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ABSTRACT

We generalise works of Kobayashi to give a formulation of the Iwasawa main conjecture
for modular forms at supersingular primes. In particular, we give analogous definitions
of the plus and minus Coleman maps for normalised new forms of arbitrary weights and
relate Pollack’s p-adic L-functions to the plus and minus Selmer groups. In addition,
by generalising works of Pollack and Rubin on CM elliptic curves, we prove the ‘main
conjecture’ for CM modular forms.

1. Introduction

The Taniyama—Shimura conjecture, proved by Wiles et al., asserts that elliptic curves over Q
correspond to modular forms of weight two. Therefore, it is natural to ask which results on
elliptic curves can be generalised to modular forms of higher weights. In this paper, we discuss
how this can be done for some recent results on supersingular primes.

Let p be an odd prime and let G, be the Galois group of the extension k., of Q by p
power roots of unity. We denote by A(G«) the Iwasawa algebra of G, over Z,. If A denotes
the torsion subgroup of G and 7 is a fixed topological generator of the Z,-part of G, then
MGoo) = Zp[All[y —1]J.

Let f =5 a,q™ be a normalised eigen-newform of weight k > 2, level N and character e. For
notational simplicity, we assume that a, € Z throughout the introduction. We fix p so that pt N.
Kato [Kat04] has formulated a main conjecture relating an Euler system (which we refer to as
a Kato zeta element) to some cohomological group over ko, (see §3.3 for a brief review).

If a is a root of X2 — a, X + €(p)p*~! such that vy(a) < k — 1, where v, is the p-adic valuation
of C, with v,(p) = 1, then there exists a p-adic L-function L, , interpolating complex L-values of
f. When f is ordinary at p (i.e. a, is a p-adic unit) and « is the unique unit root of the quadratic
above, Ly, , lies inside Q ® A(G) and the p-Selmer group Sel,(f/koo) of f over koo is A(Goo)-
torsion, i.e. its Pontryagin dual

Selp(f/k:oo)v = Homcts(selp(f/koo)a Qp/Zp)

is A(Go)-torsion. If € is a character on A, the f-isotypical component of Sel,(f/ks)V is
Zp[y — 1]]- torsion. We can associate to it a characteristic ideal. Kato’s main conjecture is equiv-
alent to asserting that this ideal is generated by the f-component of L, (written as L;a),
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i.e. there is a pseudo-isomorphism (a homomorphism with finite kernel and cokernel)
Sel,(f /koo) ¥ — H Z,| ;)

for some x; € Zp[[y — 1]] such that z; - - - z, = Lna

When f is supersingular at p (i.e. plap), the p-adic L-functions of f as given above are
not in Q ® A(Gw) and Sely(f/kso) is not A(Gso)-cotorsion (see §6.3.1). Therefore, Kato’s main
conjecture cannot be reformulated in the same way as the ordinary case.

In recent years, much progress has been made on supersingular primes. When a, =0,
Pollack [Pol03] has defined the plus and minus p-adic L-functions L;t, which have bounded
coefficients. In [Kob03], again assuming that a, =0, Kobayashi defined the plus and minus
Selmer groups Seli,IE for the case when f corresponds to an elliptic curve £ over Q and proved
that Sel;t (€/ks) are A(Goo)-cotorsion. It is then possible to reformulate Kato’s main conjecture
as follows.

CONJECTURE 1.1. Let 0 be a character on A. Under the notation above, the characteristic ideal
of Sel;t(g/k:oo)v’e is generated by L

One inclusion of Conjecture 1.1, namely L;t ¥ does lie inside the said characteristic ideal,
follows from that of Kato’s main conjecture under some assumptions. For the CM case, the
other inclusion has been proved by Pollack and Rubin in [PR04], using the theory of imaginary
quadratic fields and elliptic units.

We now explain how SeljE (€/kso) is defined. Let p,n be the set of p™th roots of unity. The
idea of Kobayashi is to deﬁne subgroups £%(Q,(ppn)) of E(Qp(ppn)) which can be identified with
its image in H(Qp(ppn ), E[p™]) under the Kummer map. The 4-Selmer groups over Q(u,») are
defined to be

1 (ee]
Sel}t(g/@(upn))—ker(selp(g/c@(ﬂpn))_, HY(Qp (), E[p™)) >

EF(Qp(ppn)) @ Qp/Zy
Then, Sel (€ /koo) is defined to be the direct limit of Sel=(€/Q(uyn)).

On the one hand, £[p™] gives a p-adic representation of Gal(Q/Q) and one can define
analogous representations for arbitrary modular forms (see [Del69] for details). On the other
hand, the Kummer image of £(Qp(ppn)) can be identified with the so-called finite cohomology
subgroup H} defined in [BK90]. Therefore, we can give a definition of Sel™(f/ks) analogously
for any modular forms without much difficulty.

To show that Sel;IE (€/ks) is A(Go)-cotorsion, Kobayashi constructed the £-Coleman maps
Col* : lim Hl(Qp(Up")7 Tp(€)) — MG,

where T}, (&) denotes the Tate module of € at p. In particular, Col® send the Kato zeta element
from [Kat04] to LﬂE respectively. By applying the Poitou—Tate exact sequence, he then showed
that the Pontryagm dual of SeljE (€/kso) is killed by LjE # 0; hence, A(Go)-cotorsion.

We follow this strategy to show that Sel;t( f/kso) are A(Go)-cotorsion for f of any weight
k > 2. Although the Coleman maps in [Kob03] are defined using formal groups, they can in fact
be obtained from Perrin-Riou’s exponential map defined in [Per94]. We make use of this and
observe that there is a divisibility phenomenon, similar to that used in the construction of Lf
in [Pol03]. This enables us to construct analogous +-Coleman maps for general f. Although we
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do not need any restrictions on p to define them, we assume that p + 14k — 1 in order to describe
their kernels, which are related to the local conditions in the definition of Selzj,[. We then formulate
a main conjecture as follows.

CONJECTURE 1.2. Let f and 6 be as above. There exist n* € Z such that the characteristic
ideal of Selpi(f/koo)v’e is generated by e L;t’g.

As in the case of elliptic curves, Conjecture 1.2 is equivalent to Kato’s main conjecture and
one inclusion holds.

It has to be pointed out that we are assuming that a, =0 as in [Kob03, Pol03]. Since
la,| < opk—1)/2 (due to Deligne), a,, is always zero when p > 3 when f corresponds to an elliptic
curve. When k > 2, the assumption is much stronger although, if f is a CM modular form, a,, =0
for any supersingular prime p (see §7). More recently, Sprung [Spr09] has generalised works of
Kobayashi to the case a, # 0 for elliptic curves over Q. It would be desirable to know whether
this can be done for modular forms of higher weights as well.

The layout of this paper is as follows. We fix some notation and review some basic properties
in §2. In §3, we first review some of the main results which we need from [Per94, Kat04]. We
then construct the £-Coleman maps. The kernels of these maps are worked out explicitly in §4
and their images are described in §5. Following [Kob03], we define Selg)IE in §6. We show that
they are A(Goo)-cotorsion, which enables us to formulate the ‘main conjecture’ for which one
inclusion of the conjecture is shown. Finally, in §7, the other inclusion is proved in the case of
CM modular forms over Q, following the strategy of [PR04].

2. Background

In this section, we fix some notation which is used throughout the paper. We also state some
basic properties of some of the objects which we study.

2.1 Extensions by p power roots of unity

Throughout this paper, p is an odd prime. If K is a field of characteristic 0, either local or global,
Gk denotes its absolute Galois group, x the p-cyclotomic character on Gx and O the ring of
integers of K. For an integer n > 0, we write K, for the extension K (pn), where pi,» is the set
of p"th roots of unity and K denotes (J,,~; Kn. The Z,-cyclotomic extension of K is denoted
by K, and K™ denotes the p"-subextension inside K.

In particular, we write Qpn = Qp(ppn). For n > m, we write Tr,, /,, for the trace map from
Qp,n to Qpm- For each n, we fix a primitive p"th root of unity such that (fjn = (pn—1. Let G
denote the Galois group Gal(Q),,/Qp) for 0 <n < oo. Then, Goo = A x I', where A =G is a
finite group of order p — 1 and I' = Gal(Qyp,0/Qp,1) = Z,. We fix a topological generator vy of T’
and write u = x(7v). In particular, u is a topological generator of 1 + pZ,,.

2.2 Iwasawa algebras and power series

Given a finite extension K of Q,, Ao, (Gx) (respectively Ao, (I')) denotes the Iwasawa
algebra of G (respectively I') over Ox. We write Ag(Goo) = Aoy (Go) ® K and Ag(T') =
Aok (T) ® K. When K = Q,, (so Ox = Zy), we simply write A for Az,. If M is a finitely generated
Ao (I')-torsion (respectively Ag (I')-torsion) module, we write ChaerK(p)(M ) (respectively
Chary, () (M)) for its characteristic ideal.
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Given a module M over Ap, (Gw) (respectively Ag(Goo)) and a character 6 : A — Z, M?
denotes the d-isotypical component of M. For any m € M, we write m? for the projection of m
into M®. The Pontryagin dual of M is written as M.

Let r € R>g. We define

Hr:{ Z CTL,U'U'XnECp[A]HXH:Sup‘Cma‘p<ooVo'€A}7

nr
n>0,0€A

where | - |, is the p-adic norm on C,, such that |p|, = p~! (the corresponding valuation is written
as vp). We write Hoo = >0 Hr and H,(Go) = {f(v — 1) : f € H, } for 7 € Ro U {oc}. In other
words, the elements of H, (respectively H,(G)) are the power series in X (respectively v — 1)
over Cp[A] with growth rate O(logy). If F, G € Hoo or Hoo(Goo) are such that F'=O(G) and
G =O0(F), we write F ~ G.

Given a subfield K of C,, we write H, x =H, N K[A][[X]] and similarly for H, x(Goo).
In particular, Ho x(Goo) = Ax (G ). Moreover, we have three operators ¢, 0 and ¢ on H, g
defined by

N =+ XP 1), 0 =(1+X) D and w(1)= Y FC0+X) 1),
v=1

2.3 Crystalline representations

We write Bcis and Bgg for the rings of Fontaine and ¢ for the Frobenius map acting on these
rings. Recall that there exists an element ¢ € Bqr such that ¢(t) = pt and g - t = x(g)t for g € G, .

Let V be a p-adic representation of Gg, which is crystalline. We denote the Dieudonné
module by D(V) = Deyis (V) = Beris @ V)% If j € Z, DI (V) denotes the jth de Rham filtration
of D(V).

We write Do (V) = Hgiag ® D(V'), which is contained in Hu g, ® D(V'). The map ¢ ® ¢ on
Heo,0, @ D(V) is simply written as ¢ and the map 0 ® 1 is written as J. Note that 0 acts
on Dy (V) bijectively, so & makes sense for any j € Z.

