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A Note on the Vanishing of Certain
Local Cohomology Modules

M. Hellus

Abstract. For a finite module M over a local, equicharacteristic ring (R,m), we show that the well-

known formula cd(m,M) = dim M becomes trivial if ones uses Matlis duals of local cohomology

modules together with spectral sequences. We also prove a new ring-theoretic vanishing criterion for

local cohomology modules.

1 Introduction

Let R be a noetherian ring, I an ideal of R, and M an R-module; one denotes the n-th

local cohomology module of M with respect to I by Hn
I (M) and the cohomological

dimension of I on M by

cd(I,M) := sup{l | Hl
I(M) 6= 0}.

From now on assume that (R,m) is local and M is finitely generated. Grothendieck’s

Vanishing Theorem (VT) says that cd(I,M) ≤ dim M and Grothendieck’s Non-

Vanishing Theorem (NVT) says Hdim M
m (M) 6= 0. Both are well-known theorems

with various proofs. (See [1, Theorem 6.1.2], [2, Theorem 2.7] (a version for sheaves)

for VT and [1, Theorem 6.1.4, Theorem 7.3.2] for NVT.) The case I = m of VT and

NVT together say that the cohomological dimension is the Krull dimension:

(∗) cd(m,M) = dim M.

The first aim of this paper is to show that,using Matlis duals of local cohomology

modules, formula (∗) become almost trivial once one knows the following facts.

(A) Local cohomology can be written as the direct limit of Koszul cohomologies. It

is an easy exercise to check that the following are immediate consequences of

this:

(A1) the base-change formula RHi
IS(N) = Hi

I(RN) (S/R a noetherian algebra, N

an S-module, I an ideal of R and i ∈ N);

(A2) the formula

H
j
(X1,...,Xi )

(k[[X1, . . . ,Xi]]) =

{

0 if j > i

Ek[[X1,...,Xi ]](k) = k[X−1
1 , . . . ,X−1

i ] if j = i

(k a field, X1, . . . ,Xi indeterminates);
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(A3) the fact that each local cohomology functor of the form H
j
(x1,...,xi )R is zero

for j > i; in particular, Hi
(x1,...,xi )

R is right exact.

(B) Some Matlis duality theory and some spectral sequence theory. Both serve as

technical tools.

Our method works only in the equicharacteristic case.

The second aim is to prove Theorem 3.1, which is a new (sufficient) criterion for

the vanishing of local cohomology modules, which is of a ring-theoretic nature; the

idea which is used in its proof is, to the best of our knowledge, completely new in this

context.

2 The (Non-)Vanishing Theorem

Everything in this paper is based on the following easy lemma.

Lemma 2.1 Let (R,m) be a noetherian local complete ring containing a field k, let M

be an R-module, and let x1, . . . , xi ∈ R. Then

Hi
xR(M) 6= 0 ⇔ dim(R0) = i and HomR0

(M,R0) 6= 0,

where R0 := k[[x1, . . . , xi]] as a subring of R and x := x1, . . . , xi .

Proof (⇒): Assume dim(R0) < i. Write R0 = k[[X1, . . . ,Xi]]/I, where X1, . . . ,Xi

are indeterminates and I is a non-zero ideal of k[[X1, . . . ,Xi]] =: S. Then

Hi
xR0

(R0)
(A1),(A3)
= Hi

XS(S) ⊗S (S/I) = 0,

as every 0 6= f ∈ I operates injectively on S and hence (B) surjectively on Hi
XS(S)(

(A2)
∼
=

ES(k)). In particular,

Hi
xR(M)

(A3)
= M ⊗R0

Hi
xR0

(R0) = 0,

which is a contradiction. Therefore, dim(R0) = i, R0
∼
= k[[X1, . . . ,Xi]] with indeter-

minates X1, . . . ,Xi , and one has

0
(B)

6= HomR0
(Hi

xR(M), ER0
(k))

(A3)
= HomR0

(M ⊗R0
Hi

xR0
(R0), ER0

(k))

= HomR0
(M,HomR0

(Hi
xR0

(R0), ER0
(k)))

(A2),(B)
= HomR0

(M,R0).

(⇐): Again, R0
∼
= k[[X1, . . . ,Xi]] with indeterminates X1, . . . ,Xi ; now

0 6= HomR0
(M,R0) = HomR0

(Hi
xR(M), ER0

(k))

follows as above.
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Theorem 2.2 (i) If R is a noetherian ring containing a field, x = x1, . . . , xi ∈ R,

and M is an R-module (not necessarily finitely generated) such that dimR(M) < i,

then Hi
xR(M) = 0.

(ii) If (R,m) is a noetherian local ring containing a field and x = x1, . . . , xi is part of

a system of parameters of a finitely generated R-module M, then Hi
xR(M) 6= 0; in

particular, HdimR(M)
m (M) 6= 0.

