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Abstract

Let K be a compact Hausdorff space and C(K) the Banach space of all real-valued continuous functions
on K, with the sup norm. Types over C(K) (in the sense of Krivine and Maurey) are represented here
by pairs (/, u) of bounded real-valued functions on K, where / is lower semicontinuous and u is upper
semicontinuous, / < u and l(x) = u(x) for every isolated point x of K. For each pair the corresponding
type is denned by the equation z(g) = max{||/ + g\\x, \\u + g\\oc) for all g e C(K), where || • \\x is the
sup norm on bounded functions. The correspondence between types and pairs (/, u) is bijective.

2000 Mathematics subject classification: primary 46B20, 46B25.

1. Statement of the Main Theorem

The concept of type over a Banach space E was first introduced by Krivine and
Maurey [5] in the context of separable Banach spaces. The reader is referred to
Garling's monograph [2] for more details. We consider types over general, not
necessarily separable Banach spaces.

Let £ be a Banach space. For every x e E, we define a function xx : E —> R by
letting xx(y) = \\x + y\\ for all y e E.

DEFINITION 1.1. A function x : E —> R is a type over E if T is in the closure (with
respect to the topology of pointwise convergence) of the set {xx : x e E).

Throughout we take K to be a compact Hausdorff topological space. We let t
denote the Banach lattice of bounded real-valued functions on K equipped with the
sup-norm. Fo r / , g e ôo(AT) the lattice ordering is defined pointwise.
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18 MarkusPomper [2]

DEFINITION 1.2. An sc pair (semicontinuous pair) is a pair of functions (/, u) from
l<x>(K) such that / is lower semicontinuous, u is upper semicontinuous, I < u, and
l(x) = u(x) for all isolated points x of K.

This paper is devoted to proving the following theorem:

THEOREM 1.3 (Characterization of types over C(K)).

(i) Let x be a type over C(K). There exists an sc pair (I, u) such that

(1.1) r(£) = max{||/ + £||,||!i + s||} far all g e C(K).

(ii) Let (I, u) be an sc pair. Then the function r : C(K) —> K defined by (1.1) is a
type over C{K).

(iii) The correspondence between types over C(K) and sc pairs is bijective.

A special case of (i) was observed by Haydon and Maurey [3]. The proof of
Theorem 1.3 is provided in Section 4.

2. Preliminaries

The purpose of this section is to introduce the notation and concepts that will be
used in the proof of Theorem 1.3.

A special type of nets and their convergence are used to generalize sequences.

DEFINITION 2.1. (i) Let / be a nonempty set which is partially ordered by <.
In this paper, (/, <) is a net if

(a) ( / , < ) has no maximal element;
(b) for every element a € I, the set {/? e / : fi < a] of predecessors of a is

finite;
(c) for any a, /3 € / there exists y e I such that y > a and y > p. Such an

element y is called a successor of a (and fi).

(ii) Let (/, <) be a net. For every element a0 e / , define the number of its
predecessors by \ao\ = card({a e I : a < a0}).

(iii) Let (/, <) and (7, <) be nets. A function / : : /—>• J is order-preserving if
a < yS 6 / implies k{a) < k(/5). A function k : / -» J is cofinal if for every y e J
there exists a € / such that y < k(a).

(iv) A subnet of / is a cofinal order-preserving function j : / -*• I.
(v) Let (/, <) be a net and K be a topological space. We say that (xa)aei is a net

in K indexed by I \\'xu e K for all a e / . If AT is a normed space then (xa)ae, is
bounded if [\\xa\\ : a € /} is bounded in K.
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[3] Types over C(K) spaces 19

(vi) Let (/, <) be a net, K a topological space and (xa)aei a net in K indexed by / .
Let x e K. Then lim,,, xa = x if and only if for every neighbourhood U of x in K
there exists a e / such that xp e U for all $ > a.

(vii) Let (/, <) be a net and ( r a ) a £ / a bounded net of real numbers. Then we define

limsupra = infsupfr^ : fi e / and /3 > a}
a,I a€l

and

liminf ra = supinffr^ : fi € / and /3 > a} .

Throughout this paper, (/, <) will denote a net in the sense of Definition 2.1.
The following proposition is immediate from Definitions 1.1 and 2.1; see [6] for

more equivalent conditions and a detailed proof.