Let T' be a lattice of V which is stable under Gg, . For integers m > n, we write cor,, ;,, for the
corestriction map HY(Qpm, A) — HY(Qpn, A), where A=V or T. Let H._(T') denote the inverse
limit lim H YQpn, T) with respect to the corestriction and Hi (V) =Q ® H{ _(T). Moreover, if
V arises from the restriction of a p-adic representation of Gg and T is a lattice stable under G,
we write

H'(T) = lim B (Z[¢n, 1/p], T),

n

H (V) =Q o HY(T).

Let V(j) denote the jth Tate twist of V, i.e. V(j) =V ® Qpe;, where Gg, acts on e; via
x?. We have D(V(j)) =t7/D(V) ® e;. For any v e D(V), v; =v®t Je; denotes its image in
D(V (5)). We write Tw;y : Hi (V) — Hi (V(j)) for the isomorphism defined in [Per93, § A.4],
which depends on our choice of (;». For each n and j, we write

€XPp,j Qp,n o2y D(V(])) — H' (Qp,na V(J))
for Bloch-Kato’s exponential defined in [BK90].
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2.4 Modular forms

Let f =) anq" be a normalised eigen-newform of weight k > 2, level N and character e. Write
Fy=Q(an :n > 1) for its coefficient field. Let f =} @,g" be the dual form to f; we have Fr = F}.

We write L(f, s) for the complex L-function of f. If  is a finite character of G, we write
L(fg, s) for the twisted L-function of f by 6.

We assume that p{ N and fix a prime of Fy above p. We denote the completion of F' at this
prime by £ and fix a uniformiser @. We write V for the two-dimensional E-linear representation
of Gg associated to f from [Del69]. When restricted to Gg,, Vy is crystalline and its de Rham
filtration is given by

D(Vy) ifi <O,
Di(Vy)={ Bw  if1<i<k—1, (1)
0 ifi>k
for some 0 # w € D(Vy). Hence, the Hodge-Tate weights of V; are 0 and 1 — k. The action of ¢
on D(V7) satisfies ¢? — app + e(p)p* 1 =0.
If v € Vy, we write v* for the component of v on which the complex conjugation acts by =1.

3. Construction of the Coleman maps

In this section, we define the plus and minus Coleman maps for a modular form f as in §2.4
under the following condition.

ASSUMPTION 1. a, =0 and the eigenvalues of ¢ on D(V}) are not integral powers of p.

We first review the definition of Perrin-Riou’s exponential from [Per94] for general crystalline
representations and results of Kato [Kat04] on general modular forms. We then prove a divisibility
property of the image of the Perrin-Riou pairing under Assumption 1 in order to define Col™.

3.1 Perrin-Riou’s exponential

Throughout this section, we fix V', a crystalline p-adic representation of G, such that the action
of ¢ on D(V') has no eigenvalues which are integral powers of p. Let j be an integer. Since ¢ acts
on ¢ via multiplication by p and D(V (5)) =t D(V) @ e;, the eigenvalues of ¢ on D(V(j)) are
not integral powers of p either.

Since V(j )G@P’w is also a crystalline representation, it is a sum of characters. But a character
is crystalline if and only if it is the product of an unramified character and a power of x (see
for example [Bre01, Example 3.1.4]). Therefore, our assumption on the eigenvalues of ¢ implies
that V(j)%. = 0.

For each j € Z and n > 0, under our assumptions on the eigenvalues of ¢, the exponential
map exp,, ; induces an isomorphism

€XPp,j Qpn ® D(V(j))/DO(V(j)) - H}(@pm V(4))-
When n > 1, there is a well-defined map

E0v()  Doo(V(j)) = Qpa @ D(V(5)),
g P®e) "G(Gn — 1),

where G € Hoo g, ® D(V) is such that (1—-¢)G=g (see [Per94, §3.2.2]). Moreover,
(exp,, ; 0=, v (j))n>1 are compatible with the corestriction maps. In other words, the following
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diagram commutes.

XPnt1,j °Zn+1,V ()

Doo(V(4))

HY(Qpnt1, V(5))

—_ Corn+1 n

HY (Qpn, V()

The definition of the Perrin-Riou exponential is given by the following theorem, which is the
main result of [Per94].

THEOREM 3.1. Let h be a positive integer such that D~"(V)=D(V). Then, for all integers
j =1 — h, there is a unique family of A(G)-homomorphisms

Qv () hti : Doo(V (1)) = Hoo(Goo) (o) Hiw (T())
such that the following diagram commutes:

Qv (5),h+;

Do (V () Hoo(Goo) @Gy Hiw(T(5))

En,vml lpr
(h+j—1)! exp,, ;

Qpn @D(V(4)) HY(Qpn, V(5))

where n > 1 and pr stands for projection. Moreover, we have

Twy v () oy (j),htj © (0 ® te—1) = =Qy (i) prjt-

Proof. [Per94, §3.2.3]. O

Remark 3.2. By [Per94, §3.2.4], if g € H(Iiaj ®@Dq(V(4)), where Do (V(j)) is the subspace of
D(V(j)) in which ¢ has slope «a, then Qy ;) 54;(9) is O(logi,”‘o‘), i.e. contained in Hp10(Goo) ®
Hiy, (T())-

Remark 3.3. The theorem implies the following congruence for r > 0:

(=1)" Tw, v ;) (Qv)pe(9) = (h+J + 71— Dlexp, i1 0= v(j4r)
xo(07"@t e )(g) mod(7pn71 —1).

3.2 Perrin-Riou’s pairing

Let M be a finite extension of Q, and we further assume that V' is a vector space over M and
the action of Gg, is compatible with the multiplication by M. We fix T', an Oy;-lattice of V
which is stable under Gg,. We write V* for the M-linear dual of V' and T™* for the Oy;-linear
dual of T'. Since HY(Qpn, T') and H(Qy,,, T*(1)) are Opr[Gy)-modules, Hi, (T') and Hi, (T*(1))
are Ap(Goo)-modules. By [Per94, §3.6.1], there is a non-degenerate pairing

() B (T)  HL(T"(1)) = Aoy, (Gao),
(@) (a)a) ( S % pln - a> |

O'EGTL

where [, |,, is the natural pairing

HYQpn, T) x HY(Qpp, T*(1)) — Oy
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The pairing (, ) extends to

(Hoct(6e) @0, 00 BT )  (Hocr(Goe) B, ) i (T(1))) = (G,
which we also denote by (,). Let j and h be integers satisfying conditions of Theorem 3.1. If
neD(V(j)), then (1 + X) ®n € Ds(V(j)). Using the pairing (, ), we define a map

£37  HE(T(G) (1) = Hoonr(Goc),
z — (Qy)ae (1 + X) ®@n), 2).

Note that Eg’j modulo 'yp%l — 1 induces a map into M[G},], which we denote by EZ,’%. Also, EZJ
extends naturally to a map on Hi, (V(j)*(1)), which we write as L’Z’] also.

3.2.1 Explicit formulae of EZZ%. We want to say something about values of the image of EZZ%

at some special characters on G,. To do this, we make use of the following result.

LEMMA 3.4. Under the notation above, let n € D(V(j)). Then, the projection of

1
e O (14X
(h+j—1)! V()i (1 +X) @)
into HY(Qp.n, V(j)) is given by
n—1
pespas (3 Gron 99" M)+ (1= ) ) i1,
m=0
! 1 o
expo | | 1— e (I—¢) " (n) ifn=0.
Proof. This is a straightforward application of Remark 3.3 to the solution of (1 — )G =
(14+ X)®mn as given in [Per94, §2.2]. O

For n > 1 and n € D(V(j)), we write

n—1
Vg () == p " (Z =i @ " () + (1 = w)_l(n))-
=0

Remark 3.3 and properties of the twist map (see e.g. [Per94, §§3.6.1 and 3.6.5]) imply that for
z € Hi, (T(j)*(1)) and r > 0,
1
(h+j+r—1)

Tw, (L19(2) = 3 [exPpj e (Yngir (1)), 2-rnln -0 mod(/?" " = 1), (2)
UEGn

where Tw, acts on Hoo(Goo) via 0 — x(0)"0 for 0 € Go and z_,,, is the image of z under the
composition

Hiy (T(5)*(1))
By [Kat93, ch. II, §1.4], we also have

U B (TG + 1) (1) —2 s B (@, TG + 1) (1)

[eXpn,jJ,-r(')v ]n = Trn/O ® ld([v eXp;,j—i—T(‘)];l)’

where exp;‘w- 4, 18 the dual exponential map

expy, jip - H (Qpun, V(G +7)"(1) = DOV (5 +1)*(1))
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and the pairing
[0 Qun @DV + 7)) X Qoo @DV (j +17)"(1)) = Qpn @ M

is induced by the natural pairing
DV (j+r) x DV +7)"(1)) — M.
To ease notation, we simply write [, ], for [, ]/, when it does not cause confusion. We can now
rewrite (2) as
1
T
(h+j+r—1)

wi(L}(2))

n—1
= Z Trn,0[vn,j4r (0r)7 exp;’j+r(z_r7n)]n .o mod(*" —1)
o€Gn,
n—1
= |:Z ’ynJ‘H“ 777’ Z eXan_H, —Tn) 1:| mod(,yp _ 1) (3)
oe€Gnp oeGn n

Note that we have recovered the pairing P, of [Kur02]. We write the quantity in (3) as
P, T(n, Z_rn). Following the calculations of [Kur02], we can deduce the following special values

of Ly hoj,

LEMMA 3.5. For an integer r > 0, we have

1 h,j 90_1 -1
" ’ = I—— J(1— T ) 0 j\e—T.
() K )= x|
Let 0 be a character of G,, which does not factor through G,,_1 with n > 1; then
1 * o
A M)s XD g (220 ) s

UEG

where T denotes the Gauss sum.

3.3 Modular forms and Kato zeta elements
The details of the results in this section can be found in [Kat04].

3.3.1 L-functions and p-adic L-functions. Let f be as in §2.4. For any v € V; such that
v #£0, it determines an Opg-lattice Ty of Vy. We choose v such that T is stable under Gg.
Note that as a representation of G, VJZ‘ = Vf(k: —1). Hence, T} determines a lattice T7 of Vi
naturally.

Let per:DY(Vy) — V; be the period map defined in [Kat04]. Fix 0#w € D'(Vy) and let
Q4 € C* be such that per(w) = Qv+ + Q_v~. The p-adic L-functions associated to f are given
by the following.

THEOREM 3.6. Let a be a root of X2 — a,X + e(p)p*~! such that vy(a) <k — 1. Under the
notation above, there exists a unique Ly, o € Hoo(G) (depending on the choice of w and v) such
that for any integer 0 < r < k — 2 and any character 6 of G,, which does not factor through G,,_1
withn > 1,

—-n

CnrQ

X 0(Lpo) = )0 L(f,0,r),

where ¢, is some constant, dependent only on n and r and &+ = (—1)*="0(-1).
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Proof. [AV75, MTT&86] or [Kat04, Theorem 16.2]. O

If f corresponds to an elliptic curve £ over Q, there is a canonical choice of w and T, namely,
the Néron differential and T,,(£)(—1) (see [Kur02, §2.2.2]), where T),(£) denotes the Tate module
of £ at p.

