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Iwasawa theory for modular forms at

supersingular primes

Antonio Lei

Abstract

We generalise works of Kobayashi to give a formulation of the Iwasawa main conjecture
for modular forms at supersingular primes. In particular, we give analogous definitions
of the plus and minus Coleman maps for normalised new forms of arbitrary weights and
relate Pollack’s p-adic L-functions to the plus and minus Selmer groups. In addition,
by generalising works of Pollack and Rubin on CM elliptic curves, we prove the ‘main
conjecture’ for CM modular forms.

1. Introduction

The Taniyama–Shimura conjecture, proved by Wiles et al., asserts that elliptic curves over Q
correspond to modular forms of weight two. Therefore, it is natural to ask which results on
elliptic curves can be generalised to modular forms of higher weights. In this paper, we discuss
how this can be done for some recent results on supersingular primes.

Let p be an odd prime and let G∞ be the Galois group of the extension k∞ of Q by p
power roots of unity. We denote by Λ(G∞) the Iwasawa algebra of G∞ over Zp. If ∆ denotes
the torsion subgroup of G∞ and γ is a fixed topological generator of the Zp-part of G∞, then
Λ(G∞)∼= Zp[∆][[γ − 1]].

Let f =
∑
anq

n be a normalised eigen-newform of weight k > 2, level N and character ε. For
notational simplicity, we assume that ap ∈ Z throughout the introduction. We fix p so that p -N .
Kato [Kat04] has formulated a main conjecture relating an Euler system (which we refer to as
a Kato zeta element) to some cohomological group over k∞ (see § 3.3 for a brief review).

If α is a root of X2 − apX + ε(p)pk−1 such that vp(α)< k − 1, where vp is the p-adic valuation
of Cp with vp(p) = 1, then there exists a p-adic L-function Lp,α interpolating complex L-values of
f . When f is ordinary at p (i.e. ap is a p-adic unit) and α is the unique unit root of the quadratic
above, Lp,α lies inside Q⊗ Λ(G∞) and the p-Selmer group Selp(f/k∞) of f over k∞ is Λ(G∞)-
torsion, i.e. its Pontryagin dual

Selp(f/k∞)∨ = Homcts(Selp(f/k∞),Qp/Zp)

is Λ(G∞)-torsion. If θ is a character on ∆, the θ-isotypical component of Selp(f/k∞)∨ is
Zp[[γ − 1]]- torsion. We can associate to it a characteristic ideal. Kato’s main conjecture is equiv-
alent to asserting that this ideal is generated by the θ-component of Lp,α (written as Lθp,α),
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A. Lei

i.e. there is a pseudo-isomorphism (a homomorphism with finite kernel and cokernel)

Selp(f/k∞)∨,θ→
r∏
i=1

Zp[[γ − 1]]/(xi)

for some xi ∈ Zp[[γ − 1]] such that x1 · · · xr = Lθp,α.
When f is supersingular at p (i.e. p|ap), the p-adic L-functions of f as given above are

not in Q⊗ Λ(G∞) and Selp(f/k∞) is not Λ(G∞)-cotorsion (see § 6.3.1). Therefore, Kato’s main
conjecture cannot be reformulated in the same way as the ordinary case.

In recent years, much progress has been made on supersingular primes. When ap = 0,
Pollack [Pol03] has defined the plus and minus p-adic L-functions L±p , which have bounded
coefficients. In [Kob03], again assuming that ap = 0, Kobayashi defined the plus and minus
Selmer groups Sel±p for the case when f corresponds to an elliptic curve E over Q and proved
that Sel±p (E/k∞) are Λ(G∞)-cotorsion. It is then possible to reformulate Kato’s main conjecture
as follows.

Conjecture 1.1. Let θ be a character on ∆. Under the notation above, the characteristic ideal
of Sel±p (E/k∞)∨,θ is generated by L±,θp .

One inclusion of Conjecture 1.1, namely L±,θp does lie inside the said characteristic ideal,
follows from that of Kato’s main conjecture under some assumptions. For the CM case, the
other inclusion has been proved by Pollack and Rubin in [PR04], using the theory of imaginary
quadratic fields and elliptic units.

We now explain how Sel±p (E/k∞) is defined. Let µpn be the set of pnth roots of unity. The
idea of Kobayashi is to define subgroups E±(Qp(µpn)) of E(Qp(µpn)) which can be identified with
its image in H1(Qp(µpn), E [p∞]) under the Kummer map. The ±-Selmer groups over Q(µpn) are
defined to be

Sel±p (E/Q(µpn)) = ker
(

Selp(E/Q(µpn))→ H1(Qp(µpn), E [p∞])
E±(Qp(µpn))⊗Qp/Zp

)
.

Then, Sel±p (E/k∞) is defined to be the direct limit of Sel±p (E/Q(µpn)).
On the one hand, E [p∞] gives a p-adic representation of Gal(Q̄/Q) and one can define

analogous representations for arbitrary modular forms (see [Del69] for details). On the other
hand, the Kummer image of E(Qp(µpn)) can be identified with the so-called finite cohomology
subgroup H1

f defined in [BK90]. Therefore, we can give a definition of Sel±(f/k∞) analogously
for any modular forms without much difficulty.

To show that Sel±p (E/k∞) is Λ(G∞)-cotorsion, Kobayashi constructed the ± -Coleman maps

Col± : lim←−H
1(Qp(µpn), Tp(E))→ Λ(G∞),

where Tp(E) denotes the Tate module of E at p. In particular, Col± send the Kato zeta element
from [Kat04] to L±p , respectively. By applying the Poitou–Tate exact sequence, he then showed
that the Pontryagin dual of Sel±p (E/k∞) is killed by L±p 6= 0; hence, Λ(G∞)-cotorsion.

We follow this strategy to show that Sel±p (f/k∞) are Λ(G∞)-cotorsion for f of any weight
k > 2. Although the Coleman maps in [Kob03] are defined using formal groups, they can in fact
be obtained from Perrin-Riou’s exponential map defined in [Per94]. We make use of this and
observe that there is a divisibility phenomenon, similar to that used in the construction of L±p
in [Pol03]. This enables us to construct analogous ± -Coleman maps for general f . Although we
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Iwasawa theory for modular forms at supersingular primes

do not need any restrictions on p to define them, we assume that p+ 1 - k − 1 in order to describe
their kernels, which are related to the local conditions in the definition of Sel±p . We then formulate
a main conjecture as follows.

Conjecture 1.2. Let f and θ be as above. There exist n± ∈ Z such that the characteristic
ideal of Sel±p (f/k∞)∨,θ is generated by pn

±
L±,θp .

As in the case of elliptic curves, Conjecture 1.2 is equivalent to Kato’s main conjecture and
one inclusion holds.

It has to be pointed out that we are assuming that ap = 0 as in [Kob03, Pol03]. Since
|ap|6 2p(k−1)/2 (due to Deligne), ap is always zero when p > 3 when f corresponds to an elliptic
curve. When k > 2, the assumption is much stronger although, if f is a CM modular form, ap = 0
for any supersingular prime p (see § 7). More recently, Sprung [Spr09] has generalised works of
Kobayashi to the case ap 6= 0 for elliptic curves over Q. It would be desirable to know whether
this can be done for modular forms of higher weights as well.

The layout of this paper is as follows. We fix some notation and review some basic properties
in § 2. In § 3, we first review some of the main results which we need from [Per94, Kat04]. We
then construct the ± -Coleman maps. The kernels of these maps are worked out explicitly in § 4
and their images are described in § 5. Following [Kob03], we define Sel±p in § 6. We show that
they are Λ(G∞)-cotorsion, which enables us to formulate the ‘main conjecture’ for which one
inclusion of the conjecture is shown. Finally, in § 7, the other inclusion is proved in the case of
CM modular forms over Q, following the strategy of [PR04].

2. Background

In this section, we fix some notation which is used throughout the paper. We also state some
basic properties of some of the objects which we study.

2.1 Extensions by p power roots of unity

Throughout this paper, p is an odd prime. If K is a field of characteristic 0, either local or global,
GK denotes its absolute Galois group, χ the p-cyclotomic character on GK and OK the ring of
integers of K. For an integer n> 0, we write Kn for the extension K(µpn), where µpn is the set
of pnth roots of unity and K∞ denotes

⋃
n>1 Kn. The Zp-cyclotomic extension of K is denoted

by Kc and K(n) denotes the pn-subextension inside Kc.
In particular, we write Qp,n = Qp(µpn). For n>m, we write Trn/m for the trace map from

Qp,n to Qp,m. For each n, we fix a primitive pnth root of unity such that ζppn = ζpn−1 . Let Gn
denote the Galois group Gal(Qp,n/Qp) for 0 6 n6∞. Then, G∞ ∼= ∆× Γ, where ∆ =G1 is a
finite group of order p− 1 and Γ = Gal(Qp,∞/Qp,1)∼= Zp. We fix a topological generator γ of Γ
and write u= χ(γ). In particular, u is a topological generator of 1 + pZp.

2.2 Iwasawa algebras and power series

Given a finite extension K of Qp, ΛOK (G∞) (respectively ΛOK (Γ)) denotes the Iwasawa
algebra of G∞ (respectively Γ) over OK . We write ΛK(G∞) = ΛOK (G∞)⊗K and ΛK(Γ) =
ΛOK (Γ)⊗K. When K = Qp (so OK = Zp), we simply write Λ for ΛZp . If M is a finitely generated
ΛOK (Γ)-torsion (respectively ΛK(Γ)-torsion) module, we write CharΛOK (Γ)(M) (respectively
CharΛK(Γ)(M)) for its characteristic ideal.
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Given a module M over ΛOK (G∞) (respectively ΛK(G∞)) and a character δ : ∆→ Z×p , M δ

denotes the δ-isotypical component of M . For any m ∈M , we write mδ for the projection of m
into M δ. The Pontryagin dual of M is written as M∨.

Let r ∈ R>0. We define

Hr =
{ ∑
n>0,σ∈∆

cn,σ · σ ·Xn ∈ Cp[∆][[X]] : sup
n

|cn,σ|p
nr

<∞ ∀σ ∈∆
}
,

where | · |p is the p-adic norm on Cp such that |p|p = p−1 (the corresponding valuation is written
as vp). We write H∞ =

⋃
r>0 Hr and Hr(G∞) = {f(γ − 1) : f ∈Hr} for r ∈ R>0 ∪ {∞}. In other

words, the elements of Hr (respectively Hr(G∞)) are the power series in X (respectively γ − 1)
over Cp[∆] with growth rate O(logrp). If F, G ∈H∞ or H∞(G∞) are such that F =O(G) and
G=O(F ), we write F ∼G.

Given a subfield K of Cp, we write Hr,K =Hr ∩K[∆][[X]] and similarly for Hr,K(G∞).
In particular, H0,K(G∞) = ΛK(G∞). Moreover, we have three operators ϕ, ∂ and ψ on Hr,K
defined by

ϕ(f) = f((1 +X)p − 1), ∂f = (1 +X)
df

dX
and ψ(f) =

∑
ζp=1

f(ζ(1 +X)− 1).

2.3 Crystalline representations

We write Bcris and BdR for the rings of Fontaine and ϕ for the Frobenius map acting on these
rings. Recall that there exists an element t ∈ BdR such that ϕ(t) = pt and g · t= χ(g)t for g ∈GQp .

Let V be a p-adic representation of GQp which is crystalline. We denote the Dieudonné
module by D(V ) = Dcris(V ) = (Bcris ⊗ V )GQp . If j ∈ Z, Dj(V ) denotes the jth de Rham filtration
of D(V ).

We write D∞(V ) =Hψ=0
0,Qp ⊗ D(V ), which is contained in H∞,Qp ⊗ D(V ). The map ϕ⊗ ϕ on

H∞,Qp ⊗ D(V ) is simply written as ϕ and the map ∂ ⊗ 1 is written as ∂. Note that ∂ acts
on D∞(V ) bijectively, so ∂j makes sense for any j ∈ Z.

Let T be a lattice of V which is stable under GQp . For integers m> n, we write corm/n for the
corestriction map H1(Qp,m, A)→H1(Qp,n, A), where A= V or T . Let H1

Iw(T ) denote the inverse
limit lim←−H

1(Qp,n, T ) with respect to the corestriction and H1
Iw(V ) = Q⊗H1

Iw(T ). Moreover, if
V arises from the restriction of a p-adic representation of GQ and T is a lattice stable under GQ,
we write

H1(T ) = lim←−
n

H1(Z[ζpn , 1/p], T ),

H1(V ) = Q⊗H1(T ).

