof. Let Ae SP®L(U2) be given by

[A B~\

He D\-
Since Sf is a commutative algebra:

_,_[" D - B 1 | ~ A D - B C 0 "I
A ~L-c AJL o AD-BC]'

Now define

T(A, G) = (C+DG)(A + BG)~[

A(A, H) = - (DH - B)(CH - A)'1

so that the invariance conditions become fixed point equations:

G=/ | cr(A,G), (l.u)

For A = Ao we have

r(A0, G) = A"VG, (2.u)
A(A0,H) = A-VH, (2.s)

so that the operators f#T and A/* are (linear) contractions on 9̂ 0:

where ao< 1. (In fact we can take o-0= A~'JLI in the former inequality and o-0= /u in
the latter.) Hence by the tame contraction principle of § 4 we only need estimates

||D2(/*r)(A,G)"G||r<CnV"[A,G:GIr (3.u)

| |D2(rA)(/»A,H)-H|| r^OiV"|[A,H:HL (3.s)

for n> 1, | |A- Ao||o< e, \\G\\0, \\H\\0< 1, where

0<o-<l with (r = o-(r), C = C(r) independent of n. (Note that by increasing a
slightly and enlarging C we may replace C n V by Co-".) For r > l the fact that
these inequalities hold for A = Ao is of no help since we are not assuming that
|| A — A0||r is small.

Explicit calculation gives

D2(/#r)(A,G)G=/t(LG),

, H)H =f*(MH),

where L(y) = D2T(A(y),G{y)), M(y) = D2A((/#A)0>), H(y)). The inequalities
(3.u) and (3.s) follow by continuity, (1), (2), the dynamic product estimate of (17.4)
and the tame estimates

| |L| | r<C[A,G:GL

| |M| | r<C[A,H:HL
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PROPOSITION. Let Ec($>®|R2)* denote the A-dimensional space of all linear func-
tionals y of form:

(y, W) = (a, U(0))+(P, V(0)>

for W=(U,V)e0>®M2 where <a, C/(0)) = ao«o(0)+a1M1(0) and (p,V(0)) =
/30v(0) +j8,U|(0). Then there is a continuous map 8: *3le c <?®L(M2)-*E such that we
have estimates:

Uf*Arw\\r^Ca"lA:W}r

for We %s(A),neN and:

for We % "(A) n Ker (5(A)) where [A: W\r = (l+ ||A||r)|| W||o +1| W||r

Proo/ The space E is invariant under /^A since

E± = {We 0>®IR2: W(0) = 0}.

When A = Ao the eigenvalues of (/^A)* on E are A, 1, /A, A^V SO let 8(A) denote
the eigenvector corresponding to the eigenvalue nearest 1 normalized so that its
value on W = (u0, w,, v0, u,) = (0, 1, 0,0) is 1. The desired estimate follows from the
corresponding estimates for f^Ao in (18.3) and the dynamic product estimate of
(17.4).

20. The splitting %(©) = %"($)© T(
We revert to the notation of § 18. Put Z = {(x,y)eU2: \x\,\y\<l} where / is any
(large) positive real number.

THEOREM. There is neighbourhood Jf of 0 in i?(0) , a tame linear family T: ^V->
L(#?(0)), a tame family of splittings $?(&) = &"(<!>)© %*(<&), indexed by <&eJf, and
a continuous family of linear maps 8: Jf-* L(aC(&), R), such that the following conditions
hold:

(invariance):

T(<i>)We (<$>)=%<($) ee{s,u},<i>eJf.
(local form):

{T(«J>)w}|Z = {(1 +4>)/#w}|Z <J)€^V,

asymptotic estimates): there exists o-e (0, 1) 5MC/J

for $ e Jf, neN, ws e <?S(<J>), w" e ^"(<I>). Here I*!*: w ] r = (1 + ||<t>||r)|| w | | 0 + || w | | r and
the constant C is independent of <I>, w\ w" and n (but may depend on r).