3.3.2 Kato’s main conjecture. In order to state Kato’s main conjecture, we have to review
two important results from [Kat04] first.

THEOREM 3.7. Under the notation above, we have:

(a) H(TYy) is a torsion Ao, (Goo)-module;
(b) H'(T}) is a torsion-free Ao, (.. )-module and H' (Vy) is a free Ap(Goo)-module of rank one.

Proof. [Kat04, Theorem 12.4]. |

THEOREM 3.8. Fix a character § : A —Z/(p — 1)Z.

(a) Let 6 be a character of G,, and + = (—1)k¥=70(—1), where r is an integer such that
1<r<k—1. Write

There exists a unique E-linear map (independent of 0 and r) Vi — H(V}); v+ 2z, such that rg
sends the image of z, in Q,, ® DY(V¢(k —r)) (under the composition of the localisation, the
twist map and the dual exponential) to d, - L(f,0,r) -v* and d, is a constant which depends
only on 7.

(b) Let Z(Ty) CHY(Vy) denote the Ao, (Goo)-module generated by z,+ € Ty and write
Z(Vy) =Z(T¢) @ Q. Then, the quotient H'(V})/Z(V}) is a torsion Ap(Ge)-module and

Chary ,(ry (H' (V7)? /Z(V})®) C Chary ,r (H?(V})?).

(c) If the homomorphism Gg — GLo, (Tf) is surjective, then Z(Ty) C H'(T}). Moreover,
HY(Ty) is a free Ap,-module of rank one and

Chary, ) (H'(Tf)° /Z(Ty)°) C Chary,, ) (H(T5)").
Proof. [Kat04, Theorem 12.5]. O

Kato’s main conjecture states the following.

CONJECTURE 3.9. The inclusion Z(Ty) C H'(T}) holds. Moreover, if §: A —Z/(p—1)Z is a
character, then

Chary,, ) (H'(Tf)°/Z(Ty)°) = Chary,, ) (H(T5)").
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We call elements of Z(V;) Kato zeta elements. In particular, we write zﬁfato for the one
corresponding to our choice of v € V; fixed in §3.3.1 and call it the Kato zeta element associated
to f.

We fix v€ Vyand w € }D)_l(Vf(k)) for the dual form f similarly. Below, we relate the Kato
zeta element z?ato associated to f to the p-adic L-functions of f defined by Theorem 3.6 via the

h,j . .. .
map L,”. For simplicity, we write z from now on.

Let V =V}(1); then we can take h =1 and j > 0 in Theorem 3.1 by (1). For n € D(V}), we
simply write

Kato Kato
== Z g
f

Ly=Ly0  Hiy (Tr(k — 1)) = Hoo(Goo)
for the map we defined in § 3.2, with M = E.

THEOREM 3.10. For a as in Theorem 3.6, there exists 1, an eigenvector of ¢ on D(Vy) with

eigenvalue « such that 1., @] = 1. Moreover, the image of z%*° under the composition
Twy,_ Lie
H (V) = Hi, (V) ——= Hi, (Vi(k — 1)) =" Hoo(Goo)

is the p-adic L-function Ly, ., where the first map is just the localisation and Twj_; denotes
Twi—1,v;

Proof. [Kat04, Theorem 16.6]. O

We sometimes abuse notation and write the above composition as £, also.

Remark 3.11. Let oy and asp be the roots of X? — apX + e(p)p*~1. Then, the slope of ¢ on
D(Vy) is equal to t = max(vp(a1), vp(a2)). Since h =1 and the slope of ¢ on D(Vy(1)) is t — 1,
all elements of Im(L,) are O(log!,) by Remark 3.2.

It follows immediately from Lemma 3.5 that, with the same notation as in the lemma, we
have

~1
V(L) =1 [(1 - 2) (U= @) ). 5012

) ()
OL2) = ity 3 07O ) 50l ()l
oceG

3.4 The +-Coleman maps

3.4.1 +-logarithms. Let f be as above such that Assumption 1 holds. If a; and «ao are
the roots of X2 —a,X + e(p)p*~!, then a; = —ag. Moreover, v,(a1) = vp(az) = (k —1)/2, so
Remark 3.11 implies that Im(L;) C Hj—1)/2(Go) for any n € D(Vy).

In [Pol03], Pollack defines

1 5 Pon(u=7)
+ n
logy . = n H ’
=0 p n=1 p
k—2 00
_ 1 qhn—l(“ ]fY)
g, =[] 1] == —
7j=0" n=1

where ®,,, denotes the p"th cyclotomic polynomial.
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By considering the special values of L, o, and L, 4, as given by Theorem 3.6, Pollack showed
that we have the following divisibility properties:

+
logp,k|a2LP7al - alL%azv
log;k;|Lp7a2 - Lp7al .

This enabled him to define

+ a2LP,011 - alLPﬂz (5)

n.f (ag — ) logzk ’

L;f _ Lp,az — Lp:ai ) (6)
T (g —an)log,

To ease notation, we suppress the subscript f and write Lff for L;t f- The growth rates of
these elements are given by the following theorem.

THEOREM 3.12. log;rk ~log ; ~ logz(,k_l)/2 and L;,t =0(1).

Proof. [Pol03, Lemma 4.5 and Theorem 5.1]. O

3.4.2 Definition of the Coleman maps. Let us first introduce a shorthand. For 0 <r <k — 2
and x € D(Vy(r + 1)), we write  mod w for the image of z in the quotient D(Vy(r +1))/E - wy41.
If two elements x and y of D(Vy(r 4 1)) have the same image, we simply write z =y mod w.

LEMMA 3.13. Let 0 <r <k —2 be an integer. If 0 is a finite character as in Lemma 3.5 and
n € D(Vy), then =" (n,41) =0 mod w implies that x"0(L,(z)) =0 for any z.
Proof. We have
Im(exp;, ;1) =Qn @ E -0 1 =Qppn ® DO(Vf(k —1-7)) and D°(Vy(r+1))=E- w1
Hence, the fact that D°(V¢(r + 1)) and ]D)O(Vf(k —1—7r)) are orthogonal complements of each
other under [,] and (4) imply that x"0(L,(z)) =0 if o™ (n,+1) is a multiple of w;,41. O
Recall that £, (zXa%) = L, . for i = 1,2 by Theorem 3.10. Hence, if we write

a2 — a1 _ -
+ _ %20y N and 7~ = Nas — Nan 7
Qo — O Qo — (1

then £,+ (z%°) = log;tk LE by (5), (6) and the linearity of £. In fact, more is true.

PROPOSITION 3.14. If z € H} (T}), then log, |, (2) over Hoo 5(Goo)-

Proof. Recall that [w, @] =0, [, @] =1 and ¢* = a? on D(V}). Therefore, explicit calculation
shows that 7., = (¢(w) + aiw)/[p(w), w] for i € {1, 2}. Hence,

+_ ) - w
nt=—--"— and n =—"—.
[p(w), ] [p(w), &]
Let r be an integer. Since p? = —¢(p)p*~2"=2 on D(Vy(r + 1)), we have

¢ ") =0 mod w if n is odd,

0
e "(0,41) =0

mod w if n is even.
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Therefore, by Lemma 3.13 and (4), we have

X"0(L,+(2z)) =0 ifnis odd,

X"0(L,-(z)) =0 ifnis even,
where 6 and n are as defined in Lemma 3.5. Recall that x(y) =u, so we have equivalences
X 0(Pr(u™"y)) = @ (6(y)) =0 if and only if #(~y) is a primitive p"th root of unity if and only
if  factors through G,,+1 but not G,,. Hence, all the zeros of logik, which are all simple, are
also zeros of £, +(z), so we are done. O

Remark 3.15. An alternative proof for this proposition is given in §5.1.

Recall that £, +(z) = O(logl(,k_l)/Q) and Theorem 3.12 says that log;tk ~ logék_l)/z, so we have
L+ (z)/log;'fk = O(1), i.e. an element of Hy g(Gs) = Ap(Gs). We define

Col™ : Hi, (Tf(k — 1)) = Ap(Goo),

L, (z)

Z — .
=
longC

We call these two maps the plus and minus Coleman maps. Note that we sometimes abuse
notation and write Col™ for the composition

Twg_1 Col*

H'(Tf) — Hiy (Tf) — Hiy (T5(k — 1)) —— Ap(Geo)
and its natural extension to Hl(Vf). In particular, we have
Col* (2"*'°) = L. (7)
1

Similar to L, + ,,, we write Colf for the map Col™ modulo v*"~ — 1.

Remark 3.16. The Coleman maps in [Kob03] are defined using a pairing with points coming
from the formal group associated to an elliptic curve, instead of images of the Perrin-Riou
exponential. It is not hard to see that the definition given above agrees with the one given by
Kobayashi on comparing [Kob03, Proposition 8.25] and (3).

4. Kernels of the Coleman maps
In addition to Assumption 1, we assume that the following holds.
AsSUMPTION 2. Either p+ 11k —1 or ¢(p) # —1.

Under these two conditions, we give an explicit description of the kernels of the plus and
minus Coleman maps defined in § 3. In particular, we generalise [Kob03, Proposition 8.18], which
describes the kernels of Col™ in the case of elliptic curves defined over Q.

4.1 Some linear algebra
Let us first study some basic properties of Q5. Define
Cpr itn>1,
1 .
Tn = Cp + ]fl if n= 1,
1 ifn=0

814

https://doi.org/10.1112/50010437X10005130 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X10005130

IWASAWA THEORY FOR MODULAR FORMS AT SUPERSINGULAR PRIMES

and Qz(,n) denotes the Q-vector space generated by {m] :0 € Gy}. Then, Tr,,_ 7, =0 for
n>1 and

n

Qp,n = @ Q]()Z) (8)

=0
PROPOSITION 4.1. Let n >0 be an integer and o= " jx;m; for some x; € Q,. Then, the
Q,-vector space generated by {a” : 0 € G} is given by @, g QS), where S = {i:z; #0}.

Proof. We proceed by induction on |S|. The case |S| =1 is immediate, so we assume that |S| > 1.
Write V' for the Q,-vector space generated by {a? : 0 € G, }. Clearly, V C @i:xﬁéo Qz(f). Without
loss of generality, we assume that z,, # 0. Let § = Z:‘L;ol x;m;. Then, by induction, {37 : 7 € G,,—1}
generates @ies\{n} QI(,Z) over Q,. Fix 7 € G,,_1; then

Z =17 + (Try oy )" =787 €V,

aEGn,U|Qp7n_1:T
where 1 = [Qp , : Qp n—1]. Therefore, for any 7 € G,,—1, 87 € V and 7 € V for any o € Gy,. Hence,

we are done. O

COROLLARY 4.2. Let n=ao+ Y a;i(,, where a; €Q, with ai# (p—1)ag; then the
Qp-vector space generated by {n” :0 € Gy} is given by Qp+ > .cs > seq, Qp - ¢, where S =
{rell,n]:a, #0}.