Let V (j) denote the jth Tate twist of V , i.e. V (j) = V ⊗Qpej , where GQp acts on ej via
χj . We have D(V (j)) = t−jD(V )⊗ ej . For any v ∈ D(V ), vj = v ⊗ t−jej denotes its image in
D(V (j)). We write Twj,V : H1

Iw(V )→H1
Iw(V (j)) for the isomorphism defined in [Per93, §A.4],

which depends on our choice of ζpn . For each n and j, we write

expn,j : Qp,n ⊗ D(V (j))→H1(Qp,n, V (j))

for Bloch–Kato’s exponential defined in [BK90].
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2.4 Modular forms
Let f =

∑
anq

n be a normalised eigen-newform of weight k > 2, level N and character ε. Write
Ff = Q(an : n> 1) for its coefficient field. Let f̄ =

∑
ānq

n be the dual form to f ; we have Ff = Ff̄ .
We write L(f, s) for the complex L-function of f . If θ is a finite character of G∞, we write

L(fθ, s) for the twisted L-function of f by θ.
We assume that p -N and fix a prime of Ff above p. We denote the completion of Ff at this

prime by E and fix a uniformiser $. We write Vf for the two-dimensional E-linear representation
of GQ associated to f from [Del69]. When restricted to GQp , Vf is crystalline and its de Rham
filtration is given by

Di(Vf ) =


D(Vf ) if i6 0,
Eω if 1 6 i6 k − 1,
0 if i> k

(1)

for some 0 6= ω ∈ D(Vf ). Hence, the Hodge–Tate weights of Vf are 0 and 1− k. The action of ϕ
on D(Vf ) satisfies ϕ2 − apϕ+ ε(p)pk−1 = 0.

If v ∈ Vf , we write v± for the component of v on which the complex conjugation acts by ±1.

3. Construction of the Coleman maps

In this section, we define the plus and minus Coleman maps for a modular form f as in § 2.4
under the following condition.

Assumption 1. ap = 0 and the eigenvalues of ϕ on D(Vf ) are not integral powers of p.

We first review the definition of Perrin-Riou’s exponential from [Per94] for general crystalline
representations and results of Kato [Kat04] on general modular forms. We then prove a divisibility
property of the image of the Perrin-Riou pairing under Assumption 1 in order to define Col±.

3.1 Perrin-Riou’s exponential
Throughout this section, we fix V , a crystalline p-adic representation of GQp such that the action
of ϕ on D(V ) has no eigenvalues which are integral powers of p. Let j be an integer. Since ϕ acts
on t via multiplication by p and D(V (j)) = t−jD(V )⊗ ej , the eigenvalues of ϕ on D(V (j)) are
not integral powers of p either.

Since V (j)GQp,∞ is also a crystalline representation, it is a sum of characters. But a character
is crystalline if and only if it is the product of an unramified character and a power of χ (see
for example [Bre01, Example 3.1.4]). Therefore, our assumption on the eigenvalues of ϕ implies
that V (j)GQp,∞ = 0.

For each j ∈ Z and n> 0, under our assumptions on the eigenvalues of ϕ, the exponential
map expn,j induces an isomorphism

expn,j : Qp,n ⊗ D(V (j))/D0(V (j))→H1
f (Qp,n, V (j)).

When n> 1, there is a well-defined map

Ξn,V (j) : D∞(V (j))→ Qp,n ⊗ D(V (j)),
g 7→ (p⊗ ϕ)−nG(ζpn − 1),

where G ∈H∞,Qp ⊗ D(V ) is such that (1− ϕ)G= g (see [Per94, § 3.2.2]). Moreover,
(expn,j ◦Ξn,V (j))n>1 are compatible with the corestriction maps. In other words, the following
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diagram commutes.

D∞(V (j))

expn,j ◦Ξn,V (j) ++XXXXXXXXXXXXXXXXXXXXXXXXX
expn+1,j ◦Ξn+1,V (j) // H1(Qp,n+1, V (j))

corn+1/n

��
H1(Qp,n, V (j))

The definition of the Perrin-Riou exponential is given by the following theorem, which is the
main result of [Per94].

Theorem 3.1. Let h be a positive integer such that D−h(V ) = D(V ). Then, for all integers
j > 1− h, there is a unique family of Λ(G∞)-homomorphisms

ΩV (j),h+j : D∞(V (j))→H∞(G∞)⊗Λ(G∞) H1
Iw(T (j))

such that the following diagram commutes:

D∞(V (j))
ΩV (j),h+j //

Ξn,V (j)

��

H∞(G∞)⊗Λ(G∞) H1
Iw(T (j))

pr

��
Qp,n ⊗ D(V (j))

(h+j−1)! expn,j // H1(Qp,n, V (j))

where n> 1 and pr stands for projection. Moreover, we have

Tw1,V (j) ◦ΩV (j),h+j ◦ (∂ ⊗ te−1) =−ΩV (j+1),h+j+1.

Proof. [Per94, § 3.2.3]. 2

Remark 3.2. By [Per94, § 3.2.4], if g ∈Hψ=0
0,Qp ⊗ Dα(V (j)), where Dα(V (j)) is the subspace of

D(V (j)) in which ϕ has slope α, then ΩV (j),h+j(g) is O(logh+α
p ), i.e. contained in Hh+α(G∞)⊗

H1
Iw(T (j)).

Remark 3.3. The theorem implies the following congruence for r > 0:

(−1)r Twr,V (j)(ΩV (j),h+j(g)) ≡ (h+ j + r − 1)! expn,j+r ◦Ξn,V (j+r)

× ◦ (∂−r ⊗ t−rer)(g) mod(γp
n−1 − 1).

3.2 Perrin-Riou’s pairing
Let M be a finite extension of Qp and we further assume that V is a vector space over M and
the action of GQp is compatible with the multiplication by M . We fix T , an OM -lattice of V
which is stable under GQp . We write V ∗ for the M -linear dual of V and T ∗ for the OM -linear
dual of T . Since H1(Qp,n, T ) and H1(Qp,n, T

∗(1)) are OM [Gn]-modules, H1
Iw(T ) and H1

Iw(T ∗(1))
are ΛM (G∞)-modules. By [Per94, § 3.6.1], there is a non-degenerate pairing

〈 , 〉 : H1
Iw(T )×H1

Iw(T ∗(1))→ ΛOM (G∞),

((xn)n, (yn)n) 7→
(∑
σ∈Gn

[xσn, yn]n · σ
)
n

,

where [ , ]n is the natural pairing

H1(Qp,n, T )×H1(Qp,n, T
∗(1))→OM .
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The pairing 〈 , 〉 extends to(
H∞,M (G∞)⊗ΛOM (G∞) H1

Iw(T )
)
×
(
H∞,M (G∞)⊗ΛOM (G∞) H1

Iw(T ∗(1))
)
→H∞,M (G∞),

which we also denote by 〈 , 〉. Let j and h be integers satisfying conditions of Theorem 3.1. If
η ∈ D(V (j)), then (1 +X)⊗ η ∈ D∞(V (j)). Using the pairing 〈 , 〉, we define a map

Lh,jη : H1
Iw(T (j)∗(1))→H∞,M (G∞),

z 7→ 〈ΩV (j),h+j((1 +X)⊗ η), z〉.

Note that Lh,jη modulo γp
n−1 − 1 induces a map into M [Gn], which we denote by Lh,jη,n. Also, Lh,jη

extends naturally to a map on H1
Iw(V (j)∗(1)), which we write as Lh,jη also.

3.2.1 Explicit formulae of Lh,jη,n. We want to say something about values of the image of Lh,jη,n
at some special characters on G∞. To do this, we make use of the following result.

Lemma 3.4. Under the notation above, let η ∈ D(V (j)). Then, the projection of

1
(h+ j − 1)!

ΩV (j),h+j((1 +X)⊗ η)

into H1(Qp,n, V (j)) is given by
p−n expn,j

(n−1∑
m=0

ζpn−m ⊗ ϕm−n(η) + (1− ϕ)−1(η)
)

if n> 1,

exp0,j

((
1− ϕ−1

p

)
(1− ϕ)−1(η)

)
if n= 0.

Proof. This is a straightforward application of Remark 3.3 to the solution of (1− ϕ)G=
(1 +X)⊗ η as given in [Per94, § 2.2]. 2

For n> 1 and η ∈ D(V (j)), we write

γn,j(η) := p−n
(n−1∑
i=0

ζpn−i ⊗ ϕi−n(η) + (1− ϕ)−1(η)
)
.

Remark 3.3 and properties of the twist map (see e.g. [Per94, §§ 3.6.1 and 3.6.5]) imply that for
z ∈H1

Iw(T (j)∗(1)) and r > 0,

1
(h+ j + r − 1)!

Twr(Lh,jη (z))≡
∑
σ∈Gn

[expn,j+r(γn,j+r(ηr)
σ), z−r,n]n · σ mod(γp

n−1 − 1), (2)

where Twr acts on H∞(G∞) via σ 7→ χ(σ)rσ for σ ∈G∞ and z−r,n is the image of z under the
composition

H1
Iw(T (j)∗(1))

(−1)r Tw−r−−−−−−−−−−→H1
Iw(T (j + r)∗(1))

pr−−−−→H1(Qp,n, T (j + r)∗(1)).

By [Kat93, ch. II, § 1.4], we also have

[expn,j+r(·), ·]n = Trn/0 ⊗ id([·, exp∗n,j+r(·)]′n),

where exp∗n,j+r is the dual exponential map

exp∗n,j+r :H1(Qp,n, V (j + r)∗(1))→ D0(V (j + r)∗(1))
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and the pairing

[ , ]′n : Qp,n ⊗ D(V (j + r))×Qp,n ⊗ D(V (j + r)∗(1))→Qp,n ⊗M

is induced by the natural pairing

D(V (j + r))× D(V (j + r)∗(1))→M.

To ease notation, we simply write [ , ]n for [ , ]′n when it does not cause confusion. We can now
rewrite (2) as

1
(h+ j + r − 1)!

Twr(Lhη(z))

≡
∑
σ∈Gn

Trn,0[γn,j+r(ηr)σ, exp∗n,j+r(z−r,n)]n · σ mod(γp
n−1 − 1)

≡
[ ∑
σ∈Gn

γn,j+r(ηr)σσ,
∑
σ∈Gn

exp∗n,j+r(z
σ
−r,n)σ−1

]
n

mod(γp
n−1 − 1). (3)

Note that we have recovered the pairing Pn of [Kur02]. We write the quantity in (3) as
Pn,r(η, z−r,n). Following the calculations of [Kur02], we can deduce the following special values
of Lh,jη .

Lemma 3.5. For an integer r > 0, we have

1
(h+ j + r − 1)!

χr(Lh,jη (z)) =
[(

1− ϕ−1

p

)
(1− ϕ−1)(ηr), exp∗0,r+j(z−r,0)

]
0

.

Let θ be a character of Gn which does not factor through Gn−1 with n> 1; then

1
(h+ j + r − 1)!

χrθ(Lh,jη (z)) =
1

τ(θ−1)

∑
σ∈Gn

θ−1(σ)[ϕ−n(ηr), exp∗n,r+j(z
σ
−r,n)]n,

where τ denotes the Gauss sum.

3.3 Modular forms and Kato zeta elements
The details of the results in this section can be found in [Kat04].

3.3.1 L-functions and p-adic L-functions. Let f be as in § 2.4. For any v ∈ Vf such that
v± 6= 0, it determines an OE-lattice Tf of Vf . We choose v such that Tf is stable under GQ.
Note that as a representation of GQ, V ∗f ∼= Vf̄ (k − 1). Hence, Tf determines a lattice Tf̄ of Vf̄
naturally.

Let per : D1(Vf )→ Vf be the period map defined in [Kat04]. Fix 0 6= ω ∈ D1(Vf ) and let
Ω± ∈ C× be such that per(ω) = Ω+v

+ + Ω−v−. The p-adic L-functions associated to f are given
by the following.

Theorem 3.6. Let α be a root of X2 − apX + ε(p)pk−1 such that vp(α)< k − 1. Under the
notation above, there exists a unique Lp,α ∈H∞(G∞) (depending on the choice of ω and v) such
that for any integer 0 6 r 6 k − 2 and any character θ of Gn which does not factor through Gn−1

with n> 1,

χrθ(Lp,α) =
cn,rα

−n

τ(θ)Ω±
L(f, θ, r),

where cn,r is some constant, dependent only on n and r and ±= (−1)k−rθ(−1).
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Proof. [AV75, MTT86] or [Kat04, Theorem 16.2]. 2

If f corresponds to an elliptic curve E over Q, there is a canonical choice of ω and Tf , namely,
the Néron differential and Tp(E)(−1) (see [Kur02, § 2.2.2]), where Tp(E) denotes the Tate module
of E at p.

3.3.2 Kato’s main conjecture. In order to state Kato’s main conjecture, we have to review
two important results from [Kat04] first.

Theorem 3.7. Under the notation above, we have:

(a) H2(Tf ) is a torsion ΛOE (G∞)-module;

(b) H1(Tf ) is a torsion-free ΛOE(G∞)-module and H1(Vf ) is a free ΛE(G∞)-module of rank one.