Proof. Fix i j » e Q R 2 ) satisfying \\i\Z=\. Throughout we use the notation
w = (u, v)e%(@) and m = /*( l +4><S>)moe£e(@) where

Lo MJ
so that
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Let a, b, c, d denote the components of m:

- [ :
We identify w with the 6 by 1 matrix

473

W =

where

rm

n

exv

The multiplication operator w-» mw then takes the form W-» MW where:

M =
A
C
P

B
D

Q

o-
0
R

with

AJeoa 0 1 BJe0
\_exa eoa] L^i

D\eod O l p^Je2a a-eoa]
\_exd eodj'

= r ^ O l
Le,c eocj

e2c c~eoc_l

e2b b — eob

e2d c-e,

and

Ob(l-0)A+0a
6c (

with 8 = 1. To overcome the difficulty that 33(0) is not an algebra we replace 0 = 1
in these formulae by a cut-off function 0 = 0(x) where [—/, /]<= 0~'(1), supp (0) c
[-2/, 2/]. This gives a linear T, TW=f^MW), which agrees with (1 +<!>)/# on Z
We shall construct an invariant splitting for T. Thus we construct T- invariant spaces

\ = {(U,GU,rU):Ue@},

be

which has the explicit solution:

r= z (/*m/*+To)
n=0

where T0 = (P + QG)(A + BG)~\ L(T) = Rr(A+BG)~l. The convergence of this
series follows from the estimates:

where 5s (resp. "WO is the set of all matrices of form (1) (resp. (3)).
The matrices G and H are constructed as in § 16. The condition that

invariant under T takes the form
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(when e2n = 0) and the dynamical product estimate of (17.4). The tame hyperbolic
estimates follow from (18.3) and the dynamical product estimate of (17.4). The
other estimates are easy.

COROLLARY. Let F denote the space of all diffeomorphisms / ; i.e. fe F iff for some
A e (1, oo) we have f(x, y) = (Ax, /j,y), (/j. is fixed). Fix foeF and let ]Vc R2 satisfy

Then the unfolding F is preversal at N, i.e. there is a neighbourhood Jf of (0,/0) in
£(®)*F, a tame family J and a continuous family 8, J:M^ L(#?(©)), 8:Jf^>
L(#f(0),R), such that

iff = / ( * , / > , « (* , . /> = 0, (®,f)eJf.

Proof. Take w = ws + w" e £"(<&)© gs(4>), /(<*>,/)w = £ = £u +£\ where

(The constructions of the theorem depend continuously on A.)

21. Another N-jet semi-Finsler
The N-jet semi-Finsler of § 15 was designed to be used at a saddle point. Now we
present one for use at a sink or source.

(21.1) In the notation of § 14 the M-jet semi-Finsler on R2 is determined by

®,o(x, y) =

Wij(x,y)= * \y\ +v\
for i,j > 1 and (x, y) e R2. Here 0 < p < a < 1 and 0: R -»• [0, 1] is a C°° cut-off function
with 0(0)>0, supp(0)<=[-e"',e"'], |a|< b=>0(b)< 0(a), (and e = 2.71 . . . ) . Note
the homogeneity property

for (1,7) # (0,0) and r e (0, 00).

PROPOSITION 1. Ifu e i33(0), f/ien u is continuous on R2, and C°° ony 5̂  0. /ts restriction
to y = 0, x 7*0 is also C°°, and for j > 1 f/ie mixed partials 8\ d{u blow up at worst like
|_y|CT~J as (x, y)-> (x0, 0) (where x 0 ^ 0).

PROPOSITION 2. Giuen i,j there is a continuous function c = c,y:R
2^R such that

®,j(x, y) s c(x, y)®,r(x, y)&iT(x, y),

for i = i' + i",j=j'+j". (Hence the proposition of (17.1) applies.)

Proof. The left side is homogeneous of degree i +j — <r and the right side is
homogeneous of degree i+j — la so it is enough to define c on x2+y2=l. The
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functions 0,, are continuous on this circle and vanish only at {x, y) = (±1,0); hence
it is enough to construct c near those two points. But &ij(±l,y) = \y\J~p and
©ioO. y) = 1 so the construction is obvious.