Proof. The result is immediate if a; = 0 by Proposition 4.1. If ay # 0, then

ai
n= <a0—p_1> +(11771+Zai77i-

1>1

Hence, we can again apply Proposition 4.1. O

COROLLARY 4.3. Let n =1+ (, + (2 + - - - + (pn; then 1) is a normal basis of Qp,,, over Q.

4.2 Properties of H*'

Recall that when f corresponds to an elliptic curve £ over Q and T (1) is the Tate module of £,
we have E[p>] =2 V;/T¢(1) as Gg-modules. Therefore, the following lemma generalises [Kob03,
Proposition 8.7], which says that £ has no p-torsion defined over k.

LEMMA 4.4. For all j € Z and n >0, (Vy/T§)(j)“%» = 0.

Proof. Tt is enough to show that (Vf/Tf)GQI%oo =0. Since Vy/Ty=lim _ Ty/w"Ty, it in fact

suffices to show that (T/ wa)G@ono = 0. We make use of the description of the representation
pr:Gaq,., — GL(Tf/wTy) given by [BLZ04, Proposition 4.1.4] and consider two different cases.

k—1
Pfu: <,¢)O w/l?l) )

where I is the inertia group of G, and 9 and ¢’ are fundamental characters of level 2, i.e.

ker 1) =ker ¢' = G

Case 1: p+ 11k — 1. In this case,

Qur(P*-Yp)’

815

https://doi.org/10.1112/50010437X10005130 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X10005130

A. LE1

Hence, 1 is not an eigenvalue of py(c) for all o € Gal(Qp'( »*~v/p)/Qp (»~V/p)), as p+ 11k — 1.
Therefore, there exists an element in the above Galois group which lifts to Gg, . and

(Tf/wa)G‘@wo =0, as required.

Case 2: p+ 1|k — 1. In this case, pflag, . factors through Gal(Qp./Qp,c) and the eigenvalues
of the Frobenius map are the square roots of —¢(p). By our assumption, this is not 1, so we are
done. O

We now give two immediate corollaries.

COROLLARY 4.5. The projection Hy (T5(j)) — H'(Qpn, T7(j)) is surjective for all j and n.

Proof. Tt is enough to show that cor,, /., : H'(Qpn, T#(5)) — HY(Qpm, T#(7)) is surjective for all
n 2 m. On taking the Pontryagin dual, it is equivalent to showing that

vesy/n : H' (Qpun, Vi/Ty(k — 1= j)) = H'(Qpn, Vi /Ty (k =1~ j))

is injective. But this immediately follows from the inflation-restriction exact sequence and the
fact that Vy/Ty(k —1 — §)%@r.e =0 as given by Lemma 4.4. O

COROLLARY 4.6. For all n and j as above, H*(Qpn, T¢(5)) — H (Qpn, V¢ (4))-

Proof. From the short exact sequence 0 — T'¢(j) — V¢(j) — V¢/Tt(j) — 0, we obtain a long exact
sequence

c = (Vi Ty () e — HYQpns Ty(5) = H (@, Vi (5) =+ -
Hence, the result follows by Lemma 4.4. O

In particular, H'(Qy,,, Tt(j)) can be identified as an Og-lattice of H*(Qpn, V¢(4)). Another
property of H' which we need is the injectivity of the restriction

HYQpm, Vi(5)) —— H (Qpn, V(4))

for n > m, which follows from the inflation-restriction sequence and V; (j)G@wo =0 (immediate
from Lemma 4.4). In particular, the same can be said about H} We regard H}(@p’m, A) as a

subgroup of H} (Qpn, A) for A="Ty¢(j) or V¢(j) in the next section.

4.3 Some subgroups of H}
Let nT be as defined in § 3. For 1 < j < k — 1, recall that D°(V¢(j)) = E - w;. Using the shorthand
introduced in §3.4.2, we define two E[G,]-modules

R, =" E-y;())” modwC Qpn®D(Vy(5))/D(Vy(5)),
oceGp

R, = Zgj E-ynj(n; )7 mod wC Qpn @ D(V(4))/D(Vy(5)).

Remark 4.7. For 1 < j <k — 1, we have isomorphisms of E[Gy]-modules

Hi(Qpon, V5(5)) = Qpn @, D(VF(7))/D°(Vi(4)) = Qpn ® E.

Under this identification, the corestriction cor,, y, : H}(Qp,n, Vi(4)) — H} (Qp,m, V¢(4)) corre-
sponds to Try, /p, @id: Qpp @ E— Qpm @ E.
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By Remark 4.7, we can identify Rij with subsets of Q,, ® E and we have the following
description.

LEMMA 4.8. By identifying Qp,, @ D(V (4))/D°(V (5)) with Q,, ® E, we have

Rij=2 > E-Gu+kE,

m even oG,

Roj=2 2 E-Gu+E,

m odd c€G,
where m < n in the summands.
Proof. Recall that 7, ; = p‘"(zzzol Cpn—i @ @™ 4 (1 — )~ 1) and n* are given by the following:

nt = 790(“))_ and n = Y

[p(w), @]
Hence, we can apply Corollary 4.2 to Ri j provided that
(P—1DA—9) () £ ' (nf) modw,

which can be checked under Assumption 1. Recall that ¢ (w) =0 mod w if and only if m is an
even integer (cf. proof of Proposition 3.14), hence the result. O

In particular, (8) and (10) imply that
Rl +R, . =Qn®FE and R! NR, ,=FE
under the identification given by Remark 4.7. Let
Q;)t,n = {37 € Qp,” : Trn/m—&-l(x) € Qp,m Vm e S’r:::}’
where S are defined by
ST ={me[0,n—1]:m even},
S, ={me[0,n—1]:m odd}.
Then, R, can be identified with Q%, @ E.
LEMMA 4.9. For j and n as above, ngn ®FE= Rij.
Proof. By (10), it is easy to check that Rfj C Qin ® E, so dimERij < dimE(@in ® E). Since
R:{J + R, ; =Qpn ® E, we have
Q.O9E+Q,,®E=Rl + R, =Q,QF.

If x € Q;;n NQ,,, then Try, /1 (7) € Qp for all m <n —1; hence, z € Q). Therefore, we
have Qf, NQ,, =Q,. Hence, by the formula dim A+ dim B =dim(A + B) 4 dim(A N B),
we deduce that dimpg (Q;,t,n ®FE)= dimERi ; and we are done. O

Let H } (Qpns V#(4))* denote the image of Ri ; under exp,, ;; then Remark 4.7 and Lemma 4.9
imply that it is equal to

{0 € HXQpos V7(7)) : Ol (2) € HHQprms V() ¥m € SE}.
By Corollary 4.6, if we define
H}(Qp,nv Tf(j))i = H}(Qpn’w Vf(]))i N H}(Qp,na Tf(j))7
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then it is equal to

& € HX Qs Ty () 5 00T i1 () € HHQpans, T(5)) ¥im € 52},
generalising the definition of E* in [Kob03].

4.4 Description of the kernels

Let z € H%W(Tf(k: —1)). Under the notation of §3, we have L,+(z) = O(loggc_l)/z), so we have
L,+(z) =0 if and only if P, ,(n*, 2_,,) = 0 for all n > 0 and more than (k — 1)/2 different values
of r with 0 <r <k — 2. Recall that

Py 2—rm) =1 Z [exPy 1 (Fnr+1()7), 2=rnlno.
oeGp

Hence, ker P, .(n%, -) is just the annihilator of {exp, 1 (Vnrs1 (n%)?) : o0 € G, } under the pairing
HY(Qpn, Vi(r +1)) x H' (Qpp, T(k —1—r)) — E,
which coincides with the annihilator of H} (Qp.n, T(r + 1))* under the pairing
HY(Qpn, Ty(r +1)) x H'(Qpn, T5(k — 1= 1)) — Op. (11)
We denote this annihilator by H1(Qp.p, Te(k —1—r1)).
Define  Hj, 4 (T7(k —1—7)) =lim HL(Qpun, Tf(k —1—7)). As log;, #0 and L=
log;'fk Col*, Corollary 4.5 implies that

k-2
ker £,+ = ker(Col®) = (| Tw,(Hi, . (Tf(k — 1 —1))).
r=0
In fact, by the proposition below, it suffices to take just one term in the intersection.

PROPOSITION 4.10. Tw,(Hy,, . (T7(k —1—1))) =Hf, . (Tf(k — 1)) for all integers r such that
0<r<k—2.

Proof. Since Col®(z) = O(1) for all z € HIlW(Tf-(k — 1)), it is uniquely determined by its values
at an infinite number of characters (see e.g. [Pol03, Lemma 3.2]). Hence, if there exists a fixed r
such that P, .(n*, 2, ) = 0 for all n, then Col*(z) = 0. Therefore, we have

ker(Col®) = TWT(HIlW’i(Tf(k: —1-r7)))
and we are done. O

COROLLARY 4.11. We have ker L+ = ker(Col®) = TWT(HIIW’i(Tf(k —1—7r))) for any integer
0<r<k -2

4.5 Pontryagin duality

We have seen that ker(Col™) can be written in terms of H}, about which we now say a little bit
more. The Pontryagin duality gives a pairing

HY Qpon, Vi/T§(r +1)) x H(Qpn, Ti(k —1—17)) — E/O. (12)
We can describe the annihilator of H1(Q, ., T¢(k — 1 —r)) under this pairing explicitly.

LEMMA 4.12. H}(Qp,n, Ti(r+1)*@E/Og — HY(Qpn, V;/Ts(r 4+ 1)) and it can be identified
as the annihilator of HY (Qp.n, Tf(k —1—r)) under (12).
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Proof. By definitions, we have an exact sequence
0 — Hi(Qpn, Tp(k =1 =1)) = H (Qpn, Tp(k — 1 = 1)) — Hom(H j(Qpn, Ty (r +1))%, Op).
Taking Pontryagin duals, we have
H§(Qpn, Ty (r + 1) @E/Op — H'(Qpu, Vy/Ty(r +1)) = HL(Qp, T(k = 1 = 1))" — 0.

Therefore, the second part of the lemma follows from the first. Recall that (Vi /T (r + 1))0@%" =
0 by Lemma 4.4, so we have

Hy(Qpn, Ty (r + 1)®E/Op < Hp(Qpn, V/Ty(r +1)) € H' (Qp, Vy/Ty(r +1)).
Hence, it suffices to show that we have the inclusion
H{(Qpn, Ty(r + 1))*QE/Op < H{(Qpn, Tf(r + 1))®E/Op.
But this follows from [Kob03, Lemma 8.17]. O

We write H} (Qpns Vi /Tr(j))* for H} (Qpns T (j))*®E/Op, which is identified as a subgroup
of H}(prn, V¢ /T¢(5)). Note that it corresponds to the definition of E*(Q,,) ® Q,/Z, given
in [Kob03] and this is used to define Sel;)t in §6.

5. Images of the Coleman maps

In this section, we describe the images of Col®. By Corollary 4.5, any elements of H* (Qp.n, Tf(k —
1)) can be lifted to a global element of Hi (T 7(k —1)). Hence, we can in fact think of £,+ ,, and
Col as maps from H'(Q, ., T¢(k — 1)) to E[G,]. This allows us to give a description of Im(Col¥)
by studying Im(Col:).