Proof. [Kat04, Theorem 12.4]. 2

Theorem 3.8. Fix a character δ : ∆→ Z/(p− 1)Z.

(a) Let θ be a character of Gn and ±= (−1)k−rθ(−1), where r is an integer such that
1 6 r 6 k − 1. Write

κθ : Qp,n ⊗ D0(Vf (k − r))→ Vf ,

x⊗ y 7→
∑
σ∈Gn

θ(σ)σ(x)per(y)±.

There exists a unique E-linear map (independent of θ and r) Vf →H1(Vf ); v 7→ zv such that κθ
sends the image of zv in Qp,n ⊗ D0(Vf (k − r)) (under the composition of the localisation, the
twist map and the dual exponential) to dr · L(f̄ , θ, r) · v± and dr is a constant which depends
only on r.

(b) Let Z(Tf )⊂H1(Vf ) denote the ΛOE (G∞)-module generated by zv± ∈ Tf and write
Z(Vf ) = Z(Tf )⊗Q. Then, the quotient H1(Vf )/Z(Vf ) is a torsion ΛE(G∞)-module and

CharΛE(Γ)(H1(Vf )δ/Z(Vf )δ)⊂ CharΛE(Γ)(H2(Vf )δ).

(c) If the homomorphism GQ→GLOE (Tf ) is surjective, then Z(Tf )⊂H1(Tf ). Moreover,
H1(Tf ) is a free ΛOE -module of rank one and

CharΛOE (Γ)(H1(Tf )δ/Z(Tf )δ)⊂ CharΛOE (Γ)(H2(Tf )δ).

Proof. [Kat04, Theorem 12.5]. 2

Kato’s main conjecture states the following.

Conjecture 3.9. The inclusion Z(Tf )⊂H1(Tf ) holds. Moreover, if δ : ∆→ Z/(p− 1)Z is a
character, then

CharΛOE (Γ)(H1(Tf )δ/Z(Tf )δ) = CharΛOE (Γ)(H2(Tf )δ).
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We call elements of Z(Vf ) Kato zeta elements. In particular, we write zKato
f for the one

corresponding to our choice of v ∈ Vf fixed in § 3.3.1 and call it the Kato zeta element associated
to f .

We fix v̄ ∈ Vf̄ and ω̄ ∈ D−1(Vf̄ (k)) for the dual form f̄ similarly. Below, we relate the Kato
zeta element zKato

f̄
associated to f̄ to the p-adic L-functions of f defined by Theorem 3.6 via the

map Lh,jη . For simplicity, we write zKato = zKato
f̄

from now on.

Let V = Vf (1); then we can take h= 1 and j > 0 in Theorem 3.1 by (1). For η ∈ D(Vf ), we
simply write

Lη = L1,0
η1

: H1
Iw(Tf̄ (k − 1))→H∞(G∞)

for the map we defined in § 3.2, with M = E.

Theorem 3.10. For α as in Theorem 3.6, there exists ηα, an eigenvector of ϕ on D(Vf ) with
eigenvalue α such that [ηα, ω̄] = 1. Moreover, the image of zKato under the composition

H1(Vf̄ )→H1
Iw(Vf̄ )

Twk−1−−−−−→H1
Iw(Vf̄ (k − 1))

Lηα−−−−→H∞(G∞)

is the p-adic L-function Lp,α, where the first map is just the localisation and Twk−1 denotes
Twk−1,Vf̄

.

Proof. [Kat04, Theorem 16.6]. 2

We sometimes abuse notation and write the above composition as Lηα also.

Remark 3.11. Let α1 and α2 be the roots of X2 − apX + ε(p)pk−1. Then, the slope of ϕ on
D(Vf ) is equal to t= max(vp(α1), vp(α2)). Since h= 1 and the slope of ϕ on D(Vf (1)) is t− 1,
all elements of Im(Lη) are O(logtp) by Remark 3.2.

It follows immediately from Lemma 3.5 that, with the same notation as in the lemma, we
have

χr(Lη(z)) = r!
[(

1− ϕ−1

p

)
(1− ϕ)−1(ηr+1), exp∗0,r+1(z−r,0)

]
0

,

χrθ(Lη(z)) =
r!

τ(θ−1)

∑
σ∈Gn

θ−1(σ)[ϕ−n(ηr+1), exp∗n,r+1(zσ−r,n)]n.
(4)

3.4 The ±-Coleman maps

3.4.1 ±-logarithms. Let f be as above such that Assumption 1 holds. If α1 and α2 are
the roots of X2 − apX + ε(p)pk−1, then α1 =−α2. Moreover, vp(α1) = vp(α2) = (k − 1)/2, so
Remark 3.11 implies that Im(Lη)⊂H(k−1)/2(G∞) for any η ∈ D(Vf ).

In [Pol03], Pollack defines

log+
p,k =

k−2∏
j=0

1
p

∞∏
n=1

Φ2n(u−jγ)
p

,

log−p,k =
k−2∏
j=0

1
p

∞∏
n=1

Φ2n−1(u−jγ)
p

,

where Φm denotes the pmth cyclotomic polynomial.
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By considering the special values of Lp,α1 and Lp,α2 as given by Theorem 3.6, Pollack showed
that we have the following divisibility properties:

log+
p,k|α2Lp,α1 − α1Lp,α2 ,

log−p,k|Lp,α2 − Lp,α1 .

This enabled him to define

L+
p,f =

α2Lp,α1 − α1Lp,α2

(α2 − α1) log+
p,k

, (5)

L−p,f =
Lp,α2 − Lp,α1

(α2 − α1) log−p,k
. (6)

To ease notation, we suppress the subscript f and write L±p for L±p,f . The growth rates of
these elements are given by the following theorem.

Theorem 3.12. log+
p,k ∼ log−p,k ∼ log(k−1)/2

p and L±p =O(1).

Proof. [Pol03, Lemma 4.5 and Theorem 5.1]. 2

3.4.2 Definition of the Coleman maps. Let us first introduce a shorthand. For 0 6 r 6 k − 2
and x ∈ D(Vf (r + 1)), we write x mod ω for the image of x in the quotient D(Vf (r + 1))/E · ωr+1.
If two elements x and y of D(Vf (r + 1)) have the same image, we simply write x≡ y mod ω.

Lemma 3.13. Let 0 6 r 6 k − 2 be an integer. If θ is a finite character as in Lemma 3.5 and
η ∈ D(Vf ), then ϕ−n(ηr+1)≡ 0 mod ω implies that χrθ(Lη(z)) = 0 for any z.

Proof. We have

Im(exp∗n,r+1) = Qp,n ⊗ E · ω̄−r−1 = Qp,n ⊗ D0(Vf̄ (k − 1− r)) and D0(Vf (r + 1)) = E · ωr+1.

Hence, the fact that D0(Vf (r + 1)) and D0(Vf̄ (k − 1− r)) are orthogonal complements of each
other under [ , ] and (4) imply that χrθ(Lη(z)) = 0 if ϕ−n(ηr+1) is a multiple of ωr+1. 2

Recall that Lηαi (z
Kato) = Lp,αi for i= 1, 2 by Theorem 3.10. Hence, if we write

η+ =
α2ηα1 − α1ηα2

α2 − α1
and η− =

ηα2 − ηα1

α2 − α1
,

then Lη±(zKato) = log±p,k L
±
p by (5), (6) and the linearity of L. In fact, more is true.

Proposition 3.14. If z ∈H1
Iw(Tf̄ ), then log±p,k|Lη±(z) over H∞,E(G∞).

Proof. Recall that [ω, ω̄] = 0, [ηαi , ω̄] = 1 and ϕ2 = α2
i on D(Vf ). Therefore, explicit calculation

shows that ηαi = (ϕ(ω) + αiω)/[ϕ(ω), ω̄] for i ∈ {1, 2}. Hence,

η+ =
ϕ(ω)

[ϕ(ω), ω̄]
and η− =

ω

[ϕ(ω), ω̄]
.

Let r be an integer. Since ϕ2 =−ε(p)pk−2r−3 on D(Vf (r + 1)), we have

ϕ−n(η+
r+1)≡ 0 mod ω if n is odd,

ϕ−n(η−r+1)≡ 0 mod ω if n is even.
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Therefore, by Lemma 3.13 and (4), we have

χrθ(Lη+(z)) = 0 if n is odd,
χrθ(Lη−(z)) = 0 if n is even,

where θ and n are as defined in Lemma 3.5. Recall that χ(γ) = u, so we have equivalences
χrθ(Φm(u−rγ)) = Φm(θ(γ)) = 0 if and only if θ(γ) is a primitive pmth root of unity if and only
if θ factors through Gm+1 but not Gm. Hence, all the zeros of log±p,k, which are all simple, are
also zeros of Lη±(z), so we are done. 2

Remark 3.15. An alternative proof for this proposition is given in § 5.1.

Recall that Lη±(z) =O(log(k−1)/2
p ) and Theorem 3.12 says that log±p,k ∼ log(k−1)/2

p , so we have
Lη±(z)/log±p,k =O(1), i.e. an element of H0,E(G∞) = ΛE(G∞). We define

Col± : H1
Iw(Tf̄ (k − 1))→ ΛE(G∞),

z 7→
Lη±(z)
log±p,k

.

We call these two maps the plus and minus Coleman maps. Note that we sometimes abuse
notation and write Col± for the composition

H1(Tf̄ )→H1
Iw(Tf̄ )

Twk−1−−−−−→H1
Iw(Tf̄ (k − 1)) Col±−−−−→ ΛE(G∞)

and its natural extension to H1(Vf̄ ). In particular, we have

Col±(zKato) = L±p . (7)

Similar to Lη±,n, we write Col±n for the map Col± modulo γp
n−1 − 1.

Remark 3.16. The Coleman maps in [Kob03] are defined using a pairing with points coming
from the formal group associated to an elliptic curve, instead of images of the Perrin-Riou
exponential. It is not hard to see that the definition given above agrees with the one given by
Kobayashi on comparing [Kob03, Proposition 8.25] and (3).

4. Kernels of the Coleman maps

In addition to Assumption 1, we assume that the following holds.

Assumption 2. Either p+ 1 - k − 1 or ε(p) 6=−1.

Under these two conditions, we give an explicit description of the kernels of the plus and
minus Coleman maps defined in § 3. In particular, we generalise [Kob03, Proposition 8.18], which
describes the kernels of Col± in the case of elliptic curves defined over Q.

4.1 Some linear algebra
Let us first study some basic properties of Qp,n. Define

πn =


ζpn if n > 1,

ζp +
1

p− 1
if n= 1,

1 if n= 0
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and Q(n)
p denotes the Qp-vector space generated by {πσn : σ ∈Gn}. Then, Trn/n−1 πn = 0 for

n> 1 and

Qp,n =
n⊕
i=0

Q(i)
p . (8)

Proposition 4.1. Let n> 0 be an integer and α=
∑n

i=0 xiπi for some xi ∈Qp. Then, the

Qp-vector space generated by {ασ : σ ∈Gn} is given by
⊕

i∈S Q(i)
p , where S = {i : xi 6= 0}.

Proof. We proceed by induction on |S|. The case |S|= 1 is immediate, so we assume that |S|> 1.
Write V for the Qp-vector space generated by {ασ : σ ∈Gn}. Clearly, V ⊂

⊕
i:xi 6=0 Q(i)

p . Without
loss of generality, we assume that xn 6= 0. Let β =

∑n−1
i=0 xiπi. Then, by induction, {βτ : τ ∈Gn−1}

generates
⊕

i∈S\{n} Q(i)
p over Qp. Fix τ ∈Gn−1; then∑
σ∈Gn,σ|Qp,n−1

=τ

ασ = rβτ + (Trn/n−1 πn)τ = rβτ ∈ V,

where r = [Qp,n : Qp,n−1]. Therefore, for any τ ∈Gn−1, βτ ∈ V and πσn ∈ V for any σ ∈Gn. Hence,
we are done. 2

Corollary 4.2. Let η = a0 +
∑n

i=1 aiζpi , where ai ∈Qp with a1 6= (p− 1)a0; then the
Qp-vector space generated by {ησ : σ ∈Gn} is given by Qp +

∑
r∈S

∑
σ∈Gn Qp · ζσpr , where S =

{r ∈ [1, n] : ar 6= 0}.

Proof. The result is immediate if a1 = 0 by Proposition 4.1. If a1 6= 0, then

η =
(
a0 −

a1

p− 1

)
+ a1π1 +

∑
i>1

aiπi.

Hence, we can again apply Proposition 4.1. 2

Corollary 4.3. Let η = 1 + ζp + ζp2 + · · ·+ ζpn ; then η is a normal basis of Qp,n over Qp.

4.2 Properties of H1

Recall that when f corresponds to an elliptic curve E over Q and Tf (1) is the Tate module of E ,
we have E [p∞]∼= Vf/Tf (1) as GQ-modules. Therefore, the following lemma generalises [Kob03,
Proposition 8.7], which says that E has no p-torsion defined over k∞.