PROPOSITION 3. The N-normed space admits a family of smoothing operators with
offset 0 and hence satisfies the interpolation inequalities.

Proof. This is much like the analogous result for example 2 of § 17 but more
complicated. Let

®(H±, ®) = {ue 38(0): supp (M) <= HJ

98(R, 0) = {u e 35(0): u(x, y) = u{x, 0) for all x, y}.

Then we have a direct sum decomposition

38(0) = ®{H+, 0)035(R, 0)0S8(H_, 0),

so we show that each summand admits smoothing operators. The middle summand
is example 2 of § 17 and the other two are isomorphic so it suffices to construct an
isomorphism 8fo{H, 0)-> g#(R2):w-» v, (where we have abbreviated H = H+). For
this let </>:R2-» H be a diffeomorphism of form:

where R-» H: t->(g(t), T/(0) is a C°° embedding parameterizing a smooth convex
curve from (-1,0) to (1,0). We assume

for |f|> 1 where sgn(() = ± l for ±r>0.
The desired isomorphism 3S(H, ©)-» S8(R2): u-* v is given by:

We must prove:

c"1 |D| r< | |« | | , .<c

for suitable constant c. Differentiating gives

tidZv(s,t)=Z(d\diu)(x,y)e«+J-'r)'+MA(t)B(t), (1)
where 1 < i" +j < a + fe for each term in the sum, and

where the coefficients a,/3 are expressions in a,b,i,j,p,a, io,i\,---,jo,ju---,

and for each term which actually appears we have 1 s i +j < a + b,

/0 + ( i 1 + 2 i 2 + 3 i 3 + - • • ) ^ U o + O'i+2/2+3j3 + - • •)=£./• For | f |< 1 (1) gives:

|srs2
b i ; (5, 01 ̂  I I I « | | , ^ ,

where S o = s u p p | , | s l \e"wA(t)B(t)\, while for | f | > 1 (1) simplifies to:

d" db
2v(s, 0 = I y d\ diu(x, y)\x\i+J-°\y\J->', (2)
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where y = y(a, b, i,j, a, p). In either case we obtain

dUlv{s, t)\<c\\u\\r

for a +fc< r: i.e. t>|r< C| |M|| , .

For the reverse inequality note that we have an inequality

\(@,jd\diu)(x,y)\<c I \d? d$v(s, t)\, 0)
a + bsi+j

for | i |< 1 and s = 0 by continuity and hence for |f |< 1 and all s by homogeneity.
For | f | a 1 we have:

u(x,y) = v(s,t)\x\i+p~°\y\J~p

with s = log|x|, |r| = log |x|-logy, so that we again obtain (3) by differentiation.
This completes the proof.

(21.2) Now fix /*, Ai,A2eR satisfying 0 < / A < A , < A 2 < 1 and define an unfolding
FcDiff(R2) by

for some A e (A,, A2).

PROPOSITION. Let \\> e C"(IR2) be a cut-off function. Then the map

F x 33(0)

is tame-C of degree r for each reN.

Proof. As in proposition 4 of (18.2) put

for A s (Als A2), fc< r. We must prove

| | l>|| ,<c||u||r+;.

On the set y # 0, 0 is an N-jet Finsler and near the set y = 0, x ̂  0, 0 is locally
equivalent to the N-jet semi-Finsler of § 18 so we shall assume </<= 1 and prove an
estimate

for (x, y) near (0,0), i +j< /. We have the explicit formula

d\dJ
2v(x,y)= I bxk-"(B^i

p+q = i

where b = b{i,k,p)\ VJ so it suffices to prove

for (x, y) near (0, 0) and p+q = i. This in turn follows from the inequality

Both sides are homogeneous of degree (i+j — cr) + (k—p) = k + q+j — o- so it is
enough to prove the inequality on the unit circle. There ®k+qj vanishes only when
y = 0 so it is enough to check it for x = ±l. But then the left side is yJ~p and the
right side is (/xy)i~p as required.
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For continuity note that for a suitable positive constant c = c(i,j) we have