In [Kob03, §8], the images of the plus and minus Coleman maps for elliptic curves over Q
are shown to be the following:

I(Col*) = (7~ 1oy (Gax) + ( 3 7)Aoy (Guc)

ocEA
Im(Col™) = Ao, (G)-

In particular, the A-invariant part of Im(Col®) is the whole of (3 ven )Mo, (Goo) (which we
identify with Ao, (I')). For a general f, we unfortunately do not know whether the images of
the Coleman maps are inside Ap, (G ) or not. However, after multiplying by a power of w, we
show that the A-invariant part of Im(Col™) agrees with the above descriptions and the same
can be said for the whole of Im(Col™).

5.1 Divisibility by ®,,,(7)

We have seen that the image of £+ is divisible by log;tk. We give a necessary and sufficient
condition for such divisibility at the finite level below.

Recall that Goo = Gal(ks/Q) = A x I', where A is a finite group of order p — 1, I' = Z,, and
v is a fixed topological generator of I'. We have

OplGn) = Op[AlR]/(7" " —1) and @p(y) =1+7"

Therefore, if m > n, then ®,,,(v) =p in Og[G,], so we only consider m < n here.

m—1

+ 72pm—1 + . + ’y(p_l)pm—l.
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LEMMA 5.1. Let m <n and
f= Z Cro-0-7" €Og[Gy).

r mod p"~1

ocEA
For each 0 € A and r mod p™, write

b'r*,o' = CT7J + cr+pm7o- + e + Cr_pm70'

m—1

Then, f is divisible by ®,,(v) in Og[G,] if and only if b, , = bs , whenever r = s mod p
Proof. Let f=g®,(y) and g=>_ aro -0 -7" € Op[G,]. Then, the coefficient of 69" in f is
Ur,g + Qp_pm—1 5+ + Ap(p—1)pm—1 5+

Hence, b, , as defined in the statement of the lemma is just the sum of the coefficients a,, of g
with s =7 mod p™~!. Hence, bro = bs,» whenever r = s mod pmL.

Conversely, let Y ¢, 07" € Og[Gy] and define b,, as in the statement of the lemma.
Assume that b, , =bs, for all r=s mod p" L Let fo(v) = YowCro-Y 80 f=3 fo-0. We

have
fo‘(Cpm) = Z ( Z CS,O‘>C;W
r mod p™ “s=r(p™)
= Z br,acgm
r mod p™
= > bhe D G
s mod pm—1 r=s(pm-1)
=0.
Hence, ®,,,(y) divides f and we are done. O

Applying this to the image of £, + ,,, we have the following corollary.
COROLLARY 5.2. For any z € H(Q,,, Tf(k — 1)), Ly= n(z) is divisible by ®,(7) in E[Gy] if
m e SE.
Proof. The image of L, + ,(2) is given by the following composition:
HY(Qpn, Ty(k — 1)) = Homoy, (H" (Qpn, T4(1)), Op) — E[Gy),
where the first isomorphism is induced by the pairing (11) and the second map is given by
Homo, (H'(Qpn, T¢(1)), Op) — E[Gh),

0 — > 0(exp, 1 (yn1(n) )T, (13)
7eGp

with 6 extended to an element of Hompg(H'(Qp,, Vf(1)), E) in the natural way. Hence, it is
enough to show that the coefficients G(expn’l(vn,l(nli)T), as T € G, varies, satisfy the relations
described in Lemma 5.1. Recall that exp,, ; gives an isomorphism

Qpn @ D(Vy(1))/E - w1 — Hp(Qpn, V(1))
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Therefore, it is in fact enough to show that ’yn,l(nfE)T mod w satisfy the relations in Lemma 5.1.
Let 0 € A and r € Z/p™Z. For n =n~, we write

Mo = Z %1(771)‘”3

s=r(p™)

=p " A=) ) + GO @ )+ Guma ® 97T ()7

Therefore, if =™ 1(n1) =0 mod w, then 1, , = 15, for r = s mod p™~1, as (¢m)? = ({m)77".
Hence, by the definitions of % as given in the proof of Proposition 3.14, we are done. O

By considering its image modulo (u~7 'y)p%l — 1 similarly, one can deduce Proposition 3.14.
We can in fact say a bit more about the image of £+ ,,.

LEMMA 5.3. If L+ ,(2) =) ¢Cro 07", then ) ¢, is independent of 0.

Proof. For each o € A, we have

> a7 =p 7 (L= 9) 7 0F) + G e )
T
But ¢~ 1(n") =0 mod w, so we are done. O
We will see later on that these conditions in fact characterise the images of £, + ,, completely.

5.2 Images of log;i:’,c in Og[G,)
We now fix an integer j such that 0 < j <k — 2.

LEMMA 5.4. Let x € 1 + pZy,. There exists a constant c¢ such that for any positive integer n,
vp(2P" — 1) =n+ec.

Proof. Let x =1+ m, where m € pZj, so v,(m) > 1. We have the expansion

n n n pn n_1 pn
' —1=1+mP —1=mP +<pn_1>mp +...+<1>m_

For r > 0, vp((p:)) =n—uvy(r), so

If r = p®a, where pfa and a > 1, then

o (7)) >l (o))

Therefore, the set {vp((p:)mr) ;7> 0} takes its minimum value at r = p® for some s.

Consider the curve f(t)=p'v,(m)—t, for t €R. It has a unique global minimum when
pt = (vp(m) log p) L, so the curve is strictly increasing on ¢ > 0. Therefore, for a fixed n, the

minimum of the values
p" s
vp<<ps>mp ) =pivp(m) —s+n

is just vp(m) + n, which is attained at a unique s, hence the result. O
COROLLARY 5.5. If m > n, then ®,,(u"7v)/p is congruent to a unit of Z, modulo AP,
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Proof. By definition,

_- (uy)P" —1
Jn) =

(I)m(u ’Y) (U_]'}/)pm 1 17
so, as elements of Og[Gy], we have

1 ; w1

P, (uy) = ———.

P m( 7) p(uijpm—l B 1)
But u € 1 4 pZ, by definition, so we are done by Lemma 5.4. O

Remark 5.6. We have log;tk =p'FAy H?;g wE(uy) mod(4?"" — 1), where Ay is a unit of
Z, and wi- is defined by
w1+ X)= [ ®m(1+X)/p,
1<m<n/2
w1+ X)= J[ ®ema(1+X)/p.

1<m<(n+1)/2

5.3 The images of Coli:
Let Ri ; be the E-vector spaces defined by (9). We have the following lemma.

LEMMA 5.7. The dimensions of the E-vector spaces Ri ; are given by
dimpR} =1+ Y  p"2(p—1)
1<m<n/2

dimgR, ;=p—1+ Z PPl (p —1)2

1<m<(n—1)/2
Proof. By (10), we have
dimp R} =dimg, @, + Y dimg, QF™,
1<m<n/2

dimp R, ; =dimg, @, + Y dimg, QP

1<m<(n—1)/2
For m > 1, (8) implies that
dime Q;(om) — dime Qp,m — dime @p’m,1
=p" M p—1)—p" Pp-1)
=" (p 1)
and dimg, Qél) =p — 2, so we are done. O

The dimensions of these vector spaces enable us to obtain the following.

PROPOSITION 5.8. Let f=5 A Zfz)l*l ary-0-u" € E[G,]. If wf is as defined in
Remark 5.6, then:

a) there exists z € H'(Qp,, Vi(k — 1)) such that Col_ (2) = f mod wT (v);
D, f n n

(b) if moreover Y, oy, =Y., Grq, for all o1, 09 € A, then there exists z € H'(Qpn, Vi(k — 1))
such that Col} (z) = f mod w;, (7).
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Proof. We only prove (b), as (a) can be proved in the same way. Define

{ Zcrg o-v" € E[G, logpk|g,Zc,«g1 ZCWHVJl,UgeA}.
T

Then, U, is a vector subspace of E[G,] over E. By Remark 5.6,
k—2

logpk_ Pt k)uer u7y) mod(y”
7=0

n—1

f]_)

for some A} € OF. Since w;f (u™7 (14 X)) and (1 + X)P P""' _ 1 are coprime for j > 0, log+k|g if
and only if w; (v )|g But ®,,, and ®,,, are coprime if m; # ms, so w; (7)|g if and only if ®,,(7)|g
for all even m < n.

Let g=) ¢ o -0 -u". For each even m <n, let
b,(«,”;) =Cro + Crppmo T+ Crpmg.

Then, by Lemma 5.1, ®,,(7)|g if and only if b£ U) = bg 0-) for all o € A and r = s mod p™~!. For
each such m and o € A, there are p™ ! values of modulo p™~!; each is equated to p — 1 different
values. Since |A|=p — 1, there are p™ !(p — 1)? linearly independent equations for each m.
Together with the equations of ), ¢, ., there are in total

p—2+ Y plp—1)?
1<m<n/2
equations describing the coefficients of elements of the U,, which give the codimension of U,
over E in E[Gy)].
By Corollary 5.2 and Lemma 5.3, for 2 € H(Q,,, Vi(k — 1)), L+ n(2) lies inside the above
subspace. But the dimension of the image is given by dlmERn 1, which is the same as the

dimension of U, by Lemma 5.7, so L+ ,,(H" (Qpn, Vi(k —1))) = U, as E-vector spaces and
there exists some z such that £,+ ,(z) = g. This implies that

log ) Colt(2) = flog}, mod(7y?" — 1).

The factors of w, (u77v) on both sides can be cancelled out for j > 0, as w;" (u~77) is coprime
to w; (7). Since p" (v — Dwl(Y)w; (1) =" —1, we deduce that Colt(z)= f mod((y —
1)w;, (7)), which implies (b). O
5.4 The images of Col®

In the previous section, we studied the images of H(Q,.p, V#(k — 1)) under Col. To understand
the images of Col®, we have to understand those of H(Q,.,, Tf(k —1)) as well.

LEMMA 5.9. For all n, there exist r* € 7 such that
Ti
Ly n(H (Qpn, Tp(k = 1)) = Lyt (H (Qpun, Vi(k = 1)) N @™ Op[Gul.

Proof. Note that expn,1(7n71(nfc)) #0. As an element of H*(Qp,,, Tr(1)), it lifts to a cocycle on
Gq,.,- By considering the image of this cocycle in V(1), which is invariant under the action of
G\, there exist 7= such that

@7 X1 (Y1 (1)) € HY(Qpon, Tr())\@H (@, (1))

for all T € G,,.
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Recall from (13) that £, + , is given by
Homp(H' (Qpn, V1 (1)), E) — B[Gh],

0 — Y 0(exp, (1 (n)7)T,
TEGH

where we have identified Hompg(H'(Qpn, V(1)), E) with H'(Qpu, Vi(k —1)). Under this
identification, H'(Qpn, Tf(k — 1)) corresponds to the set of maps which send H YQpn, Tr(1))
(which is identified as a subset of H!(Qy,,,, Vf(1)) as discussed in §4) to O. Therefore, we have

{8(expy 1 (Yt (7)) - 6 € H (Qpun, Tr(k — 1))} = " Op

for all 7 € G,. This implies that the left-hand side of the equation in the statement of the lemma
is contained in the right-hand side.