Lemma 4.4. For all j ∈ Z and n> 0, (Vf/Tf )(j)GQp,n = 0.

Proof. It is enough to show that (Vf/Tf )GQp,∞ = 0. Since Vf/Tf = lim←−×$ Tf/$
nTf , it in fact

suffices to show that (Tf/$Tf )GQp,∞ = 0. We make use of the description of the representation
ρf :GQp,n →GL(Tf/$Tf ) given by [BLZ04, Proposition 4.1.4] and consider two different cases.

Case 1 : p+ 1 - k − 1. In this case,

ρf |I =
(
ψk−1 0

0 ψ′k−1

)
,

where I is the inertia group of GQp and ψ and ψ′ are fundamental characters of level 2, i.e.

ker ψ = ker ψ′ =GQur
p ( p

2−1
√
p)
.
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Hence, 1 is not an eigenvalue of ρf (σ) for all σ ∈Gal(Qur
p ( p2−1

√
p)/Qur

p (p−1
√
p)), as p+ 1 - k − 1.

Therefore, there exists an element in the above Galois group which lifts to GQp,∞ and
(Tf/$Tf )GQp,∞ = 0, as required.

Case 2 : p+ 1|k − 1. In this case, ρf |GQp,∞ factors through Gal(Qur
p,∞/Qp,∞) and the eigenvalues

of the Frobenius map are the square roots of −ε(p). By our assumption, this is not 1, so we are
done. 2

We now give two immediate corollaries.

Corollary 4.5. The projection H1
Iw(Tf̄ (j))→H1(Qp,n, Tf̄ (j)) is surjective for all j and n.

Proof. It is enough to show that corn/m :H1(Qp,n, Tf̄ (j))→H1(Qp,m, Tf̄ (j)) is surjective for all
n>m. On taking the Pontryagin dual, it is equivalent to showing that

resm/n :H1(Qp,m, Vf/Tf (k − 1− j))→H1(Qp,n, Vf/Tf (k − 1− j))

is injective. But this immediately follows from the inflation–restriction exact sequence and the
fact that Vf/Tf (k − 1− j)GQp,∞ = 0 as given by Lemma 4.4. 2

Corollary 4.6. For all n and j as above, H1(Qp,n, Tf (j)) ↪→H1(Qp,n, Vf (j)).

Proof. From the short exact sequence 0→ Tf (j)→ Vf (j)→ Vf/Tf (j)→ 0, we obtain a long exact
sequence

· · · → (Vf/Tf (j))GQp,n →H1(Qp,n, Tf (j))→H1(Qp,n, Vf (j))→ · · · .
Hence, the result follows by Lemma 4.4. 2

In particular, H1(Qp,n, Tf (j)) can be identified as an OE-lattice of H1(Qp,n, Vf (j)). Another
property of H1 which we need is the injectivity of the restriction

H1(Qp,m, Vf (j)) res−−−→H1(Qp,n, Vf (j))

for n>m, which follows from the inflation–restriction sequence and Vf (j)GQp,∞ = 0 (immediate
from Lemma 4.4). In particular, the same can be said about H1

f . We regard H1
f (Qp,m, A) as a

subgroup of H1
f (Qp,n, A) for A= Tf (j) or Vf (j) in the next section.

4.3 Some subgroups of H1
f

Let η± be as defined in § 3. For 1 6 j 6 k − 1, recall that D0(Vf (j)) = E · ωj . Using the shorthand
introduced in § 3.4.2, we define two E[Gn]-modules

R+
n,j =

∑
σ∈Gn

E · γn,j(η+
j )σ mod ω ⊂Qp,n ⊗ D(Vf (j))/D0(Vf (j)),

R−n,j =
∑
σ∈Gn

E · γn,j(η−j )σ mod ω ⊂Qp,n ⊗ D(Vf (j))/D0(Vf (j)).
(9)

Remark 4.7. For 1 6 j 6 k − 1, we have isomorphisms of E[Gn]-modules

H1
f (Qp,n, Vf (j))∼= Qp,n ⊗Qp D(Vf (j))/D0(Vf (j))∼= Qp,n ⊗ E.

Under this identification, the corestriction corn/m :H1
f (Qp,n, Vf (j))→H1

f (Qp,m, Vf (j)) corre-
sponds to Trn/m ⊗ id : Qp,n ⊗ E→Qp,m ⊗ E.
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By Remark 4.7, we can identify R±n,j with subsets of Qp,n ⊗ E and we have the following
description.

Lemma 4.8. By identifying Qp,n ⊗ D(V (j))/D0(V (j)) with Qp,n ⊗ E, we have

R+
n,j =

∑
m even

∑
σ∈Gm

E · ζσpm + E,

R−n,j =
∑
m odd

∑
σ∈Gm

E · ζσpm + E,

(10)

where m6 n in the summands.

Proof. Recall that γn,j = p−n(
∑n−1

i=0 ζpn−i ⊗ ϕi−n + (1− ϕ)−1) and η± are given by the following:

η+ =
ϕ(ω)

[ϕ(ω), ω̄]
and η− =

ω

[ϕ(ω), ω̄]
.

Hence, we can apply Corollary 4.2 to R±n,j provided that

(p− 1)(1− ϕ)−1(η±j ) 6≡ ϕ−1(η±j ) mod ω,

which can be checked under Assumption 1. Recall that ϕm(ω)≡ 0 mod ω if and only if m is an
even integer (cf. proof of Proposition 3.14), hence the result. 2

In particular, (8) and (10) imply that

R+
n,j +R−n,j = Qp,n ⊗ E and R+

n,j ∩R
−
n,j = E

under the identification given by Remark 4.7. Let

Q±p,n = {x ∈Qp,n : Trn/m+1(x) ∈Qp,m ∀m ∈ S±n },

where S±n are defined by

S+
n = {m ∈ [0, n− 1] :m even},
S−n = {m ∈ [0, n− 1] :m odd}.

Then, R±n,j can be identified with Q±p,n ⊗ E.

Lemma 4.9. For j and n as above, Q±p,n ⊗ E =R±n,j .

Proof. By (10), it is easy to check that R±n,j ⊂Q±p,n ⊗ E, so dimER
±
n,j 6 dimE(Q±p,n ⊗ E). Since

R+
n,j +R−n,j = Qp,n ⊗ E, we have

Q+
p,n ⊗ E + Q−p,n ⊗ E =R+

n,j +R−n,j = Qp,n ⊗ E.

If x ∈Q+
p,n ∩Q−p,n, then Trn/m+1(x) ∈Qp,m for all m6 n− 1; hence, x ∈Qp. Therefore, we

have Q+
p,n ∩Q−p,n = Qp. Hence, by the formula dimA+ dimB = dim(A+B) + dim(A ∩B),

we deduce that dimE(Q±p,n ⊗ E) = dimER
±
n,j and we are done. 2

Let H1
f (Qp,n, Vf (j))± denote the image of R±n,j under expn,j ; then Remark 4.7 and Lemma 4.9

imply that it is equal to

{x ∈H1
f (Qp,n, Vf (j)) : corn/m+1(x) ∈H1

f (Qp,n, Vf (j)) ∀m ∈ S±n }.

By Corollary 4.6, if we define

H1
f (Qp,n, Tf (j))± =H1

f (Qp,n, Vf (j))± ∩H1
f (Qp,n, Tf (j)),
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then it is equal to

{x ∈H1
f (Qp,n, Tf (j)) : corn/m+1(x) ∈H1

f (Qp,m, Tf (j)) ∀m ∈ S±n },

generalising the definition of E± in [Kob03].

4.4 Description of the kernels

Let z ∈H1
Iw(Tf̄ (k − 1)). Under the notation of § 3, we have Lη±(z) =O(log(k−1)/2

p ), so we have
Lη±(z) = 0 if and only if Pn,r(η±, z−r,n) = 0 for all n> 0 and more than (k − 1)/2 different values
of r with 0 6 r 6 k − 2. Recall that

Pn,r(·, z−r,n) = r!
∑
σ∈Gn

[expn,r+1(γn,r+1(·)σ), z−r,n]nσ.

Hence, ker Pn,r(η±, ·) is just the annihilator of {expn,r+1(γn,r+1(η±)σ) : σ ∈Gn} under the pairing

H1(Qp,n, Vf (r + 1))×H1(Qp,n, Tf̄ (k − 1− r))→ E,

which coincides with the annihilator of H1
f (Qp,n, Tf (r + 1))± under the pairing

H1(Qp,n, Tf (r + 1))×H1(Qp,n, Tf̄ (k − 1− r))→OE . (11)

We denote this annihilator by H1
±(Qp,n, Tf̄ (k − 1− r)).

Define H1
Iw,±(Tf̄ (k − 1− r)) = lim←−H

1
±(Qp,n, Tf̄ (k − 1− r)). As log±p,k 6= 0 and Lη± =

log±p,k Col±, Corollary 4.5 implies that

ker Lη± = ker(Col±) =
k−2⋂
r=0

Twr(H1
Iw,±(Tf̄ (k − 1− r))).

In fact, by the proposition below, it suffices to take just one term in the intersection.

Proposition 4.10. Twr(H1
Iw,±(Tf̄ (k − 1− r))) = H1

Iw,±(Tf̄ (k − 1)) for all integers r such that
0 6 r 6 k − 2.

Proof. Since Col±(z) =O(1) for all z ∈H1
Iw(Tf̄ (k − 1)), it is uniquely determined by its values

at an infinite number of characters (see e.g. [Pol03, Lemma 3.2]). Hence, if there exists a fixed r
such that Pn,r(η±, zn,−r) = 0 for all n, then Col±(z) = 0. Therefore, we have

ker(Col±) = Twr(H1
Iw,±(Tf̄ (k − 1− r)))

and we are done. 2

Corollary 4.11. We have ker Lη± = ker(Col±) = Twr(H1
Iw,±(Tf̄ (k − 1− r))) for any integer

0 6 r 6 k − 2.

4.5 Pontryagin duality
We have seen that ker(Col±) can be written in terms of H1

±, about which we now say a little bit
more. The Pontryagin duality gives a pairing

H1(Qp,n, Vf/Tf (r + 1))×H1(Qp,n, Tf̄ (k − 1− r))→ E/OE . (12)

We can describe the annihilator of H1
±(Qp,n, Tf̄ (k − 1− r)) under this pairing explicitly.

Lemma 4.12. H1
f (Qp,n, Tf (r + 1))±⊗E/OE ↪→H1(Qp,n, Vf/Tf (r + 1)) and it can be identified

as the annihilator of H1
±(Qp,n, Tf̄ (k − 1− r)) under (12).
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Proof. By definitions, we have an exact sequence

0→H1
±(Qp,n, Tf̄ (k − 1− r))→H1(Qp,n, Tf̄ (k − 1− r))→Hom(H1

f (Qp,n, Tf (r + 1))±,OE).

Taking Pontryagin duals, we have

H1
f (Qp,n, Tf (r + 1))±⊗E/OE →H1(Qp,n, Vf/Tf (r + 1))→H1

±(Qp,n, Tf̄ (k − 1− r))∨→ 0.

Therefore, the second part of the lemma follows from the first. Recall that (Vf/Tf (r + 1))GQp,n =
0 by Lemma 4.4, so we have

H1
f (Qp,n, Tf (r + 1))⊗E/OE ↪→H1

f (Qp,n, Vf/Tf (r + 1))⊂H1(Qp,n, Vf/Tf (r + 1)).

Hence, it suffices to show that we have the inclusion

H1
f (Qp,n, Tf (r + 1))±⊗E/OE ↪→H1

f (Qp,n, Tf (r + 1))⊗E/OE .

But this follows from [Kob03, Lemma 8.17]. 2

We write H1
f (Qp,n, Vf/Tf (j))± for H1

f (Qp,n, Tf (j))±⊗E/OE , which is identified as a subgroup
of H1

f (Qp,n, Vf/Tf (j)). Note that it corresponds to the definition of E±(Qp,n)⊗Qp/Zp given
in [Kob03] and this is used to define Sel±p in § 6.

5. Images of the Coleman maps

In this section, we describe the images of Col±. By Corollary 4.5, any elements of H1(Qp,n, Tf̄ (k −
1)) can be lifted to a global element of H1

Iw(Tf̄ (k − 1)). Hence, we can in fact think of Lη±,n and
Col±n as maps from H1(Qp,n, Tf̄ (k − 1)) to E[Gn]. This allows us to give a description of Im(Col±)
by studying Im(Col±n ).

In [Kob03, § 8], the images of the plus and minus Coleman maps for elliptic curves over Q
are shown to be the following:

Im(Col+) = (γ − 1)ΛOE (G∞) +
(∑
σ∈∆

σ

)
ΛOE (G∞),

Im(Col−) = ΛOE (G∞).