(iii) If (R,m) is a noetherian local ring containing a field and M is a finitely generated

R-module, then cd(m,M) = dimR(M).

Proof (i) By localizing and completing, we may assume that R is local and complete.

Set R0 := k[[x1, . . . , xi]] as a subring of R as in Lemma 2.1; we may assume that

dim(R0) = i, i.e., R0
∼
= k[[X1, . . . ,Xi]], where X1, . . . ,Xi are indeterminates. Due

to dimension reasons, it is clear that HomR0
(M,R0) = 0 and the claim follows from

Lemma 2.1.

(ii) We may assume that R is complete (R̂/R is faithfully flat); by base-change,

we may replace R by R/AnnR(M). Set d := dim(R); we choose xi+1, . . . , xd ∈ R

such that x1, . . . , xd is a system of parameters of M. Then R0 := k[[x1, . . . , xd]] ⊆ R

is a regular d-dimensional subring of R and, because M is module-finite over R0,

HomR0
(M,R0) 6= 0. Lemma 2.1 implies Hd

(x1,...,xd)R(M) 6= 0. Now a formal spectral

sequence argument (namely for the spectral sequence of composed functors E
p,q
2 =

H
p
(xi+1,...,xd)R(H

q
(x1,...,xi )R(M)) ⇒ H

p+q
(x1,...,xd)R(M); note that H

p
(xi+1,...,xd)R = 0 for each

p > d − i and that H
q
(x1,...,xi )R = 0 for each q > i,by (A3)) shows that

0 6= Hd
(x1,...,xd)R(M) = Hd−i

(xi+1,...,xd)R(Hi
(x1,...,xi )R(M)).

(iii) follows from (i) and (ii).

3 A Ring-Theoretic Vanishing Criterion

Theorem 3.1 Let (R,m) be a noetherian local complete domain containing a field and

x = x1, . . . , xi , a sequence in R. Then the implication

Hi
xR(R) 6= 0 ⇒ dim(R0) = i and R ∩ Q(R0) = R0

holds, where R0 := k[[x1, . . . , xi]] ⊆ R, Q(R0) denotes the quotient field of R0, and the

intersection is taken inside Q(R).

Proof By Lemma 2.1, R0
∼
= k[[X1, . . . ,Xi]] , X1, . . . ,Xi indeterminates, dim(R0) = i.

Let r ∈ R, r0 ∈ R0 such that r0 · r ∈ R0. We have to show that r ∈ R0: by

Lemma 2.1, HomR0
(R,R0) 6= 0 and so we can choose ϕ ∈ HomR0

(R,R0) such that

ϕ(1R) 6= 0 (namely, by composing a ϕ ′ ∈ HomR0
(R,R0) that has ϕ(r ′) 6= 0 (for

some r ′ ∈ R) with the multiplication map R
r ′

→ R). Set r ′0 := r0r. One has

r0ϕ(r) = ϕ(r ′0) = r ′0ϕ(1R)

and then

ϕ(1R)r = ϕ(1R)
r ′0
r0

= ϕ(r) ∈ R0.

https://doi.org/10.4153/CMB-2011-054-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-054-9


318 M. Hellus

On the other hand, we have r ′20 = r2
0r2 and thus

r2
0ϕ(r2) = r ′20 ϕ(1R) and ϕ(1R)r2

= ϕ(1R)
r ′20

r2
0

= ϕ(r2) ∈ R0.

Continuing in the same way, one sees that for every l ≥ 1, one has ϕ(1R)rl ∈
R0. But this implies that the R0-module ϕ(1R) · 〈1, r, r2, . . . 〉R0

is finitely generated

(〈1, r, r2, . . . 〉R0
stands for the R0-submodule of R generated by 1, r, r2, . . . ). But, as

R is a domain, 〈1, r, r2, . . . 〉R0
is then finitely generated, too, i.e., r is necessarily con-

tained in R0.

Remarks 3.2 (i) Hi
xR(R) 6= 0 (and thus R∩Q(R0) = R0) are clear if x is an R-regular

sequence; but the condition x being a regular sequence is not necessary as the follow-

ing example shows: H2
(y1 y2,y1 y3)(k[[y1, y2, y3]]) is non-zero (and thus R∩Q(R0) = R0)

though y1 y2, y1 y3 is not a regular sequence (k a field, y1, y2, y3 indeterminates).

(ii) In the situation of Theorem 3.1, without the assumption Hi
xR(R) 6= 0 the

condition R ∩ Q(R0) = R0 does not hold in general, e.g., for

R0 = k[[y1 y2, y1 y2
2]] ⊆ k[[y1, y2]] = R

(k a field, y1, y2 indeterminates) one has y2 ∈ (R ∩ Q(R0)) \ R0.

Remark 3.3 If R is regular, the implication from Theorem 3.1 is an equivalence for

i = 1; while this is easy to see, the case i = 2 seems already unclear.

Question 3.4 Under what conditions can the implication from Theorem 3.1 be

reversed?
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