Conversely, if = is an element of the right-hand side of the equation, there exists 6 €
HY(Qpn, V#(k —1)) such that 3 a(eXpn71(7n71(?7it)T)T = x by Proposition 5.8. In particular,

+
0(c "™ expy (Y1 (7)) € O
for all 7€ G,. Hence, there exists 0 € Hl((@pm,Tf(k — 1)) which agrees with 6 on the set

{w‘“ﬁf eXpn’l(%J(?ﬁ)T) :7 € Gp}, so x € the left-hand side. O
LEMMA 5.10. Let r© be the integers defined in Lemma 5.9; then there exist cy+ such that
r¥ = —e(k —1)[n/2]| + cx for n sufficiently large, where e is the ramification degree of E.

Proof. By Remark 3.11,
Qv 1)1 (L + X) @ nff) = O(loglF /%),

which implies that the nth component of Qy,y((1+ X) ®n), which is expn,1(7n71(nf)),
satisfies

expy 1 (1 (7)) € w - DInlres g, Ty (1))
for some constant c4 independent of n.

Recall that HJ_(Tt(1)) is free of rank two over Ap,(Gw). Fix a basis z1, 22, say. Note that
(14 X) @ nf form a Ag(Go)-basis for Doo (V¢). The determinant of

QVf(l),l 1 Hoo(Goo) ® ]D)OO(Vf(l)) — Hoo(Goo) @ Hllw(Tf(l))

with respect to these bases, as a Heo (G oo )-homomorphism, is given by

k—2

H logp(ujy) ~ log/;f*1
j=0
up to a unit of Ap(Gs) (this is the 0(V)-conjecture of [Per94], which can be deduced from
the explicit reciprocity law of Colmez [Col98]). But Theorem 3.12 says that log;—tk ~ 1og§,k_1)/ 2,
Hence, we in fact have
Qv (1+X)® nE) ~ logékfl)/?

Therefore, we can choose c+ such that

expy 1 (1 (7)) ¢ w KD Y (Qy 0, Ty (1)),
+— _—e(k—1)|n/2] + cx, for n sufficiently large. O

92}
o
=
I
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On combining these two lemmas, we have the following corollary.
COROLLARY 5.11. If @ is the trivial character on A, then there exist st such that
Col* (Hiy (TF(k — 1))’ = @** Ao, (I).

Proof. By Proposition 5.8 and Lemma 5.9, for sufficiently large n,

k—2
ot (35 0) Tl ) € Ly (B @ T = ),

ocEA 7=0

where
Gy (1+X) = H Pom (1 + X),
1<m<n/2
s, 1+X)=  J[ ®ema(1+X)
1<m<(n+1)/2

Hence, by Remark 5.6 and Lemma 5.10, there exist constants s* (independent of n) such that

o <Z a) log*, € Loyt (H" (Qpun, Tj(k — 1)))

ocEA
and
Lot (HY(Qpon, Ti(k — 1)) C @ log, Op[Ghl.

But log;[k Col* =L, +, so we have

n
wsi Z (S COli(Hl (Qp,na Tf(k - 1)) mod J)TT(’V)'
gEA

Therefore, we are done, since

i 80, (G /50) = Aop(G) and Aoy(G)’ = (T o) Aoy(G). .

gEA

Remark 5.12. Tt is clear that we can replace by an arbitrary character on A for the minus
map in the corollary.

6. £-Selmer groups

Throughout this section, with the exception of §§6.3.2 and 6.4, Assumptions 1 and 2 are not
necessary.

Let f be a modular form as in §2.4 and K a number field; the p-Selmer groups of f over K
are defined by the following;:

Sell(f/K) = ker (Hl(K, Vi1 (1)) — ] 2\ (5., vf/Tf<1>>> ,

K,, Vf/Tf(l))>
Ky, Vi /Tr(1)) )’

HY(
1
Sel,(f/K) = ker <H (K, Vy/Tr(1)) — H T
where v runs through the places of K.

We write k,, for Q adjoining all the p™th roots of unity and ko, = Uk,,. Since there is a unique
place above p in k,, we write this place as p as well. Note that the completion of k,, at p is
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isomorphic to Q. For f satisfying Assumptions 1 and 2, let H}(Qpﬂ, Vi/Tr(1))* be as defined
in §4.5. For all n > 0, we define the plus and minus Selmer groups by

Hl(@p,m Vf/Tf(l)) >
H(Qpn, Vi/Ty(1))*
In this section, we show that Sel,(f/kx) is not Ao, (G )-cotorsion when f is supersingular at p.

When f satisfies Assumptions 1 and 2, we show that Sel;t(f/k‘oo) = lim Sel;t(f/k:n) is Ao, (Goo)-
cotorsion.

SOl (/1) = e Seb (/1)

6.1 Restricted ramification

We now describe the Selmer groups defined above using restricted ramification. Let S be a finite
set of places of a number field K containing all infinite places, all primes above p and those
dividing N. Then, by [Rub00, Lemma 1.5.3],

HY(K,, VT (1
H G, Vi T5(1)) = e (06, Vi T3 (1) 11 mc ) 0

where G5 i is the Galois group of the maximal extension of K unramified outside S. Therefore,
we can rewrite Sel, as

Sel,(f/K) = ker(Hl(GS,Iﬂ Vi/Ty(1)) — @
ves

Hl(Kv,Vf/Tf(l))) (15)

H}(Ky, Vi /Ty(1))

If f satisfies Assumptions 1 and 2, we write H}(k,w, Vi/Tp(1))* = H}(knyv, Vi/T¢(1)) for
v{p. Then,

1
o H (v, Vi/Ty(1)) > (16)

SelE (f/kn) = ker(Hl(Gs,kn, Vi/Ty (1)) — HE (on, Vy/T5 (1)

veS
The next lemma enables us to give a similar alternative description of Selg as well.

LEMMA 6.1. With the notation as above, we have H}(Kv, Vi/T§(1)) =0 for v{pN.

Proof. If v is an infinite place, we in fact have H'(K,, V¢/Tf(1)) =0 as p is odd (see e.g. [Rub00,
§1.3.7)).

We now assume that v is a finite place not dividing pN. Since v 1{p,
H}(Ky, Vi(1)) = Hy (Ko, Vi(1))

by definition and H}(Kv,Vf/Tf(l)) is defined to be the image of HL.(K,, V¢(1)) in
HY(K,,V;/T¢(1)) under the natural map H'(K,, V(1)) — H'(K,, V¢/Tt(1)). By [Rub00,
§1.3.2],

Hy (Ko, Vi(1)) = Vi(1)!/(Fr =1)Vp(1)",
where [ is the inertia group of K, and Fr is the Frobenius map of K!'"/K,. Hence, it suffices to

show that 1 is not an eigenvalue of Fr. But v is a good prime (i.e. vt N), so the eigenvalues have

absolute value ql(,k_l)/ 2, where ¢, is the rational prime lying below v. Hence, we are done. O

If S is as above, Lemma 6.1 and (14) imply that

HY(Gs 1, Vy/ Ty (1)) = ker<H1<K, vy /Ts(1) — [ B (Ko vf/Tfu))).
vgS
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Therefore, by the definition of Selg, we have

Seld(f/K) = ker (HI(G&K, Vi /Ty(1)) — EB HY(K,, vf/Tf(1))>. (17)
vES

As stated in the proof of Lemma 6.1, H'(K,, V;/T¢(1)) =0 if v is an infinite place. We can
therefore simplify (17) further:

Sel)(f/K) = ker <H1(GS,K, Vi /Ty(1)) — @ HY(K,, Vf/Tf(1))>, (18)
vESy

where Sy denotes the set of finite places in S.

6.2 Poitou—Tate exact sequences

We now briefly review results on Poitou-Tate exact sequences. Details can be found in [Per95,
§A.3].

With the above notation, let S be a finite set of places of K containing those above p and
the infinite places; then we have an exact sequence

P HO(K., Vi/Tp(1) — H(Gs i, Ty(k — 1))¥
veSy

— H'(Gs.x, Vi/Ty (1) = @ H' (Ko, Vi/Ty(1)), (19)
vESy

where Sy is again the set of finite places in S. On combining (19) and (18), we have

P HO (K., Vy/Tf(1) = H* (G i, Tj(k — 1))¥ — Seld(f/K).
veSy

By taking duals and using the fact that HO(K,, Vy/Ty(1))¥ = H*(K,, Tf(k — 1)), we obtain

Sel)(f/K)" = ker (HQ(G&K, Tk — 1)) — @ H*(K,, T(k — 1))). (20)
veS)

For each v € Sy, let A, C HY(K,, T¢(k —1)) and B, C HY(K,, Vy/T¢(1)) be Op-modules so
that they are orthogonal complements to each other under the Pontryagin duality. Define

HE (K, Vi/Ty(1)) :ker<H1(G57K,Vf/Tf(1)) R EB Hl(ngf/Tf(l)))‘
vESy v

Then, [Per95, Proposition A.3.2] says that we have an exact sequence

H(K,, T;(k - 1))

HY(Gsx, Ti(k — 1)) — @ — HE(K, V;/Ty(1))Y

A,
’UESf
— H*(Gs ., Ti(k — 1)) — @ H*(K,, Tf(k — 1)). (21)
'UGSf
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Hence, we can combine (20) and (21) to obtain the following exact sequence:
H'(Ky, Tg(k — 1))

H'Y(Gsx, Ti(k— 1)) - B 3
vESy v
— Hp(K, Vy/Tp(1))Y — Seld(f/K)" — 0. (22)

6.3 Cotorsionness

6.3.1 Sel,(f/koo) is not Ao, (Goo)-cotorsion. We now prove our claim about Sel,(f/koo)”
in the introduction. Let K = k,. Take B, = H}(k,‘mv, Vi/T(1)) for ve Sy in (22); then A, =
H}(kn,v, T¢(k — 1)) by [BK90, Proposition 3.8]. Hence, on combining (15) and (22), we have an
exact sequence
H(Qpn, Ty(k — 1)) D H (ko Tp(k — 1))

T HH Qo Ti(k — 1)) S H} (ko Ty(k — 1)

— Sely(f/kn)" — Sel(f/kn)" — 0. (23)

H'(Gsp, Tk — 1))

We are interested in taking inverse limits over n. For the terms coming from places dividing
N, we can apply the following.