In particular, the ∆-invariant part of Im(Col±) is the whole of (
∑

σ∈∆ σ)ΛOE (G∞) (which we
identify with ΛOE (Γ)). For a general f , we unfortunately do not know whether the images of
the Coleman maps are inside ΛOE (G∞) or not. However, after multiplying by a power of $, we
show that the ∆-invariant part of Im(Col±) agrees with the above descriptions and the same
can be said for the whole of Im(Col−).

5.1 Divisibility by Φm(γ)

We have seen that the image of Lη± is divisible by log±p,k. We give a necessary and sufficient
condition for such divisibility at the finite level below.

Recall that G∞ = Gal(k∞/Q)∼= ∆× Γ, where ∆ is a finite group of order p− 1, Γ∼= Zp and
γ is a fixed topological generator of Γ. We have

OE [Gn]∼=OE [∆][γ]/(γp
n−1 − 1) and Φm(γ) = 1 + γp

m−1
+ γ2pm−1

+ · · ·+ γ(p−1)pm−1
.

Therefore, if m> n, then Φm(γ) = p in OE [Gn], so we only consider m< n here.
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Lemma 5.1. Let m< n and

f =
∑

r mod pn−1

σ∈∆

cr,σ · σ · γr ∈ OE [Gn].

For each σ ∈∆ and r mod pm, write

br,σ = cr,σ + cr+pm,σ + · · ·+ cr−pm,σ.

Then, f is divisible by Φm(γ) in OE [Gn] if and only if br,σ = bs,σ whenever r ≡ s mod pm−1.

Proof. Let f = gΦm(γ) and g =
∑
ar,σ · σ · γr ∈ OE [Gn]. Then, the coefficient of σγr in f is

ar,σ + ar−pm−1,σ + · · ·+ ar−(p−1)pm−1,σ.

Hence, br,σ as defined in the statement of the lemma is just the sum of the coefficients as,σ of g
with s≡ r mod pm−1. Hence, br,σ = bs,σ whenever r ≡ s mod pm−1.

Conversely, let
∑
cr,σ · σ · γr ∈ OE [Gn] and define br,σ as in the statement of the lemma.

Assume that br,σ = bs,σ for all r ≡ s mod pm−1. Let fσ(γ) =
∑

r cr,σ · γr, so f =
∑
fσ · σ. We

have

fσ(ζpm) =
∑

r mod pm

( ∑
s≡r(pm)

cs,σ

)
ζrpm

=
∑

r mod pm

br,σζ
r
pm

=
∑

s mod pm−1

bs,σ
∑

r≡s(pm−1)

ζrpm

= 0.

Hence, Φm(γ) divides f and we are done. 2

Applying this to the image of Lη±,n, we have the following corollary.

Corollary 5.2. For any z ∈H1(Qp,n, Tf̄ (k − 1)), Lη±,n(z) is divisible by Φm(γ) in E[Gn] if
m ∈ S±n .

Proof. The image of Lη±,n(z) is given by the following composition:

H1(Qp,n, Tf̄ (k − 1)) ∼−−→HomOE (H1(Qp,n, Tf (1)),OE)→ E[Gn],

where the first isomorphism is induced by the pairing (11) and the second map is given by

HomOE (H1(Qp,n, Tf (1)),OE) → E[Gn],

θ 7→
∑
τ∈Gn

θ(expn,1(γn,1(η±1 )τ )τ, (13)

with θ extended to an element of HomE(H1(Qp,n, Vf (1)), E) in the natural way. Hence, it is
enough to show that the coefficients θ(expn,1(γn,1(η±1 )τ ), as τ ∈Gn varies, satisfy the relations
described in Lemma 5.1. Recall that expn,1 gives an isomorphism

Qp,n ⊗ D(Vf (1))/E · ω1→H1
f (Qp,n, Vf (1)).
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Therefore, it is in fact enough to show that γn,1(η±1 )τ mod ω satisfy the relations in Lemma 5.1.
Let σ ∈∆ and r ∈ Z/pmZ. For η = η±, we write

ηr,σ =
∑

s≡r(pm)

γn,1(η1)σγ
s

= p−m−1((1− ϕ)−1(η1) + ζp ⊗ ϕ−1(η1) + · · ·+ ζpm+1 ⊗ ϕ−m−1(η1))σγ
r
.

Therefore, if ϕ−m−1(η1)≡ 0 mod ω, then ηr,σ = ηs,σ for r ≡ s mod pm−1, as (ζpm)σγ
r

= (ζpm)σγ
s
.

Hence, by the definitions of η± as given in the proof of Proposition 3.14, we are done. 2

By considering its image modulo (u−jγ)p
n−1 − 1 similarly, one can deduce Proposition 3.14.

We can in fact say a bit more about the image of Lη+,n.

Lemma 5.3. If Lη+,n(z) =
∑
cr,σ · σ · γr, then

∑
r cr,σ is independent of σ.

Proof. For each σ ∈∆, we have∑
r

γn,1(η+
1 )σγ

r
= p−1((1− ϕ)−1(η+

1 ) + ζp ⊗ ϕ−1(η+
1 ))σ.

But ϕ−1(η+
1 )≡ 0 mod ω, so we are done. 2

We will see later on that these conditions in fact characterise the images of Lη±,n completely.

5.2 Images of log±p,k in OE[Gn]
We now fix an integer j such that 0< j 6 k − 2.

Lemma 5.4. Let x ∈ 1 + pZp. There exists a constant c such that for any positive integer n,
vp(xp

n − 1) = n+ c.

Proof. Let x= 1 +m, where m ∈ pZp, so vp(m) > 1. We have the expansion

xp
n − 1 = (1 +m)p

n − 1 =mpn +
(

pn

pn − 1

)
mpn−1 + · · ·+

(
pn

1

)
m.

For r > 0, vp(
(
pn

r

)
) = n− vp(r), so

vp

((
pn

r

)
mr

)
= rvp(m)− vp(r) + n.

If r = psa, where p - a and a > 1, then

vp

((
pn

r

)
mr

)
> vp

((
pn

ps

)
mps

)
.

Therefore, the set {vp(
(
pn

r

)
mr) : r > 0} takes its minimum value at r = ps for some s.

Consider the curve f(t) = ptvp(m)− t, for t ∈ R. It has a unique global minimum when
pt = (vp(m) log p)−1, so the curve is strictly increasing on t> 0. Therefore, for a fixed n, the
minimum of the values

vp

((
pn

ps

)
mps

)
= psvp(m)− s+ n

is just vp(m) + n, which is attained at a unique s, hence the result. 2

Corollary 5.5. If m> n, then Φm(u−jγ)/p is congruent to a unit of Zp modulo γp
n−1 − 1.
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Proof. By definition,

Φm(u−jγ) =
(u−jγ)p

m − 1
(u−jγ)pm−1 − 1

,

so, as elements of OE [Gn], we have

1
p

Φm(u−jγ) =
u−jp

m − 1
p(u−jpm−1 − 1)

.

But u ∈ 1 + pZp by definition, so we are done by Lemma 5.4. 2

Remark 5.6. We have log±p,k ≡ p
1−kλ±

∏k−2
j=0 ω

±
n (u−jγ) mod(γp

n−1 − 1), where λ± is a unit of
Zp and ω±n is defined by

ω+
n (1 +X) =

∏
16m<n/2

Φ2m(1 +X)/p,

ω−n (1 +X) =
∏

16m<(n+1)/2

Φ2m−1(1 +X)/p.

5.3 The images of Col±n
Let R±n,j be the E-vector spaces defined by (9). We have the following lemma.

Lemma 5.7. The dimensions of the E-vector spaces R±n,j are given by

dimER
+
n,j = 1 +

∑
16m6n/2

p2m−2(p− 1)2,

dimER
−
n,j = p− 1 +

∑
16m6(n−1)/2

p2m−1(p− 1)2.

Proof. By (10), we have

dimER
+
n,j = dimQpQp +

∑
16m6n/2

dimQpQ(2m)
p ,

dimER
−
n,j = dimQpQp +

∑
16m6(n−1)/2

dimQpQ(2m+1)
p .

For m> 1, (8) implies that

dimQpQ(m)
p = dimQpQp,m − dimQpQp,m−1

= pm−1(p− 1)− pm−2(p− 1)
= pm−2(p− 1)2

and dimQpQ(1)
p = p− 2, so we are done. 2

The dimensions of these vector spaces enable us to obtain the following.

Proposition 5.8. Let f =
∑

σ∈∆

∑pn−1−1
r=0 ar,σ · σ · ur ∈ E[Gn]. If ω±n is as defined in

Remark 5.6, then:

(a) there exists z ∈H1(Qp,n, Vf̄ (k − 1)) such that Col−n (z)≡ f mod ω+
n (γ);

(b) if moreover
∑

r ar,σ1 =
∑

r ar,σ2 for all σ1, σ2 ∈∆, then there exists z ∈H1(Qp,n, Vf̄ (k − 1))
such that Col+n (z)≡ f mod ω−n (γ).
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Proof. We only prove (b), as (a) can be proved in the same way. Define

Un =
{
g =

∑
cr,σ · σ · γr ∈ E[Gn] : log+

p,k|g,
∑
r

cr,σ1 =
∑
r

cr,σ1∀σ1, σ2 ∈∆
}
.

Then, Un is a vector subspace of E[Gn] over E. By Remark 5.6,

log+
p,k ≡ p

1−kλ+

k−2∏
j=0

ω+
n (u−jγ) mod(γp

n−1 − 1)

for some λ+ ∈ O×E . Since ω+
n (u−j(1 +X)) and (1 +X)p

n−1 − 1 are coprime for j > 0, log+
p,k|g if

and only if ω+
n (γ)|g. But Φm1 and Φm2 are coprime if m1 6=m2, so ω+

n (γ)|g if and only if Φm(γ)|g
for all even m< n.

Let g =
∑
cr,σ · σ · ur. For each even m< n, let

b(m)
r,σ = cr,σ + cr+pm,σ + · · ·+ cr−pm,σ.

Then, by Lemma 5.1, Φm(γ)|g if and only if b(m)
r,σ = b

(m)
s,σ for all σ ∈∆ and r ≡ s mod pm−1. For

each such m and σ ∈∆, there are pm−1 values of modulo pm−1; each is equated to p− 1 different
values. Since |∆|= p− 1, there are pm−1(p− 1)2 linearly independent equations for each m.
Together with the equations of

∑
r cr,σ, there are in total

p− 2 +
∑

16m6n/2

p2m−1(p− 1)2

equations describing the coefficients of elements of the Un, which give the codimension of Un
over E in E[Gn].

By Corollary 5.2 and Lemma 5.3, for z ∈H1(Qp,n, Vf̄ (k − 1)), Lη+,n(z) lies inside the above
subspace. But the dimension of the image is given by dimER

+
n,1, which is the same as the

dimension of Un by Lemma 5.7, so Lη+,n(H1(Qp,n, Vf̄ (k − 1))) = Un as E-vector spaces and
there exists some z such that Lη+,n(z) = g. This implies that

log+
p,k Col+n (z)≡ f log+

p,k mod(γp
n−1 − 1).

The factors of ω+
n (u−jγ) on both sides can be cancelled out for j > 0, as ω+

n (u−jγ) is coprime
to ω+

n (γ). Since pn−1(γ − 1)ω+
n (γ)ω−n (γ) = γp

n−1 − 1, we deduce that Col+n (z)≡ f mod((γ −
1)ω−n (γ)), which implies (b). 2

5.4 The images of Col±

In the previous section, we studied the images of H1(Qp,n, Vf̄ (k − 1)) under Col±n . To understand
the images of Col±, we have to understand those of H1(Qp,n, Tf̄ (k − 1)) as well.

Lemma 5.9. For all n, there exist r±n ∈ Z such that

Lη±,n(H1(Qp,n, Tf̄ (k − 1))) = Lη±,n(H1(Qp,n, Vf̄ (k − 1))) ∩$r±nOE [Gn].

Proof. Note that expn,1(γn,1(η±1 )) 6= 0. As an element of H1(Qp,n, Tf (1)), it lifts to a cocycle on
GQp,n . By considering the image of this cocycle in Vf (1), which is invariant under the action of
Gn, there exist r±n such that

$−r
±
n expn,1(γn,1(η±)τ ) ∈H1(Qp,n, Tf (1))\$H1(Qp,n, Tf (1))

for all τ ∈Gn.
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Recall from (13) that Lη±,n is given by

HomE(H1(Qp,n, Vf (1)), E)→ E[Gn],

θ 7→
∑
τ∈Gn

θ(expn,1(γn,1(η±1 )τ )τ,

where we have identified HomE(H1(Qp,n, Vf (1)), E) with H1(Qp,n, Vf̄ (k − 1)). Under this
identification, H1(Qp,n, Tf̄ (k − 1)) corresponds to the set of maps which send H1(Qp,n, Tf (1))
(which is identified as a subset of H1(Qp,n, Vf (1)) as discussed in § 4) to OE . Therefore, we have

{θ(expn,1(γn,1(η±1 )τ ) : θ ∈H1(Qp,n, Tf̄ (k − 1))}=$r±nOE
for all τ ∈Gn. This implies that the left-hand side of the equation in the statement of the lemma
is contained in the right-hand side.