x&ij(x, y) < c0,+IJ(Ax, ixy)

for all (x, y) e U2 and A € (A,, A2). (This is because both sides are homogeneous of
degree i + l+j-a- and on the unit circle, the right side vanishes only if j s 1 and
(x,>>) = (±l,0). But for x = ±l, j>\, and |>>| small the left side is \y\j~" and the
right side is |^ | J - P . ) We then have

y)\(d\ d{u)(Xx, ny) - (d\ d{u)(\ox,

= | 0y(x, y)x(d[+l d{u)(ix, py) dl
A0

J
< c@i+]J(lx, dJ

2u)(lx, fig)\ dl

As in proposition 4 of § 14 this gives the Lipschitz estimate

for suitable c = c(r) and hence the required continuity.

(21.3) PROPOSITION. Let N be a bounded open set in U2. Then for suitable p, a the
unfolding F is preversal at N in the following sense: forf0 e F there is a neighbourhood
l c ^ ( 0 ) x F o / ( O , / o ) and a tame family J': J{'-* L(3£{<d)) such that

for (®,f)eJ{,£ = /(O,/)w, w e 3f(0). Here as usual

(./>)(*, y) = (AM(A-'X, ,t-xy), nv(X-lx, fi~ly))

for w = (u, v) and (x, y) e U2.

Proof. Choose a bounded open set Z<=R2 satisfying closure(ATuy^'(^))c-^ for
feF and choose t/̂ e Ct{Z) with tp\Nuf~l(N)= 1. By the remark in § 11 we may
replace <I> by i/>4>. Hence we may replace 0 by a locally equivalent (i.e. equivalent
on Z) M-jet semi-Finsler. We do this by redefining 0OO so that 0Oo= 1-

LEMMA. This 0 satisfies (4) o/(17.3), in fact:

Proof. This follows from

(i.e. 1 <()u,/A)p-CT which follows from /A<A and p^cr), and

which follows from \\~lx/ n~ly\< \x/y\ and the monotonicity property of the cut-off
function 6.
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By proposition 2 and (17.1) 38(0) is a 'tame algebra'. By (17.3) ||/*w||r=s M~1«llr
for ue38(@) and reN. Hence

||/#w||r<AM-||w||r

for we #f(@). For a sufficiently small the coefficient A/u"" is less than one; hence
we may choose x < 1 and Jf so that

for (<!>,/) e Jf where

By the dynamical product estimate of (17.4) we have

||r(*,/)"H|r=£CTB||«l>:W||
so that we may define / by the Neuman series

22. Admissible diffeomorphisms
(22.1) Let M denote a torus of dimension two. More precisely, we suppose
M = M o u M , u M 2 u M 3 and that there are four diffeomorphisms (coordinate
systems)

Zj = (x,,^):M,^K2 i=0 3,
related by

yo = yi, yi = yi, y\=yV,
x0 = x \ > X2 = X3 > Xl = X2t

where r e (0, oo). Fix positive numbers fih ah f}h f = 1,2, with:

(The last line is redundant.) Call /eDiff(M) admissible iff there exist smooth
functions a, = %: U -»(0, oo), b, = b^: R -» R, i = 1,2, such that:

0<a , (0 )" '< / i ,< l ;

0<a2(0)</u2"'<l;

Call an unfolding F c Diff (M) admissible iff each/e F is admissible and if the maps

are smooth.
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We introduce the following notation:

Ai(/) = atf(0), i = 1,2;

Ao(/) = A,(/)-1, A3(/) = A2(/)-1;

so that for |x,| + |_y,| sufficiently small and i = 0 , . . . , 3 we have

(22.2) Now let 01 = 02 (resp. ©° = ©3) be the N-jet semi-Finsler on R2 defined in
§ 18 (resp. § 21). From the formulae one easily checks

zf@'\Mi n Mj ~ zf&J\M( n M,,

where ~ denotes local equivalences of N-jet semi-Finslers so by the patching
construction we have an N-jet semi-Finsler @ on M with