PROPOSITION 2.2. Let E be a Banach space and x : E -> R a function. Then the

following are equivalent:

(i) r is a type over E.
(ii) For every finite subset a C. E and every e > 0, there exists an element

x = x(a, s) € E such that |r(;y) — ||JC + y|| | < e for all y e cc.
(iii) There exists a bounded net (xa)a£i in E indexed by I such that for all y e E,

lime,,/ \\xa + y\\- r(y).

If T is a type over E and (xa)ae, is as in (iii) above, we say that (xa)ae, generates
the type x.

A subset H c t^ is called bounded if sup{||/ || : / e H) < oo. Let H be
such a set. The pointwise supremum of H is the real-valued function L defined
by L(x) — sup[h(x) : h e H) for every x e K. We write L = \ / H for this
function. Similarly, the pointwise infimum of H is the real-valued function U defined
by U(x) = mf{h(x) : h 6 H] for every x e K. This function is denoted by / \ H.
Note that both V H and / \ / / are again in ioo(K).

If / / c iooiK) is a bounded set of upper semicontinuous (use) functions, then the
pointwise infimum / \ H is use. Similarly the pointwise supremum of a bounded set
of lower semicontinuous (lsc) functions is lsc. Finally, it is clear that / e ^ooCO
is continuous if and only if / is use and lsc. Therefore, if H is a bounded set of
continuous functions on K, then / \ H is use and \/ H is lsc.

3. Lemmas

This section provides lemmas and technical definitions that will be used in the proof
of Theorem 1.3.
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DEFINITION 3.1. For any norm-bounded net (fa)aei in C(K), define lower semi-
continuous functions on K by setting, for every or e / ,

la = \/ If eC(K):f <f\fA and l = \Jla.
I P>a J a

Similarly, define upper semicontinuous functions u and ua on K by setting, for every
a el,

ua = f\\feC(K):f>\/fA and u =/\ua.
I P2" J «

All statements about / and la also hold for u and ua, provided all inequalities are
reversed, suprema are replaced by infima, minus by plus, etc.

Here are some basic properties of the functions / and u defined in Definition 3.1:

REMARK 3.2. Let (fa)aei be a bounded net of functions and let /„, /, ua and M be
as in Definition 3.1.

(i) If a i , a2 e 1 and ai < a2, then /„, < lUl < I and uai > uai > u.
(ii) If J: 6 ^ and E > 0, then there exists an a0 = <*(*• s) e I such that, for all

indices a > a0, la(x) > l(x) — e and ua(x) < u(x) + s.
(iii) For every ft e I, every x e K, every 8 > 0, and every neighbourhood U of x,

there exists y e U and y > p such that/,,()>) < lp(x) + 8.
(iv) For every /3 e / , every x e K, every 8 > 0, and every neighbourhood U of x,

there exists y e U and y > /3 such that/,,()>) > M^(X) — 8.

PROOF. The statements in (i) and (ii) are immediate from the definition. We
prove (iii): let f$ e / , x e K and set 5 = lp{x); let U be an open neighbourhood
of .x and 8 > 0. Suppose the conclusion does not hold. Then for all y e U and all
y > P, we have/K(y) > s + 8. But for every y e U, there exists / e C(A") (which
depends on y) such that / < fY for all y > P and such that f (y) > s + 8. Then
lp(y) > s + 8 for all y € U, which is a contradiction. The statement in (iv) is proved
with an argument dual to the one just given. •

From now on we assume that card(/) > K, where K is the minimum of the
cardinalities of the bases of the topology of K.

LEMMA 3.3. Let (fu)a^i be a bounded net of continuous functions and let I and u
be as in Definition 3.1. Given g e C(K) andx e K,

(i) there exists a .subnet / : / — > • / and elements (x,(a))ae/ converging to x, such
that l(x) + g(x) > lirrv, (/,•(„,(JC,-(O)) + g(xi(a)));
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[5] Types over C(K) spaces 21

(ii) there exists a subnet j : / — > • / and elements (Xj(a))a<=i converging to x, such

that u(x) + g(x) < Urn,,,, (/;<„) (xy(a)) + g(xj(a))).

PROOF. We show (i). For every a 6 / , l e t e a = |a |~' . By assumption, every a e I
has only finitely many predecessors and infinitely many successors, so every sa is
defined and lima,/ ea = 0. Fix a system of open neighbourhoods (Ua)ae/ of x such
that for all a < p e / we have Ua 2 Up and C\a€j Ua = [x]. Furthermore, assume
that \g(x) - g(y)\ < ea/2 for all y e Ua.