Conversely, if x is an element of the right-hand side of the equation, there exists θ ∈
H1(Qp,n, Vf̄ (k − 1)) such that

∑
τ∈Gn θ(expn,1(γn,1(η±1 )τ )τ = x by Proposition 5.8. In particular,

θ($−r
±
n expn,1(γn,1(η±1 )τ ) ∈ OE

for all τ ∈Gn. Hence, there exists θ̃ ∈H1(Qp,n, Tf̄ (k − 1)) which agrees with θ on the set

{$−r
±
n expn,1(γn,1(η±1 )τ ) : τ ∈Gn}, so x ∈ the left-hand side. 2

Lemma 5.10. Let r±n be the integers defined in Lemma 5.9; then there exist c± such that
r±n =−e(k − 1)bn/2c+ c± for n sufficiently large, where e is the ramification degree of E.

Proof. By Remark 3.11,

ΩVf (1),1((1 +X)⊗ η±1 ) =O(log(k−1)/2
p ),

which implies that the nth component of ΩVf (1),1((1 +X)⊗ η±1 ), which is expn,1(γn,1(η±1 )),
satisfies

expn,1(γn,1(η±1 )) ∈$−e(k−1)bn/2c+c±H1(Qp,n, Tf (1))
for some constant c± independent of n.

Recall that H1
Iw(Tf (1)) is free of rank two over ΛOE (G∞). Fix a basis z1, z2, say. Note that

(1 +X)⊗ η±1 form a ΛE(G∞)-basis for D∞(Vf ). The determinant of

ΩVf (1),1 :H∞(G∞)⊗ D∞(Vf (1))→H∞(G∞)⊗H1
Iw(Tf (1))

with respect to these bases, as a H∞(G∞)-homomorphism, is given by
k−2∏
j=0

logp(u
jγ)∼ logk−1

p

up to a unit of ΛE(G∞) (this is the δ(V )-conjecture of [Per94], which can be deduced from
the explicit reciprocity law of Colmez [Col98]). But Theorem 3.12 says that log±p,k ∼ log(k−1)/2

p .
Hence, we in fact have

ΩVf (1),1((1 +X)⊗ η±)∼ log(k−1)/2
p .

Therefore, we can choose c± such that

expn,1(γn,1(η±1 )) /∈$−e(k−1)bn/2c+c±+1H1(Qp,n, Tf (1)),

so r±n =−e(k − 1)bn/2c+ c±, for n sufficiently large. 2
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On combining these two lemmas, we have the following corollary.

Corollary 5.11. If θ is the trivial character on ∆, then there exist s± such that

Col±(H1
Iw(Tf̄ (k − 1)))θ =$s±ΛOE (Γ).

Proof. By Proposition 5.8 and Lemma 5.9, for sufficiently large n,

$r±n

(∑
σ∈∆

σ

) k−2∏
j=0

ω̃±n (u−jγ) ∈ Lη±,n(H1(Qp,n, Tf̄ (k − 1))),

where

ω̃+
n (1 +X) =

∏
16m<n/2

Φ2m(1 +X),

ω̃−n (1 +X) =
∏

16m<(n+1)/2

Φ2m−1(1 +X).

Hence, by Remark 5.6 and Lemma 5.10, there exist constants s± (independent of n) such that

$s±
(∑
σ∈∆

σ

)
log±p,k ∈ Lη±,n(H1(Qp,n, Tf̄ (k − 1)))

and
Lη±,n(H1(Qp,n, Tf̄ (k − 1)))⊂$s± log±p,k OE [Gn].

But log±p,k Col± = Lη± , so we have

$s±
∑
σ∈∆

σ ∈ Col±(H1(Qp,n, Tf̄ (k − 1)) mod ω̃∓n (γ).

Therefore, we are done, since

lim←− ΛOE (G∞)/ω̃±n (γ) = ΛOE (G∞) and ΛOE (G∞)θ =
(∑
σ∈∆

σ

)
ΛOE (G∞). 2

Remark 5.12. It is clear that we can replace θ by an arbitrary character on ∆ for the minus
map in the corollary.

6. ±-Selmer groups

Throughout this section, with the exception of §§ 6.3.2 and 6.4, Assumptions 1 and 2 are not
necessary.

Let f be a modular form as in § 2.4 and K a number field; the p-Selmer groups of f over K
are defined by the following:

Sel0p(f/K) = ker
(
H1(K, Vf/Tf (1))→

∏
v

H1(Kv, Vf/Tf (1))
)
,

Selp(f/K) = ker
(
H1(K, Vf/Tf (1))→

∏
v

H1(Kv, Vf/Tf (1))
H1
f (Kv, Vf/Tf (1))

)
,

where v runs through the places of K.
We write kn for Q adjoining all the pnth roots of unity and k∞ = ∪kn. Since there is a unique

place above p in kn, we write this place as p as well. Note that the completion of kn at p is
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isomorphic to Qp,n. For f satisfying Assumptions 1 and 2, let H1
f (Qp,n, Vf/Tf (1))± be as defined

in § 4.5. For all n> 0, we define the plus and minus Selmer groups by

Sel±p (f/kn) = ker
(

Selp(f/kn)→
H1(Qp,n, Vf/Tf (1))
H1
f (Qp,n, Vf/Tf (1))±

)
.

In this section, we show that Selp(f/k∞) is not ΛOE (G∞)-cotorsion when f is supersingular at p.
When f satisfies Assumptions 1 and 2, we show that Sel±p (f/k∞) = lim−→ Sel±p (f/kn) is ΛOE (G∞)-
cotorsion.

6.1 Restricted ramification
We now describe the Selmer groups defined above using restricted ramification. Let S be a finite
set of places of a number field K containing all infinite places, all primes above p and those
dividing N . Then, by [Rub00, Lemma I.5.3],

H1(GS,K , Vf/Tf (1)) = ker
(
H1(K, Vf/Tf (1))→

∏
v/∈S

H1(Kv, Vf/Tf (1))
H1
f (Kv, Vf/Tf (1))

)
, (14)

where GS,K is the Galois group of the maximal extension of K unramified outside S. Therefore,
we can rewrite Selp as

Selp(f/K) = ker
(
H1(GS,K , Vf/Tf (1))→

⊕
v∈S

H1(Kv, Vf/Tf (1))
H1
f (Kv, Vf/Tf (1))

)
. (15)

If f satisfies Assumptions 1 and 2, we write H1
f (kn,v, Vf/Tf (1))± =H1

f (kn,v, Vf/Tf (1)) for
v - p. Then,

Sel±p (f/kn) = ker
(
H1(GS,kn , Vf/Tf (1))→

⊕
v∈S

H1(kn,v, Vf/Tf (1))
H1
f (kn,v, Vf/Tf (1))±

)
. (16)

The next lemma enables us to give a similar alternative description of Sel0p as well.

Lemma 6.1. With the notation as above, we have H1
f (Kv, Vf/Tf (1)) = 0 for v - pN .

Proof. If v is an infinite place, we in fact have H1(Kv, Vf/Tf (1)) = 0 as p is odd (see e.g. [Rub00,
§ I.3.7]).

We now assume that v is a finite place not dividing pN . Since v - p,

H1
f (Kv, Vf (1)) =H1

ur(Kv, Vf (1))

by definition and H1
f (Kv, Vf/Tf (1)) is defined to be the image of H1

ur(Kv, Vf (1)) in
H1(Kv, Vf/Tf (1)) under the natural map H1(Kv, Vf (1))→H1(Kv, Vf/Tf (1)). By [Rub00,
§ I.3.2],

H1
ur(Kv, Vf (1))∼= Vf (1)I/(Fr−1)Vf (1)I ,

where I is the inertia group of Kv and Fr is the Frobenius map of Kur
v /Kv. Hence, it suffices to

show that 1 is not an eigenvalue of Fr. But v is a good prime (i.e. v -N), so the eigenvalues have
absolute value q(k−1)/2

v , where qv is the rational prime lying below v. Hence, we are done. 2

If S is as above, Lemma 6.1 and (14) imply that

H1(GS,K , Vf/Tf (1)) = ker
(
H1(K, Vf/Tf (1))→

∏
v/∈S

H1(Kv, Vf/Tf (1))
)
.
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Therefore, by the definition of Sel0p, we have

Sel0p(f/K) = ker
(
H1(GS,K , Vf/Tf (1))→

⊕
v∈S

H1(Kv, Vf/Tf (1))
)
. (17)

As stated in the proof of Lemma 6.1, H1(Kv, Vf/Tf (1)) = 0 if v is an infinite place. We can
therefore simplify (17) further:

Sel0p(f/K) = ker
(
H1(GS,K , Vf/Tf (1))→

⊕
v∈Sf

H1(Kv, Vf/Tf (1))
)
, (18)

where Sf denotes the set of finite places in S.

6.2 Poitou–Tate exact sequences

We now briefly review results on Poitou–Tate exact sequences. Details can be found in [Per95,
§A.3].

With the above notation, let S be a finite set of places of K containing those above p and
the infinite places; then we have an exact sequence⊕

v∈Sf

H0(Kv, Vf/Tf (1))→ H2(GS,K , Tf̄ (k − 1))∨

→ H1(GS,K , Vf/Tf (1))→
⊕
v∈Sf

H1(Kv, Vf/Tf (1)), (19)

where Sf is again the set of finite places in S. On combining (19) and (18), we have⊕
v∈Sf

H0(Kv, Vf/Tf (1))→H2(GS,K , Tf̄ (k − 1))∨→ Sel0p(f/K).

By taking duals and using the fact that H0(Kv, Vf/Tf (1))∨ =H2(Kv, Tf̄ (k − 1)), we obtain

Sel0p(f/K)∨ = ker
(
H2(GS,K , Tf̄ (k − 1))→

⊕
v∈Sf

H2(Kv, Tf̄ (k − 1))
)
. (20)

For each v ∈ Sf , let Av ⊂H1(Kv, Tf̄ (k − 1)) and Bv ⊂H1(Kv, Vf/Tf (1)) be OE-modules so
that they are orthogonal complements to each other under the Pontryagin duality. Define

H1
B(K, Vf/Tf (1)) = ker

(
H1(GS,K , Vf/Tf (1))→

⊕
v∈Sf

H1(Kv, Vf/Tf (1))
Bv

)
.

Then, [Per95, Proposition A.3.2] says that we have an exact sequence

H1(GS,K , Tf̄ (k − 1))→
⊕
v∈Sf

H1(Kv, Tf̄ (k − 1))
Av

→H1
B(K, Vf/Tf (1))∨

→ H2(GS,K , Tf̄ (k − 1))→
⊕
v∈Sf

H2(Kv, Tf̄ (k − 1)). (21)
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Hence, we can combine (20) and (21) to obtain the following exact sequence:

H1(GS,K , Tf̄ (k − 1))→
⊕
v∈Sf

H1(Kv, Tf̄ (k − 1))
Av

→ H1
B(K, Vf/Tf (1))∨→ Sel0p(f/K)∨→ 0. (22)

6.3 Cotorsionness
6.3.1 Selp(f/k∞) is not ΛOE (G∞)-cotorsion. We now prove our claim about Selp(f/k∞)∨

in the introduction. Let K = kn. Take Bv =H1
f (kn,v, Vf/Tf (1)) for v ∈ Sf in (22); then Av =

H1
f (kn,v, Tf̄ (k − 1)) by [BK90, Proposition 3.8]. Hence, on combining (15) and (22), we have an

exact sequence

H1(GS,kn , Tf̄ (k − 1))→
H1(Qp,n, Tf̄ (k − 1))
H1
f (Qp,n, Tf̄ (k − 1))

⊕
⊕
v|N

H1(kn,v, Tf̄ (k − 1))
H1
f (kn,v, Tf̄ (k − 1))

→ Selp(f/kn)∨→ Sel0p(f/kn)∨→ 0. (23)

We are interested in taking inverse limits over n. For the terms coming from places dividing
N , we can apply the following.

Lemma 6.2. For each integer n> 0, fix a prime v(n) of Qp,n not dividing p such that v(n+ 1)
lies above v(n); then

lim←−
n,cor

H1(kn,v(n), Tf̄ (k − 1))
H1
f (kn,v(n), Tf̄ (k − 1))

= 0.

Proof. The Pontryagin dual of the said inverse limit is lim−→H1
f (kn,v(n), Vf/Tf (1)), so the result

follows immediately from Lemma 6.1 if v(n) -N . The general case is proved in [Kat04, § 17.10]
by considering p-cohomological dimensions. 2

Therefore, on taking inverse limits in (23), we have the following exact sequence:

H1
S(Tf̄ (k − 1))→

H1
Iw(Tf̄ (k − 1))

Hf (Tf̄ (k − 1))
→ Selp(f/k∞)∨→ Sel0p(f/k∞)∨→ 0, (24)

where Hf (·) = lim←−n H
1
f (Qp,n, ·) and H1

S(·) = lim←−n H
1(Gkn,S , ·)∼= H1(·) (see [Kob03, Proposi-

tion 7.1]).