Write &{M) = 9(M, ©), %(M) = &(M)®TM, S£{M) = &(M)®L(TM), and note
that by § 18 and § 21 the space 9{M) is adapted to any admissible unfolding.
(22.3) Given an admissible difieomorphism / we shall now define a level decompo-
sition

^o, Si, R,, S2, R2, S3, R3

which respects / Take

52 = {«1<|>'i|<)81}u{a1<|>'0|<y31}

so that

S2 = {a2< \y2\ < p2}u {a2< \y3\ < 02},

(note that yjAf, n Mo = yo\Mi n Mo etc.). Next choose aki, {}ki > 0, i = 0, 3, k = 1,2,
satisfying

aio<Ao(/)"1a,o</3lo<Ao(/)"2alo;

"is < A3(/)«i3 < /313 < A3(/)2a13;

«23 < M2«23 < j823 < M2«23 \

and define:

Si = {«io < |*ol < Pw)
S3 = {a13 < |x3| < p13} n {a23 < |>-3| < p23}.

Thus

for 1 = 1,2, 3 and \n\> 1. Now choose e > 0 and put
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for i = 0, 3. For i" = 1,2 we define R{ by:

R\ = {a2o ~ e < bo| < «! + e} u {|x,| < a To + e, \y{\ < a, + e}

R2 = {a2- e <\y3\< a2 + e}v {\x2\< aTj + e,\y2\< <*2 + £}•

When e = 0 the sets Ro, SU...,R3 are pairwise disjoint, while for e > 0 they cover
M. Hence for sufficiently small e they give a level decomposition. Note that for this
level decomposition, ft,-(/) is defined by

",(/) = K'(o,o)}.
Thus fto(/) is a sink, fl3(/) is a source and fti(/), H2(/) are saddles. Also note that

{\yi\ <a} = {x, = 0, \yi\ < a ,} ;

so that these sets are independent of / By § 20 and (21.3) we have:

PROPOSITION. Let F be an admissible unfolding. Then this level decomposition (for
f=fo = the centre ofF) is locally preversal. The linear functional 8,: ./V-» L(^f(M), E,)
of the definition are determined by:

for we SC(M), i = 1,2 where z^w = (u,, u,).

Remark. The definitions have been arranged so that

wef^TrF 1 , N

s * [=>supp(w)<
8, • w = 52 • w = OJ

for ($ , / )eJVci?(M)xF, where 8^ = 8i(^,f)w.

23. Universal admissible unfoldings
(23.1) We continue the notation of § 22 but we denote the four coordinate systems
z,, i = 0 , . . . , 3, defined there by zOi = (xOi, yOi). For i = 1, 2 we call a coordinate system
zi = (*» ^i) : Â i "* R2 admissible if

*.•(/>) = zyo(p) for \yi0(p)\ < «i,
and

/*(^» y.) = (A,(/)Xj, /u.ty,)

(on all of Mj) for some admissible difEeomorphism/ This gives a bijective correspon-
dence f*-*(z\, z2) between admissible diflEeomorphisms and certain pairs of admiss-
ible coordinate systems as z,, z2 are determined uniquely by / :

y, = ym
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where the limits exist trivially as the argument of each limit is independent of
n > n(p). Note that the coordinate systems zu z2 are related by the formulae

x2 = a(yl)xl+b(yl)

y2 = c(yi) (l)

where c(y) = y~T and a:R\{0}->(0, oo) and 6:IR\{0}-»IR are smooth and satisfy
a(/j.ly)\l = X.2a{y), b(fj.1y) = \2b(y). (These equations determine the set of pairs
(zb 22) which correspond to some/)

(23.2) In these coordinates we have Ws(nuf) = {X[ = 0}, Wu(Q2,f) = {x2 = 0}, so
that if we define

Wus(f)=Ws(nuf)nW"(il2,f),

we obtain

W"(/) = {x,=0,fc = 0}.