LEMMA 6.2. For each integer n > 0, fix a prime v(n) of Q,, not dividing p such that v(n + 1)
lies above v(n); then
HY(kyy o, Tk — 1
Jim 1( oy Tk =1)) _
Hf(kn,v(n)a Tf(k - 1))

n,Cor

Proof. The Pontryagin dual of the said inverse limit is lim H}(k‘n’v(n), Vi/T¢(1)), so the result
follows immediately from Lemma 6.1 if v(n){ N. The general case is proved in [Kat04, §17.10]
by considering p-cohomological dimensions. O

Therefore, on taking inverse limits in (23), we have the following exact sequence:
Hy (T7(k — 1))

where Hy(-) =lim_ H}(Qp,n, ) and Hi(-) = lim | HY(Gy, .s,-) 2HY(:) (see [Kob03, Proposi-
tion 7.1]).

Hg(T7(k — 1)) — — Selp(f /koo)” — Sel(f /koo)¥ — 0, (24)

PROPOSITION 6.3. Sel,(f/ks)" Is not torsion over Ao, (Goo).

Proof. We consider the rank of each term appearing in (24). By Theorem 3.7, H}q(Tf(k -1))
is a torsion-free Aoy (Goo)-module of rank one. By [Per00, Theorem 0.6], Hy(T¢(k — 1)) = 0.
By [Per94, Proposition 3.2.1], Hy, (TF(k — 1)) is of rank two over Ao, (Go). By [Kob03, proof
of Proposition 7.1], which is a purely algebraic proof and generalises to modular forms directly,
Selg(f/k:oo)v is Ao, (G )-torsion. Therefore, Sel,(f/koo)” has Ao, (Goo)-rank at least one and
we are done. O

6.3.2 Sel?f(f/koo) is Ao, (Gso)-cotorsion. We again set K = k. Let
H ko, Vi/TH(1) i 0[N,

HYQpn, Vi/T(1))E ifo=p.
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By [BK90, Proposition 3.8] and Lemma 4.12, we have
H(knw, TF(k = 1)) if 0|N,
H1(Qpn, Tf(k —-1)) ifv=p.
Hence, on combining (16) with (22), we obtain the following exact sequence:

. HY(Qpn, Tf(k -1)) @ H (K, o, Tf(k -1))
HL Qo Ty = 1)) S Hf (b Ty = 1))

— Sel(f/kn)" — Seld(f/kn)¥ — 0. (25)

A, =

HY(Gs,, Ti(k—1))

Therefore, on taking inverse limits in (25) and applying Lemma 6.2, we have the exact sequence
HY, (T5(k — 1))
Hiy o (Tp(k — 1))
where Hy,, 4 (T7(k — 1)) is as defined in §4, i.e. lim H1(Qp ., T7(k — 1)).

Hg(T7(k — 1)) — — SelX (f ko) — Seld(f/ ko) — 0, (26)

PROPOSITION 6.4. Seli(f/k:oo) is Ao, (Goo)-cotorsion.

Proof. Recall that ker(Col®) :Hllw’i(Tf(k —1)) from §4 and Col*(zK#t0) = LE by (7).
Therefore, the cokernel of the first map in (26) is killed by L;:,t. Therefore, if L;)t #0, it would
imply that the said cokernel is Ap, (G )-torsion and the result would follow from the fact that
Selg( [/kso)Y is Ao, (Goo)-torsion. Hence, we are done by the following lemma. O

+
LEMMA 6.5. L #0.

Proof. The case when f corresponds to an elliptic curve is proved in [Pol03, Corollary 5.11]. The
general case can be proved similarly.

By [Pol03], if 0 is a character on G,, which does not factor through G,,_1 and 0 <r <k — 2,
X'O0(LY) =Cyf (O)L(f,0,r+1) ifnis even,
X"0(L,)=C,.(0)L(f,0,r+1) ifnisodd,

where Cif,(6) are non-zero constants. By [Roh88], L(f, 8, 1) =0 for finitely many 0 if k = 2. If
k>3, L(f,0,r+1)#0 for r+ 1< (k—1)/2 by [Shi76, Proposition 2]. Hence, we are done. O

COROLLARY 6.6. The first map in (26) is injective.

Proof. 1t follows from Theorem 3.7 and Lemma 6.5. O

Remark 6.7. It is clear from the proof of Lemma 6.5 that Lff 0 # 0 for any character 6 on A.
Therefore, Sel;)t( f/koo)? is Ao, (I')-cotorsion and we can associate to it a characteristic ideal,
namely Chary,, (r) (Seli)t (f /Eoo)V?).

6.4 Main conjectures

We now formulate a main conjecture and relate it to that of Kato. By Corollary 6.6 and the fact
that Selg(f/koo)v & HQ(Tf(k — 1)) (see [Kur02]), we have an exact sequence

0 — Hig(T7(k — 1)) — Im(Col®) — Sel5(f /kso)¥ — H*(Tf(k — 1)) — 0.
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If 6 is a character on A, then
Chary,, () (H(TF(k — 1))°/Z(Tf(k = 1))’) = Charp,, ) (H*(TF(k - 1))°)
if and only if
Chary,, (r)(Sel, (f/koo)"’) = Chary,, () (Im(Col™")/L;7).

In other words, Kato’s main conjecture (for f) is equivalent to the following conjecture.

CONJECTURE 6.8. Chary,,_(r)(SelZ(f/koo)""?) = Chary,, r)(Im(Col™?)/L5).

Moreover, by Corollary 5.11 and Remark 5.12, we have the following corollary.

COROLLARY 6.9. Let § =4+. When 0 =1 or § = —, Conjecture 6.8 is equivalent to
_ ot
ChaerE(p)(Selgt(f/koo)v’e) =(w*® L;t’a).

Remark 6.10. It is clear that the right-hand sides in Conjectures 6.8 and 6.9 are contained in
the left-hand sides if the homomorphism Gg — GLo,(T}) is surjective or if we replace Ao, (I')
by Ag(Gs) by Theorem 3.8.

7. CM forms

We now follow the strategy of [PR04] to prove that equality holds in Corollary 6.9 (with 6 =1)
for CM forms.

7.1 Generality of CM forms
We first briefly review the theory of CM modular forms. Details can be found in [Kat04, §15].

Let K be an imaginary quadratic field with idele class group Ck. A Hecke character of K is
simply a continuous homomorphism ¢ : Cx — C* with complex L-function

L(¢,s) = [(1 = ¢(w)N(v) )7,

v

where the product runs through the finite places v of K at which ¢ is unramified, ¢(v) is the
image of the uniformiser of K, under ¢ and N(v) is the norm of v.

Let f be a modular form as defined in § 2.4 with complex multiplication, i.e. L(f, s) = L(¢, s)
for some Hecke character ¢ of an imaginary quadratic field K. Then, for a good prime p,

1— ¢(p)p~2° if p is inert in K,
(1= o(B)p~*)1 - o(P)p~*) if (p) =PP in K.

Therefore, a, =0 if p is inert in K. If p splits into BB, ap = o(P) + ¢(P). It is known that
#(P) + ¢(P) is a p-adic unit; hence, f is ordinary at p. Therefore, for a good prime p{ N, a, =0
if and only if f is supersingular at p. We fix such a p which is odd.

Let O be the ring of integers of K. We denote the conductor of ¢ by f. For an ideal a of K,
K (a) denotes the ray class field of K of conductor a. We write K for the union U, K (p™f). Then,
the action of Gg on Vy factors through Gal(C/Q). The same is then true for V¢(j) for all j as
kso C K.

1—app™* +e(p)p~'"% = {
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More specifically, Vy =2V (¢) ® 7V (¢), where V(¢) is the one-dimensional E-representation
of G associated to ¢ and 7 is the complex conjugation. The action of Gg is given by

oy (@@, T(roT)(y)) if o € G,
) {((TUT)(?J)vTU(HU)) otherwise.

In addition to Assumptions 1 and 2, we assume for simplicity that the following holds.

AsSsSUMPTION 3. The modular form f is defined over Q (i.e. a,, € Z for all n) and K has class
number 1.

This is essential for the properties of elliptic units which we need to hold. Note that as a
vector space, V; is isomorphic to K, (where K, denotes the completion of K at p) and we can
take T’y to be the lattice corresponding to O,. We write p for the character given by

p: GK — Aut(Vf/Tf(l)) = O;;

For simplicity, we write A for Vy/T(1) from now on.

Recall that K. denotes the Z,-cyclotomic extension of K. We write K, for the unique ZZ%-
extension of K and £ denotes O,[[Gal(K,,/K)]]. Given a Z,[[Gal(K/K)]]-module Y, we write
Y for Y @z fjcac/ k) Zpl[Gal(F/K)]] and Y/ = Yp(p™'), where F = K, or Kp,.

Let F be an extension of Q. Following [Rub85], we define a modified Selmer group:

HYF,, A
Sel (f/F) = ker(Hl(F7 A) — H HIEFZA;> :
olp T f
For a finite abelian extension F' of K, we define groups Cr, Erp and Uf as in [PR04]: Up
is the pro-p part of the local unit group (Or ® Z,)*, EF is the closure of the projection of the
global units O into Up and CF is the closure of the projection of the subgroup of elliptic units
(as defined in [Rub91, §1], see also §7.1.1 below) into Ur. We then define

C=lmCp, &=limEp and U=IlimUp,

where the inverse limits are taken over finite extensions F of K inside IC and the connecting map
is the norm map.

Finally, let M be the maximal abelian p-extension of K which is unramified outside p and
write X for the Galois group of M over K.

7.1.1 Elliptic units. We now briefly review the definition of elliptic units associated to K. Let
a and b be non-zero ideals of O such that a is prime to 6b and the natural map O — (O /b)*
is injective. There exists an elliptic function on C/b with zeros and poles given by 0 (with
multiplicity N(a)) and the a-division points, respectively. There exists a unique such function
if we impose some norm compatibility condition on its values as a varies. We write 40, for
this unique function and let 4z = of(1)~!. Then, 42 € K (b)* for any a and b as above. For a
fixed b, the group of elliptic units in K (b) is defined to be the group generated by oz, where
o € Gal(K(b)/K), and the roots of unity in K (b).

7.2 Properties of Selg

In this section, we generalise [PR04, Theorem 2.1]. We do this by generalising three results
of [Rub85].
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LEMMA 7.1. There is an isomorphism Sely,(f/K.) = Sel,(f/K.).

Proof. By definitions, we have the following exact sequence:

HY(K.p, A)

0= Sely (/1) = Sely (£/K2) = T =25

Therefore, it suffices to show that H(K,,, A) = H}(qu, A). By [BK90, Proposition 3.8,

Hl(KC,I”A) v . 1 n
()~ i 7y 1)

Hence, it suffices to show that the said inverse limit is 0.

Note that Gal(Kp,,/ K;(>n_1)) = A; we have the inflation-restriction exact sequence
0 — H'(A, Tyl = 1)%%0m) — HY (KD, Tp(k = 1)
= H (K, Tp(k = 1)) — HX(A, Ty(k — 1)),

As K;,/Qp is unramified, the proof of Lemma 4.4 implies that TF(k — 1)%%pn =0 for all n.

Therefore,
HY(KS™D, Te(k — 1)) 2 HY (Kpon, T(k — 1))
By [Per00, Theorem 0.6], we have lim H}(Knp, T7(k — 1)) = 0; hence, we are done. O
am :

This corresponds to [Rub85, Theorem 2.1], which holds for any infinite extensions of K
contained in K. Since we have used a result on the inverse limit of H} over K ,, the proof above
would unfortunately not work in such generality.