Proposition 6.3. Selp(f/k∞)∨ is not torsion over ΛOE (G∞).

Proof. We consider the rank of each term appearing in (24). By Theorem 3.7, H1
S(Tf̄ (k − 1))

is a torsion-free ΛOE (G∞)-module of rank one. By [Per00, Theorem 0.6], Hf (Tf̄ (k − 1)) = 0.
By [Per94, Proposition 3.2.1], H1

Iw(Tf̄ (k − 1)) is of rank two over ΛOE (G∞). By [Kob03, proof
of Proposition 7.1], which is a purely algebraic proof and generalises to modular forms directly,
Sel0p(f/k∞)∨ is ΛOE (G∞)-torsion. Therefore, Selp(f/k∞)∨ has ΛOE (G∞)-rank at least one and
we are done. 2

6.3.2 Sel±p (f/k∞) is ΛOE (G∞)-cotorsion. We again set K = kn. Let

Bv =

H
1
f (kn,v, Vf/Tf (1)) if v|N,

H1(Qp,n, Vf/Tf (1))± if v = p.
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By [BK90, Proposition 3.8] and Lemma 4.12, we have

Av =

H
1
f (kn,v, Tf̄ (k − 1)) if v|N,

H1
±(Qp,n, Tf̄ (k − 1)) if v = p.

Hence, on combining (16) with (22), we obtain the following exact sequence:

H1(GS,kn , Tf̄ (k − 1))→
H1(Qp,n, Tf̄ (k − 1))
H1
±(Qp,n, Tf̄ (k − 1))

⊕
⊕
v|N

H1(kn,v, Tf̄ (k − 1))
H1
f (kn,v, Tf̄ (k − 1))

→ Sel±p (f/kn)∨→ Sel0p(f/kn)∨→ 0. (25)

Therefore, on taking inverse limits in (25) and applying Lemma 6.2, we have the exact sequence

H1
S(Tf̄ (k − 1))→

H1
Iw(Tf̄ (k − 1))

H1
Iw,±(Tf̄ (k − 1))

→ Sel±p (f/k∞)∨→ Sel0p(f/k∞)∨→ 0, (26)

where H1
Iw,±(Tf̄ (k − 1)) is as defined in § 4, i.e. lim←−H

1
±(Qp,n, Tf̄ (k − 1)).

Proposition 6.4. Sel±p (f/k∞) is ΛOE (G∞)-cotorsion.

Proof. Recall that ker(Col±) = H1
Iw,±(Tf̄ (k − 1)) from § 4 and Col±(zKato) = L±p by (7).

Therefore, the cokernel of the first map in (26) is killed by L±p . Therefore, if L±p 6= 0, it would
imply that the said cokernel is ΛOE (G∞)-torsion and the result would follow from the fact that
Sel0p(f/k∞)∨ is ΛOE (G∞)-torsion. Hence, we are done by the following lemma. 2

Lemma 6.5. L±p 6= 0.

Proof. The case when f corresponds to an elliptic curve is proved in [Pol03, Corollary 5.11]. The
general case can be proved similarly.

By [Pol03], if θ is a character on Gn which does not factor through Gn−1 and 0 6 r 6 k − 2,

χrθ(L+
p ) = C+

n,r(θ)L(f, θ, r + 1) if n is even,

χrθ(L−p ) = C−n,r(θ)L(f, θ, r + 1) if n is odd,

where C±n,r(θ) are non-zero constants. By [Roh88], L(f, θ, 1) = 0 for finitely many θ if k = 2. If
k > 3, L(f, θ, r + 1) 6= 0 for r + 1 6 (k − 1)/2 by [Shi76, Proposition 2]. Hence, we are done. 2

Corollary 6.6. The first map in (26) is injective.

Proof. It follows from Theorem 3.7 and Lemma 6.5. 2

Remark 6.7. It is clear from the proof of Lemma 6.5 that L±,θp 6= 0 for any character θ on ∆.
Therefore, Sel±p (f/k∞)θ is ΛOE (Γ)-cotorsion and we can associate to it a characteristic ideal,
namely CharΛOE (Γ)(Sel±p (f/k∞)∨,θ).

6.4 Main conjectures
We now formulate a main conjecture and relate it to that of Kato. By Corollary 6.6 and the fact
that Sel0p(f/k∞)∨ ∼= H2(Tf̄ (k − 1)) (see [Kur02]), we have an exact sequence

0→H1
S(Tf̄ (k − 1))→ Im(Col±)→ Sel±p (f/k∞)∨→H2(Tf̄ (k − 1))→ 0.
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If θ is a character on ∆, then

CharΛOE (Γ)(H1
S(Tf̄ (k − 1))θ/Z(Tf̄ (k − 1))θ) = CharΛOE (Γ)(H2(Tf̄ (k − 1))θ)

if and only if

CharΛOE (Γ)(Sel±p (f/k∞)∨,θ) = CharΛOE (Γ)(Im(Col±,θ)/L±,θp ).

In other words, Kato’s main conjecture (for f̄) is equivalent to the following conjecture.

Conjecture 6.8. CharΛOE (Γ)(Sel±p (f/k∞)∨,θ) = CharΛOE (Γ)(Im(Col±,θ)/L±,θp ).

Moreover, by Corollary 5.11 and Remark 5.12, we have the following corollary.

Corollary 6.9. Let δ =±. When θ = 1 or δ =−, Conjecture 6.8 is equivalent to

CharΛOE (Γ)(Sel±p (f/k∞)∨,θ) = ($−s
±
L±,θp ).

Remark 6.10. It is clear that the right-hand sides in Conjectures 6.8 and 6.9 are contained in
the left-hand sides if the homomorphism GQ→GLOE (Tf̄ ) is surjective or if we replace ΛOE (Γ)
by ΛE(G∞) by Theorem 3.8.

7. CM forms

We now follow the strategy of [PR04] to prove that equality holds in Corollary 6.9 (with θ = 1)
for CM forms.

7.1 Generality of CM forms

We first briefly review the theory of CM modular forms. Details can be found in [Kat04, § 15].

Let K be an imaginary quadratic field with idele class group CK . A Hecke character of K is
simply a continuous homomorphism φ : CK → C× with complex L-function

L(φ, s) =
∏
v

(1− φ(v)N(v)−s)−1,

where the product runs through the finite places v of K at which φ is unramified, φ(v) is the
image of the uniformiser of Kv under φ and N(v) is the norm of v.

Let f be a modular form as defined in § 2.4 with complex multiplication, i.e. L(f, s) = L(φ, s)
for some Hecke character φ of an imaginary quadratic field K. Then, for a good prime p,

1− app−s + ε(p)pk−1−2s =

{
1− φ(p)p−2s if p is inert in K,

(1− φ(P)p−s)(1− φ(P̄)p−s) if (p) = PP̄ in K.

Therefore, ap = 0 if p is inert in K. If p splits into PP̄, ap = φ(P) + φ(P̄). It is known that
φ(P) + φ(P̄) is a p-adic unit; hence, f is ordinary at p. Therefore, for a good prime p -N , ap = 0
if and only if f is supersingular at p. We fix such a p which is odd.

Let O be the ring of integers of K. We denote the conductor of φ by f. For an ideal a of K,
K(a) denotes the ray class field of K of conductor a. We write K for the union ∪nK(pnf). Then,
the action of GQ on Vf factors through Gal(K/Q). The same is then true for Vf (j) for all j as
k∞ ⊂K.
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More specifically, Vf ∼= V (φ)⊕ τV (φ), where V (φ) is the one-dimensional E-representation
of GK associated to φ and τ is the complex conjugation. The action of GQ is given by

σ(x, y) =

{
(σ(x), τ(τστ)(y)) if σ ∈GK ,
((τστ)(y), τσ(x)) otherwise.

In addition to Assumptions 1 and 2, we assume for simplicity that the following holds.

Assumption 3. The modular form f is defined over Q (i.e. an ∈ Z for all n) and K has class
number 1.

This is essential for the properties of elliptic units which we need to hold. Note that as a
vector space, Vf is isomorphic to Kp (where Kp denotes the completion of K at p) and we can
take Tf to be the lattice corresponding to Op. We write ρ for the character given by

ρ :GK →Aut(Vf/Tf (1))∼=O×p .

For simplicity, we write A for Vf/Tf (1) from now on.
Recall that Kc denotes the Zp-cyclotomic extension of K. We write Km for the unique Z2

p-
extension of K and L denotes Op[[Gal(Km/K)]]. Given a Zp[[Gal(K/K)]]-module Y , we write
YF for Y⊗Zp[[Gal(K/K)]]Zp[[Gal(F/K)]] and Y ρ

F = YF (ρ−1), where F =Kc or Km.
Let F be an extension of Q. Following [Rub85], we define a modified Selmer group:

Sel′p(f/F ) = ker
(
H1(F, A)→

∏
v-p

H1(Fv, A)
H1
f (Fv, A)

)
.

For a finite abelian extension F of K, we define groups CF , EF and UF as in [PR04]: UF
is the pro-p part of the local unit group (OF ⊗ Zp)×, EF is the closure of the projection of the
global units O×F into UF and CF is the closure of the projection of the subgroup of elliptic units
(as defined in [Rub91, § 1], see also § 7.1.1 below) into UF . We then define

C = lim←− CF , E = lim←− EF and U = lim←− UF ,

where the inverse limits are taken over finite extensions F of K inside K and the connecting map
is the norm map.

Finally, let M be the maximal abelian p-extension of K which is unramified outside p and
write X for the Galois group of M over K.

7.1.1 Elliptic units. We now briefly review the definition of elliptic units associated toK. Let
a and b be non-zero ideals of OK such that a is prime to 6b and the natural map O×K → (OK/b)×

is injective. There exists an elliptic function on C/b with zeros and poles given by 0 (with
multiplicity N(a)) and the a-division points, respectively. There exists a unique such function
if we impose some norm compatibility condition on its values as a varies. We write aθb for
this unique function and let azb = aθb(1)−1. Then, azb ∈K(b)× for any a and b as above. For a
fixed b, the group of elliptic units in K(b) is defined to be the group generated by az

σ
b , where

σ ∈Gal(K(b)/K), and the roots of unity in K(b).

7.2 Properties of Sel′p
In this section, we generalise [PR04, Theorem 2.1]. We do this by generalising three results
of [Rub85].
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Lemma 7.1. There is an isomorphism Sel′p(f/Kc)∼= Selp(f/Kc).

Proof. By definitions, we have the following exact sequence:

0→ Selp(f/Kc)→ Sel′p(f/Kc)→
H1(Kc,p, A)
H1
f (Kc,p, A)

.

Therefore, it suffices to show that H1(Kc,p, A) =H1
f (Kc,p, A). By [BK90, Proposition 3.8],(

H1(Kc,p, A)
H1
f (Kc,p, A)

)∨
= lim←−H

1
f (K(n)

p , Tf̄ (k − 1)).

Hence, it suffices to show that the said inverse limit is 0.

Note that Gal(Kp,n/K
(n−1)
p )∼= ∆; we have the inflation–restriction exact sequence

0→ H1(∆, Tf̄ (k − 1)GKp,n )→H1(K(n−1)
p , Tf̄ (k − 1))

→ H1(Kp,n, Tf̄ (k − 1))∆→H2(∆, Tf̄ (k − 1)GKp,n ).

As Kp/Qp is unramified, the proof of Lemma 4.4 implies that Tf̄ (k − 1)GKp,n = 0 for all n.
Therefore,

H1(K(n−1)
p , Tf̄ (k − 1))∼=H1(Kp,n, Tf̄ (k − 1))∆.

By [Per00, Theorem 0.6], we have lim←−H
1
f (Kn,p, Tf̄ (k − 1)) = 0; hence, we are done. 2

This corresponds to [Rub85, Theorem 2.1], which holds for any infinite extensions of K
contained in K. Since we have used a result on the inverse limit of H1

f over Kp,n, the proof above
would unfortunately not work in such generality.

We now generalise [Rub85, Proposition 1.1].

Lemma 7.2. There is an isomorphism Sel′p(f/K)∼= Hom(X , A).

Proof. Since the action ofGK onA factors through Gal(K/K), we haveH1(K, A)∼= Hom(GK, A).
We can therefore identify Sel′p(f/K) with a subgroup of Hom(GK, A). Also, the triviality of the
action implies that A is unramified at all places of K. Therefore, H1

f (Kv, A) =H1
ur(Kv, A) for all

v - p by [Rub00, Lemma 3.5(iv)]. Hence, Sel′p(f/K) corresponds to the subgroup Hom(X , A)⊂
Hom(GK, A). 2

Before we continue, we state a result of Rubin.