We therefore define for pe Wus(f) the order of intersection at p by

(dkb)(yi(p)) = 0 k^ord(pj),

(dkb)(yi(p))*0 fc = ord (/>,/)+ 1.

Thus p is a point of transversal intersection if and only if (b(yl(p)) = 0 and)
ord (/>,/) = 0.

We say that / has finite codimension iff

pe Wus(f)=$ord(p,f)<°o.

As ord (/?,/)< °° implies that the zero of b at y\{p) is isolated, it follows that (when
/ has finite codimension) the set Wus(f) consists of finitely many orbits of/ We
may adjust the interface set S2 so that each orbit of Wus(f) intersects S2 in exactly
one point and enumerate:

Wu'(f)nS2 = {pup2,...,pl}.

We then define the codimension of/ by

codim(/) = 2+2 I oTd(pjJ).

(23.3) THEOREM. Let F be an admissible unfolding whose centre f0 has finite
codimension. Then F is preversal. In fact, one can choose u>: M'-* L{3£{M), F) as in
the definition so that

dim(F) = codim (/„).

Proof. We have already constructed a locally preversal level decomposition so it
remains only to check the interface condition. Thus we must construct

as in the definition for i = 1,2,3. For i = l , 3 there is nothing to do; we take
F,=F3 = {0}, w = irJ(O,/)w, w = ir"{<&,f)w. Hence we drop the subscript 2: 5 = 52,
F = F2, and construct w.Jf^L(S£{S)0,¥) ns, nu: J{
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Now let

Wus(f0)nS = {pup2,...,Pl}

and write

S = P ,uP 2 u - • • u P , u P " u P !

as a union of open sets with

cl(PJ)ncl(P,) = 0 , j V k ;

for (*,/) e JV. We will define

£,:.*•-> [(af(S)0,E,),

for j = 1 , . . . , /, such that

w\Pj = { < ( * , / ) w + < ( * ,

when £,•($,/)w = 0 and the appropriate tame asymptotic estimates hold. We then
write

where:
w, =

W -

SUpp

and define

77S(<D,/)=WS+I
7 = 1

Since /"(cl (P ' ) )cR 0 > f"(c l (P"))cR,, for sufficiently large n we have the tame
asymptotic estimates on ws and w" by § 21. Hence it suffices to construct e,, TT/, TT/.
Thus we drop the subscript./ and construct e: JV^ L(%(S)O, F), TT", ns:Jf^ L{d£(S)0),
satisfying

when e(«J>,/)n' = 0, where P is a small neighbourhood of p e Wus{f0) n S in S = S2.
By § 20 we may construct (using admissible coordinates and appropriate cut-off

functions, an N-normed space S£{Mt), i-\,2, of vector fields on M, and for
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( $ , / ) e Jfcz Se(M) x F an operator

Tt(<b,f):X(Mt)-*X(Mt)

and a T,(<$>,/)-invariant splitting

such that for

Here Z{^ Mt is open and we may assume c l ( P ) c Z , u Z 2 and that P / + c Z { + ,
Pf~c Z{~. Now choose H> e 3£{P)0 and define («,-, v,), i = 1,2 by zj#w = (M,, U,-). Write

M,(X, y) = w.-o(j') + ua(y)x + ui2(x, y),

vt(x, y) = vi0(y)+vii(y)x + vi2(x, y),

where e2ui2 = ui2, e2vi2 = vi2 and note that we3£{S)0 defined by z2#w = (u22, v22)
satisfies we%"(<l>,f) and hence satisfies appropriate backwards tame estimates.
Hence put

7ru(<D,/)w = 77-"($,/)(w - w)+w

and assume without loss of generality that w = 0; i.e. that

Ui(x, y) = u20(y) + u2l(y)x

v2(x,y) = v2O(y) + v21(y)x. (2)

It follows that

u\(x, y) = ulo(y) + uu{y)x + uu(y)x2,

Vi(x,y) = vlo(y) + vn(y)x. (3)