We proceed by induction on a e I. Fix a e / and suppose that /(/$) has been
defined for all >8 < a. Using the fact that there are only finitely many such /S's we may
find ao e I such that a0 > i(/0 for all ^ < a. We may assume (by (ii) of Remark 3.2)
that l(x) > />,(*) > /(x) - ea/2 for all y > a0. By Remark 3.2 (iii) there exists
i{a) > a0 andx,(a) 6 f/a such that/,(a)(jc,(a)) < /ao(^) + ea/2. Remark 3.2 (i) gives

/.•«»)(*.•(«)) < lao(x) + ea/2 < l(x) + ea/2.

By construction, i : / -> / is a cofinal order-preserving function. Obviously

(*Ka))ae/ converges tox and

fw(xm) + g(xm) < l(x) + g{x) + sa.

By passing to a further subnet we may assume that l inv/ fna)(Xj(a)) exists and

\im(fm(xm) + g(xm)) < l{x) + g(x).

A dual argument proves (ii). •

LEMMA 3.4. Let (fa)aei be a bounded net of continuous functions and let I and u
be as in Definition 3.1. If g e C(K) and lim^ / | | / a + g|| exists, then

a,I

PROOF. First observe that for any sc pair (Z, u) and any g e C(K)

(3.1) max{||Z + g\\, \\u + g\\]

= s\ip({u(x) + g(x):x e K)\J[-l(x)-g(x):x € K)).

Let x e K be arbitrary. Applying Lemma 3.3 we obtain a cofinal order-preserving
map / : / - > / and elements (x,(o))ae/ which converge to x such that

Hm {f Ha) (Xna)) + g(Xna))) < l(x) + g(x).
a, I

https://doi.org/10.1017/S1446788700010120 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010120


22 Markus Pomper [6]

Therefore,

lim \\fa + g\\= lim \\fm + g\\ > lim (-fm(xi{a)) - g(xm))
a, I a, I a, I

A dual argument shows that lim,,,/ ||/o + g|| > u{x) + g(x). Applying (3.1) to these
two inequalities gives the conclusion of the lemma. •

The next lemma shows that the reverse inequality also holds:

LEMMA 3.5. Let (fa)aei be a bounded net of continuous functions and let I and u
be as in Definition 3.1. Let g e C(K), and suppose that Hrr̂  / \\fa + g\\ exists. Then

||/o s|| {|| g||,|| + s||}
a, I

PROOF. Let r = lima,/ \\fa + g\\- For each a e /, choose xa e K and sa = ±1
such that ||/o + g\\ = sa(fa(xa) + g(xa)). Using the compactness of K there exists a
cofinal order-preserving mapy : / —• / and a constant s = ±1, such that

\imxj(a) = x and sj(a) = s for all or € /.
a, I

Then r = lim^/ s(fj(a)(xJ(a)) + g(xj(a))). We distinguish between two cases:

Case 1: s = 1. Fix /3 e /. Then

r = \im(fj(a)(xj(a)) + g(xj(a)))= lim (fJ(a)(xj(a)) + g(xj(a)))
a,I a,I;j(a)>fi

< lim sup (£/£(.*,(„>) + g(xj(a))) < u/,(x) + g(x).
a,IJ(a)>p

The last inequalities follow since/^(a)(xy(a)) < Up(XjM) for fi < j (a) and since u$
is use. We obtain, using Remark 3.2 (ii),

r< u(x) + g(x) < \\u + g\\.

Case 2: s = — 1. Using the same ideas as in Case 1, we show that

which gives lim.., \\fa + g\\ < max{||/ + g||, ||u + g||}. D

We will need the following theorem.

THEOREM 3.6 (Edwards [1]). Let U be a use function and L an Isc function on
a compact Hausdorff space K, such that U < L. Then there exists a continuous
function F such that U < F < L.
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[7] Types over C(K) spaces 23

A proof of this theorem can be found in Kaplan [4, (48.5)].
As a consequence, we obtain the following lemma:

LEMMA 3.7. Let K be a compact Hausdorff topological space, and let W be a
finite open cover of K. Let u : K —» E. be any bounded function. Then L : K —>• B.
defined by

L(y) = sup u(z):ze ( ] W
yeW.WeW

for all y e K is Isc and L > u. Similarly, ifl: K —> Ris any bounded function and
U: K -» Ris defined by

U{y) = inf { l(z) : z e \] W\
yeW;We<m

for all y e K, then U is use and U < I.