Lemma 7.3. For i= 1, 2, H i(K/Kc, A) = 0.

Proof. See [Rub85, proof of Proposition 1.2]. 2

This allows us to generalise [Rub85, Proposition 1.2].

Lemma 7.4. There is an isomorphism Sel′p(f/Kc)∼= Sel′p(f/K)Gal(K/Kc).

Proof. We have the inflation–restriction exact sequence:

0→H1(K/Kc, A)→H1(Kc, A) r−−→H1(K, A)Gal(K/Kc)→H2(K/Kc, A),
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where r is the restriction map. Consider the following commutative diagram:

H1(Kc, A) r //

��

H1(K, A)

��
H1(Kc,v, A)/H1

f (Kc,v, A) // H1(Kv′ , A)/H1
f (Kv′ , A)

where v - p is a place of Kc and v′ is a place of K above v. It clearly implies that

r(Sel′p(f/Kc))⊂ Sel′p(f/K).

Write v′ for the place of Kc(f) below v′; then v′ is unramified in K/Kc(f). Therefore, the map

rv′ :H1(IKc(f)v′ , A)→H1(IKv′ , A),

where I denotes the inertia group, is injective. This implies that

H1(Kc(f)v′ , A)/H1
f (Kc(f)v′ , A)→H1(Kv′ , A)/H1

f (Kv′ , A)

is injective because the H1
f coincide with H1

ur. But Gal(Kc(f)/Kc) has trivial Sylow p-subgroup;
hence, the bottom row of the commutative diagram above is injective. Therefore, we have

r−1(Sel′p(f/K))⊂ Sel′p(f/Kc).

Hence, we have an exact sequence:

0→H1(K/Kc, A)→ Sel′p(f/Kc)
r−−→ Sel′p(f/K)Gal(K/Kc)→H2(K/Kc, A).

Hence, we are done by Lemma 7.3. 2

We can now give a generalisation of [PR04, Theorem 2.1].

Corollary 7.5. Selp(f/Kc)∼= HomO(X ρKc , Kp/Op).

Proof. On combining Lemmas 7.1, 7.2 and 7.4, we have

Selp(f/Kc) ∼= Sel′p(f/Kc)
∼= Sel′p(f/K)Gal(K/Kc)

∼= Hom(X , A)Gal(K/Kc).

But A|GK ∼=Kp/Op(ρ); hence, the result. 2

7.3 Reciprocity law
In this section, we generalise the reciprocity law given by [PR04, Theorem 5.1]. We first review
a result of Rubin.

Theorem 7.6. The L-module CρKm is free of rank one.

Proof. It follows from [Rub91, Theorem 7.7]. 2

We now generalise [PR04, Proposition 4.1].

Lemma 7.7. H1
f (Kc,p, A)∼= HomO(UρKc , Kp/Op).

Proof. As in the proof of Lemma 7.2, we have H1(Kp, A)∼= Hom(GKp , A). But we also have
an isomorphism H1(Kc,p, A)∼=H1(Kp, A)Gal(Kp/Kc,p) by the inflation–restriction sequence and
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Lemma 7.3. Hence, by local class field theory, we have

H1(Kc,p, A) ∼= Hom(GKp , A)Gal(Kp/Kc,p)

∼= HomOp(U , A)

(see [Rub87, Proposition 5.2]). By the proof of Lemma 7.1, we have H1
f (Kc,p, A)∼=H1(Kc,p, A);

hence, we are done. 2

In particular, we have a pairing 〈 , 〉 :H1
f (Kc,p, A)× UρKc →Kp/Op. We now prove the explicit

reciprocity law.

Proposition 7.8. There exists a generator ξ of CρKm over L such that for any finite extension
F of K contained in Kc, θ a character on G= Gal(F/K), x ∈H1

f (Fp, A) and r a non-negative
integer, we have∑

σ∈G
θ(σ)〈xσ ⊗ p−r, ξ〉= p−r

L(fθ−1 , 1)
Ω±f

[∑
σ∈G

θ(σ) exp−1
Fp,Vf (1)(x

σ), ω̄−1

]
, (27)

where θ(−1) =± and exp−1
Fp,Vf (1) is the inverse of the exponential map

expFp,Vf (1) : Fp ⊗ D(Vf (1))/D0(Vf (1)) ∼−−→H1
f (Fp, Vf (1)).

Proof. Let zp∞f = (zpnf)n be the system of norm-compatible elliptic units in lim←−K(pnf) defined
in [Kat04, § 16.5]; then azpnf is a multiple of zpnf for all a and pnf satisfying the conditions in
§ 7.1.1. Therefore, if we write ξ as its image in CρKm , it must be a generator of CρKm over L by
Theorem 7.6.

Let x ∈H1
f (Fp, Tf (1)) and y ∈H1(Fp, Tf̄ (k − 1)); we have∑

σ∈G
θ(σ)[xσ, y] =

∑
σ∈G

θ(σ)TrF/K [exp−1
Fp,Vf (1)(x

σ), exp∗Fp,Vf̄(k−1)
(y)]

=
∑
σ,τ∈G

θ(σ)[exp−1
Fp,Vf (1)(x

στ ), exp∗Fp,Vf̄(k−1)
(yτ )]

=
∑
σ,τ∈G

θ(στ)θ−1(τ)[exp−1
Fp,Vf (1)(x

στ ), exp∗Fp,Vf̄(k−1)
(yτ )]

=
[∑
σ∈G

θ(σ) exp−1
Fp,Vf (1)(x

σ),
∑
τ∈G

θ−1(τ) exp∗Fp,Vf̄(k−1)
(yτ )

]
.

Consider the Kummer exact sequences

C //

��

U

��
lim←−H

1(OK′ [1/p],Op(1)) //

⊗ρχk−2

��

lim←−H
1(K ′p,Op(1))

⊗ρχk−2

��
lim←−H

1(OK′ [1/p], Tf̄ (k − 1)) // lim←−H
1(K ′p, Tf̄ (k − 1))
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By [Kat04, Proposition 15.9 and (15.16.1)], the image of zp∞f in lim←−H
1(OK′ [1/p], Tf̄ (k − 1)) is

zKato (up to a twist) and so ξ satisfies∑
τ∈G

θ−1(τ) exp∗Fp,Vf̄(k−1)
(ξτ ) =

L(fθ−1 , 1)ω̄−1

Ω±f
.

Therefore, we have∑
σ∈G

θ(σ)〈xσ ⊗ p−r, ξ〉= p−r
[∑
σ∈G

θ(σ) exp−1
F,Vf (1)(x

σ),
L(fθ−1 , 1)ω̄−1

Ω±f

]
,

as required. 2

7.4 Proof of the main conjecture
On replacing Qp,n by Kp,n, we define H1

f (Kp,n, W )± and hence Sel±p (f/K∞) as in § 6, where
W =A or Tf (1). Let G = Gal(K/Q). As in the proof of Lemma 7.1, the inflation–restriction
exact sequence implies that H1(Qp,n, W )∼=H1(Kp,n, W )G for W =A or Tf (1), so we recover
Sel±p (f/k∞) on taking G-invariants. Similarly, on replacing Qp,n and Kp,n by Q(n−1)

p and K(n−1)
p ,

respectively, we define the ±-Selmer groups Sel±p (f/Qc) and Sel±p (f/Kc). Under our assumptions,
they coincide with the ∆-invariants of Sel±p (f/k∞) and Sel±p (f/K∞), respectively. Analogously,

we have H1
±(F, Tf̄ (k − 1)) for F =Kp,n, K(n−1)

p or Q(n−1)
p . Since Kp/Qp is unramified, all the

results from the previous sections generalise directly on replacing Qp by K.
Via the isomorphism defined in Lemma 7.7, we define V± ⊂ UρKc to be the

subgroup corresponding to the elements of HomO(H1
f (Kc,p, A), Kp/Op) which factor through

H1
f (Kc,p, A)±. Then, by [PR04, Theorem 4.3], Sel±p (f/Kc)∼= HomO(X ρKc/α(V±), Kp/Op), where

α is the Artin map on U , which enables us to generalise [PR04, Theorem 7.2].

Theorem 7.9. Let s± be as given by Corollary 5.11; then

CharΛOp (Γ)(HomO(Sel±p (f/Kc), Kp/Op)) = (p−s
±
L±p ).

Proof. By the above isomorphism and [PR04, Theorem 6.3], we have

CharΛOp (Γ)(HomO(Sel±p (f/Kc), Kp/Op)) = CharΛOp (Γ)(X
ρ
Kc
/α(V±))

= CharΛOp (Γ)(U
ρ
Kc
/(V± + CρKc)).

By Corollary 5.11, the quotient H1(Qc,p, Tf̄ (k − 1))/H1
±(Qc,p, Tf̄ (k − 1)) is free of rank one

over Λ(Γ). Hence, by (13) and the proofs of Lemma 5.9 and Corollary 5.11, the Λ(Γ)-module
Hom(H1

f (Qc,p, Tf (1))±, Zp) is also free of rank one and it has a generator f± such that∑
σ∈Gn

f±(expn,1(γn,1(η±1 )σ))σ ≡ ps± log±p,k mod(γp
n−1 − 1). (28)

Note that we have abused notation by writing expn,1(γn,1(η±1 )) for its image in H1(Q(n−1)
p , Tf (1))

under the corestriction.
As in [PR04, Theorems 7.1 and 7.2], we have

Hom(H1
f (Qc,p, A)±,Qp/Zp)∼= Hom(H1

f (Qc,p, Tf (1))±, Zp),
HomO(H1

f (Kc,p, A)±, Kp/Op)∼= Hom(H1
f (Qc,p, A)±,Qp/Zp)⊗Op.
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Let µ± and ϑ± be the images of f± and ξ from Proposition 7.8 in HomO(H1
f (Kc,p, A)±,

Kp/Op), respectively. Then, ϑ± = h±µ± for some h± ∈ ΛOp(Γ). As in [PR04, proof of
Theorem 7.2], there is an isomorphism UρKc/(V

± + CρKc)∼= ΛOp(Γ)/h±ΛOp(Γ). Hence, we have

CharΛOp (Γ)(HomO(Sel±p (f/Kc), Kp/Op)) = h±ΛOp(Γ).

Let F be a finite extension of K contained in Kc, θ a character of G, the Galois group of F
over K, x ∈H1

f (Fp, A) and r an integer; then ϑ± = h±µ± implies that∑
σ∈G

θ(σ)ϑ±(xσ ⊗ p−r) = θ(h±)
∑
σ∈G

θ(σ)µ±(xσ ⊗ p−r). (29)

We now take x= expn,1(γn,1(η±1 )). By (28), the right-hand side of (29) is just
p−r+s

±
θ(h±)θ(log±p,k). Then, (27) implies that the left-hand side of (29) equals the following:

p−r
L(fθ−1 , 1)

Ωδ
f

[∑
σ∈G

θ(σ)γn,1(η±1 )σ, ω̄−1

]
,

where δ = θ(−1). We now compute
∑

σ∈G θ(σ)γn,1(η±1 )σ.

Take F to be K(n−1)
p and θ a character of conductor pn. Then,∑

σ∈G
θ(σ)γn,1(η±)σ =

∑
σ∈G

θ(σ)
pn

(n−1∑
i=0

ζσpn−i ⊗ ϕ
i−n(η±1 ) + (1− ϕ)−1(η±1 )

)
= p−n

∑
σ∈G

θ(σ)ζσpn ⊗ ϕ−n(η±1 )

= p−nτ(θ)ϕ−n(η±1 ),

where τ(θ) denotes the Gauss sum of θ. Since ϕ2 + ε(p)pk−3 = 0 on D(Vf (1)), we have

ϕ−n(η−1 ) = (−ε(p)pk−3)(−n−1)/2p−1ϕ(ω)1/[ϕ(ω), ω̄] (for n odd),

ϕ−n(η+
1 ) = (−ε(p)pk−3)−n/2ϕ(ω)1/[ϕ(ω), ω̄] (for n even).

Hence, (29) implies that

ps
−
θ(h−)θ(log−p,k) = (−ε(p)pk−1)(−n−1)/2τ(θ)

L(fθ−1 , 1)
Ωδ
f

(for n odd),

ps
+
θ(h+)θ(log+

p,k) = (−ε(p)pk−1)−n/2τ(θ)
L(fθ−1 , 1)

Ωδ
f

(for n even).

Therefore, by the interpolating properties of L±p at these characters, we have

ps
−
θ(h−) = θ(L−p ) (for n odd),

ps
+
θ(h+) = θ(L+

p ) (for n even).

But h± and L±p are both O(1) and the above holds for infinitely many n, so h± = p−s
±
L±p . Hence,

we are done. 2

By taking G-invariants, we have the following corollary.

Corollary 7.10. CharΛ(Γ)(Sel±p (f/Qc)∨) = (p−s
±
L±p ).
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