Now by (1) («,, Vi) and (M2, V2) are related by formulae

u2(ax+b) = aul(x)+(a'x+b')vi{x)

v2(ax + b) = c'vx(x)

where we have suppressed the dependence on y. Formulae (2) and (3) yield the
relations:

aux0 = u20 + bu2, - b'v20

aun= au2l-a'v20-b'v2i

auu= a'v2l

C'D1 0= v20 + bv2l

c'vn= av2l

c'vl2 = 0

Now we shall attempt to solve:

), (5)

). (6)
We assume C has form
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with

so that for 1 = 1 we have:

as above. We assume £s has form:

with

By § 19 (5) and (6) take the form

£10 = hiovlo € 11 = 1̂11710 +

^20= ^20^20 f 21 = ''21 Via + ^20^21,

for certain functions hl0, hn, i= 1,2, which depend tamely on (<!>,/) and vanish
when $ = 0. To express (4) we rewrite our equations in matrix form:

X\=H,Y\ X" = H2Y"

X" = AX"-BY" Y"

where for 1 = 1,2, a = s, u:

— •
Now if

Q = (B+R)y (7)

where Q = a(t/, - H , V,), R = Hl-AH2C'\ our equations are solved by
X\ = H,( V, - y), yj = V, - Y,XU, = {AH2C' - B) Y, r r = y, so we must solve (7) for
Y. When $ = 0 we have H, = 0, H2 = 0 so (7) takes the form

All quantities are functions of y and we must only solve in a neighbourhood of y0

where b' is regular of order r at y0. (y0 is defined by the condition that z,(p) = (0, y0),
p 6 Wus(f0).) Define matrices £ , , . . . , £2 r by

r 0
0 J- E~iiy) =
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for i = 1 , . . . , r so that the equation

has a unique solution Ye C°°(U)®U2, e , , . . . , e 2 r eR for any Ue C°°(IR)®IR2. (The
loss of smoothness is 2r.) Thus by the tame submodule perturbation theorem there
is an interval / about Yo, a tame map

of degree 2r and continuous maps

such that

EiE, (8)

Our constructions give tame maps (<£,/)-»/?, (<P,f, tv)-> Q, (<&,f, y )-»(£*, £")> so
that we have constructed the desired maps (<&,f, w)^>(£\ £") and functionals
(Q>,f, w) -> £,•($,/) w. Note that (8) and e, = 0, i = 1 , . . . , 2r, imply (7). This completes
the proof.

COROLLARY. There exists an admissible universal unfolding F of dimension equal to
the codimension off0. In fact, an admissible unfolding is universal provided that for
any system of real numbers cu c2, akj, bkj e R, where j = 0, 1 , . . . , rk - 1 = ord (f0, pk) - 1
and k — 1 , . . . , / the equations

didlul(0,yl(mk)) = akj

have a solution wef^TfF (where ZI#H' = (M,, U,-) for i= 1,2).

To compare this result with those of Palis [14] and De Melo [3] assume that
ord (/o, pk) = 1 for k = 1 , . . . , Z. A universal unfolding obviously requires / parameters
to break these non-transversal intersections. When these parameters vanish Palis
and De Melo give / = l + ( / - l ) additional moduli of stability. Thus apparently a
universal unfolding requires at least 2/ parameters. Our univeral unfolding has 2 /+2
parameters in this case.

Added in proof. A recent preprint of W. de Melo and S. J. van Strien entitled
'Diffeomorphisms on surfaces with a finite number of moduli' shows that conjecture
C of § 13 cannot hold in the generality stated there. In particular any diffeomorphism
having a certain configuration of saddle connections has infinite codimension.
Nonetheless, the techniques described in § 13 can probably still be used to construct
universal unfoldings when they exist. Also the arguments in S. J. van Strien, Saddle
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connections of arcs of diffeomorphisms, Dynamical systems and turbulence, War-
wick 1980 Springer lecture notes in math. 898 (1981) seem to prove that a universal
unfolding must have 2^ + 2 parameters.
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