We now generalise [Rub85, Proposition 1.1].

LEMMA 7.2. There is an isomorphism Sel;,(f/K) = Hom(X, A).

Proof. Since the action of G on A factors through Gal(K/K), we have H'(KC, A) = Hom(Gx, A).
We can therefore identify Sel),(f/K) with a subgroup of Hom(Gx, A). Also, the triviality of the
action implies that A is unramified at all places of K. Therefore, H} (Ky, A) = H] (K, A) for all

v{p by [Rub00, Lemma 3.5(iv)]. Hence, Sel},(f/K) corresponds to the subgroup Hom(X, A) C
Hom(Gk, A). O

Before we continue, we state a result of Rubin.

LEMMA 7.3. Fori=1,2, H(K/K., A) =0.
Proof. See [Rub85, proof of Proposition 1.2]. O

This allows us to generalise [Rub85, Proposition 1.2].

LEMMA 7.4. There is an isomorphism Sel;,(f/K.) = SeI;(f/K)Gal(K/KC).

Proof. We have the inflation—restriction exact sequence:

0— HY(K/K,, A) — H' (K., A) — HY (K, A)GK/Ke) _ g2(K/K,, A),
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where 7 is the restriction map. Consider the following commutative diagram:

HY (K., A) - HY(K, A)

| |

HY(Kew, A)/Hj(Ke, A) — H'(Ky, A)/H} (K, A)
where v {p is a place of K. and v’ is a place of K above v. It clearly implies that
r(Sely (f/Ke)) C Sel, (f/K).
Write v for the place of K.(f) below v'; then v is unramified in K/K.(f). Therefore, the map
ro s H (I 5y, A) — H' (I, A),
where I denotes the inertia group, is injective. This implies that
HY (K (f)ors A)/Hp(Kc(f)ors A) — H (Ko, A)/Hf (Ko, A)

is injective because the H} coincide with Hl.. But Gal(K.(f)/K.) has trivial Sylow p-subgroup;
hence, the bottom row of the commutative diagram above is injective. Therefore, we have

rN(Sely(£/10)) € Sell( £/ Ko).
Hence, we have an exact sequence:
0— HY(K/Ke, A) — Sel(f/K.) — Sell (f/K) &K — HA(K /K., A).
Hence, we are done by Lemma 7.3. O
We can now give a generalisation of [PR04, Theorem 2.1].

COROLLARY 7.5. Sel,(f/K.) = Homo(Xf , K,/O,).

Proof. On combining Lemmas 7.1, 7.2 and 7.4, we have

Selp(f/Kc) = Sel,(f/Ke)
~ Sel;,(f/lC)Gal(K/Kc)
>~ Hom(X, A)GIK/Ke),
But Al = K,/O,(p); hence, the result. O

7.3 Reciprocity law

In this section, we generalise the reciprocity law given by [PR04, Theorem 5.1]. We first review
a result of Rubin.

THEOREM 7.6. The £-module Cf(m is free of rank one.
Proof. Tt follows from [Rub91, Theorem 7.7]. O

We now generalise [PR04, Proposition 4.1].
LEMMA 7.7. H}(Kp, A) = Homo (U , K,/Oy).

Proof. As in the proof of Lemma 7.2, we have H'(K,, A) = Hom(Gk,, A). But we also have
an isomorphism H'(K.,,, A) = H'(K,, A)G(Ks/Kep) by the inflation-restriction sequence and
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Lemma 7.3. Hence, by local class field theory, we have

HY(K.,p, A) = Hom(Gy,, A) G2 (Kp/Kew)
= Hom@p (U, A)

(see [Rub87, Proposition 5.2]). By the proof of Lemma 7.1, we have H} (Kep, A) 2 HY(K,p, A);
hence, we are done. O

In particular, we have a pairing (, ) : H}(qu, A) x U%c — K,/ Op. We now prove the explicit
reciprocity law.

PROPOSITION 7.8. There exists a generator £ of CI’D(m over £ such that for any finite extension
F of K contained in K., 6 a character on G = Gal(F/K), x € H} (Fp, A) and r a non-negative
integer, we have
o —r 9 1y 1
S 0(o)aT @p T, &) =p

ceG

Z (o exp;:’vf(l)(xa), w-1|, (27)

oceG

where 0(—1) = £+ and exp}p1 V(1) is the inverse of the exponential map
expp, v, (1) : Fp @ D(V3(1))/DO (Vi (1)) == Hf(Fp, Vy(1)).

Proof. Let zpoos = (2pnf)n be the system of norm-compatible elliptic units in @ K (p™f) defined
in [Kat04, §16.5]; then qz,n is a multiple of z,n; for all a and p"f satisfying the conditions in
§7.1.1. Therefore, if we write £ as its image in C » it must be a generator of C%m over £ by
Theorem 7.6.

Let z € H}(Fp, T¢(1)) and y € HY(F,, T¢(k —1)); we have

Y 0@yl =) 0(o)Trpyrlexvy!y (1) (27), expl, v, ¥)]

oelG oeqG
=) 6 )[epr;Vf(l)(:r ), expi, v, (7))
o,7eG
= Z 0(o7) [eXpr Vf(l)( ) pr,Vﬂk 1>(yT)]
o,7€G
- [Z 0o eXpr V(1 Z 07(7) expp, vy, (U7)
oceG Te@G

Consider the Kummer exact sequences

C U

i i

lim H'(Oscr[1/p], Op(1)) lim H (K}, Oy(1))
i®px"’2 l®px’€2

lim H' (O [1/p], Ty(k — 1)) — lim H (K}, Ty(k — 1))
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By [Kat04, Proposition 15.9 and (15.16.1)], the image of zjecf in lim HY (O [1/p], Ti(k—1)) is

z8%° (up to a twist) and so ¢ satisfies
L(f@*h 1)@—1
Z 0! eXpF Vm,l)(g) = of
TG f

Therefore, we have

29(0)<$"®PT7€>=PT[Z 6(0) by, ) (@ )W’

o€ o€ f

as required. O

7.4 Proof of the main conjecture

On replacing Qp, by Kp,, we define H} 1 (Kpn, W)* and hence Selpi(f/Koo) as in §6, where
W =A or Ty(1). Let G =Gal(K/Q). As in the proof of Lemma 7.1, the inflation-restriction
exact sequence implies that H(Qp,, W) = HY(Kp,, W)Y for W = A or Ty(1), so we recover

Seli(f/k: ) on taking G-invariants. Similarly, on replacing Q, , and K, ,, by Qé,n_l) and KI(,n_l),
respectively, we define the +-Selmer groups Seli( f/Q.) and Seli( f/K¢). Under our assumptions,
they coincide with the A-invariants of Seli( f / ko) and Seli( f / K), respectively. Analogously,

we have H1(F), Ti(k —1)) for F =Ky, K,S" 2 Qpn Y Since K,/Q, is unramified, all the
results from the previous sections generalise directly on replacing Q, by K

Via the isomorphism defined in Lemma 7.7, we define V* cup to be the
subgroup corresponding to the elements of Homep(H 1(ch, A), K,/0,) Wthh ‘factor through

H}(Kcp, A)*. Then, by [PRO4, Theorem 4.3], Sel,; (f/K.) = Homo (X /a(VE), K,/Op), where
a is the Artin map on U, which enables us to generalise [PR04, Theorem 7.2].

THEOREM 7.9. Let s* be as given by Corollary 5.11; then
_oE
Charp,, () (Homo(Sely (f/Ke), Kp/Op)) = (0™ Ly).

Proof. By the above isomorphism and [PR04, Theorem 6.3], we have
Chary,, ry(Homo(Sel, (f/K.), Kp/Op)) = Charp, ry(Xg /a(VF))
= Chary,, @)U, /(V* +CF ).
By Corollary 5.11, the quotient H'(Qcp, T7(k — 1))/ Hi(Qep, Tr(k — 1)) is free of rank one

over A(T"). Hence, by (13) and the proofs of Lemma 5.9 and Corollary 5.11, the A(T')-module
Hom(H} (Qep, Tr(1))*, Zyp) is also free of rank one and it has a generator fy such that

+
> felexpyi(na(n)7))o =p* log,  mod(y”
O'EGTL

n—1

—1). (28)

Note that we have abused notation by writing eXan(’}’n,l(?ﬁ)) for its image in H* (Q(n 2 T (1))
under the corestriction.

As in [PR04, Theorems 7.1 and 7.2], we have

Hom(H}(Qc,p, A, Qp/Zyp) = Hom(H}(qu, Tf(l))iv ZLp),
Homo (H} (Kep, A)*, Kp/Op) = Hom(H}(Qep, A)F, Qp/Zy) © O
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Let p* and 9% be the images of fi+ and ¢ from Proposition 7.8 in Homo(H}(KcJ), A)E,
Kp/Op), respectively. Then, 9% =h*p® for some h* € Ao, (T'). As in [PRO4, proof of
Theorem 7.2], there is an isomorphism Z/lpc/(Vi +Ck.) = Ao, (T )/hiA@p (T"). Hence, we have

Chary,, (r)(Homo (Sely (f/Ke), Kp/Op)) = h* Ao, (T).

Let F' be a finite extension of K contained in K., 6 a character of GG, the Galois group of F'
over K, z € H} #(Fp, A) and r an integer; then ¥+ = h*p* implies that

S 00)0* (" @p ) = () 3 (o) @ p7). (29)

oceG oceG

We now take x= expn,l(%,l(nf)). By (28), the right-hand side of (29) is just
p_’"+5i9(hi)0(log§k). Then, (27) implies that the left-hand side of (29) equals the following:

1
f@ & [Z 0(a) 1 771 5)1],

ceG
where § = 6(—1). We now compute ZJGG 0(0) Y1 (75)°.
Take F to be K,S”‘l) and 0 a character of conductor p™. Then,

S 0oy = 3 X <§xnﬁw )+ (1= ) )

ceG ceG

zp‘”ZHOC,?n@@‘ (n7")

oceG
=p "r(0)e " (),
where 7(6) denotes the Gauss sum of 0. Since ¢? + ¢(p)p*=3 =0 on D(V}(1)), we have
" () = (—e@)p* )T 2p T o) /[p(w), o] (for n odd),
o) = (—e@)p* ) Pp(wh/[p(w), @] (for n even).
Hence, (29) implies that

P 000108, = (—e(pit ) 2r0) YLD (gor o),
f
(f@ 1, )

(25 (for n even).

P O()0(log! ) = (—e(p)p" ) T Ar(0)

Therefore, by the interpolating properties of L;[ at these characters, we have
p® 6(h7)=06(L,) (for n odd),
9(h+) 0(L;) (for n even).

But A% and Lg are both O(1) and the above holds for infinitely many n, so h* = p*si L;t. Hence,
we are done. O

By taking G-invariants, we have the following corollary.

COROLLARY 7.10. Charyy(SelF(f/Q.)Y) = (p~" LE).
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