PROOF. We only show the first statement. Observe that L(y) > L(w) for all

w e f] eW.WeW W. Observe that there are only finitely many sets of the form

f. Therefore

{yeK:L(y)<r}= ( J ( P |
x€K;L(x)<r \xeW;WeW

is a finite union of closed sets, hence closed. So L is Isc. It is immediate from the
definition of L that L > u. •

4. Proof of Theorem 1.3

The statement of Theorem 1.3 is repeated in the form of propositions for the
convenience of the reader.

PROPOSITION 4.1. Let x be a type over C{K). Then there exists an sc pair (I, u)

such that

(4.1) r(*) = max{||/ + s | | , | |« + sl|} for every g 6 C(K).
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PROOF. Given a type r over C(A") fix a net (fa)a<=i which generates r as in
Proposition 2.2 (iii). Let / and u be obtained from this net as in Definition 3.1.
Lemmas 3.4-3.5 prove (4.1).

We now show that (/, u) is an sc pair. It is immediate from Definition 3.1 that / is
lsc, u is use and I < u. Suppose that x is isolated. By Remark 3.2 (iii)-(iv) applied to
U = {x} we obtain

(4.2) l iminf/o(x) < l(x) < u(x) < l imsup/„(*).

Let r = 3 sup{||/a | | : a e 1} and define g e C(K) by setting

J o xfy^x
8(y) =

[r it y = x.

Then r(g) = lim,,,/ \\fa + g\\ — \imajfa(x) + r. Thus lim^ ,fa(x) exists. Therefore,
(4.2) yields l(x) = u(x). D

PROPOSITION 4.2. Let (I, u) be an sc pair. Then the function x : C(K) -*• K
defined by (4.1) is a type over C(K).

PROOF. Let (/, M) be an sc pair on K and let r : C(K) -» 1 be defined by
x(g) = max{| | / + g\\, | | u + g\\) for all g e C(K).

We use Proposition 2.2 to prove that r is a type over C(K). It suffices to show that
for all n e N, all gu ... , gn e C(K) and all £ > 0 there exists F e C(K) such that
\*(gi)- \\F + gil\\ < e for all 1 < i < n.

Fix ^ i , . . . , gn 6 C(K) and s > 0. Choose a finite open cover 2U of Â , such that
for all W e 2H, all x, y e W and all 1 < / < n we have \gj(x) - gt(y)\ < e/2.

Define L : K ->• K and f/ : /iT ->• R by setting for all y € A:

= sup I «(z) : z 6 p ) W and t/(v) = inf l(z):ze

The function L is lsc and U is use by Lemma 3.7. By Theorem 3.6 there exists a
continuous function / e C(K) such that if < f < L. Using (3.1) we may choose a
finite set S c A" such that for all 1 < / < n

max{||/ + g,||, || u + ^,||} = max{-[/(z) + ^ (z ) l . («(z) + ft(z)) : z e S ) .

We write 5 = {zp, • •. ,zq), where p, q e 2, p < 0 < q, the points (Zj)q
J=p are

pairwise distinct and for all p < y < q,Zj is isolated in A" if and only if p < j < 0.
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[9] Types over C(K) spaces 25

For each 0 < j < q,we choose disjoint sets V2j, Vy+i Q f]z ew-,wew W such that
x e V2j U V2j+i implies \f (x) - f (ZJ)\ < e/2. Further, we may assume that for all
0 < k < 2q + 1 and all x, y e Vk we have \f {x) - / (y)\ < e/2.

Using Urysohn's Lemma we now choose continuous functions (fkfi?=p satisfying
the following conditions: For all p < j < 0, choose fj such that

/•yl*-\l̂ » = 0 a n d fj(Zj) = u(zj)-f(zJ) = l(zJ)-f(zJ).

For all 0 < j < q, choose f2j > 0 and fy+\ < 0 such that

=0, \\fy\\=Uzj)-f(Zj)

and

fij+i\K\w» = 0, \\fv+i\\ =f(zj) -

We set F = f + Y^=p fk- We would like to show that for all 1 < i < n,

|max{||Z + f,-||, ||u + g,\\}- \\F + g,\\\ < e,

namely

m a x { | | / + 8i\\, | | « + g , \ \ } - e < \\F + gi\\ < m a x { | | / + gi\\, \\u + gi\\] + s .

We first show the right inequality: fix 1 < i < n. Fix x e K arbitrary and observe
that ~[F(x) + g,(x)] <\\F + gi\\ and F(x) + g,(x) < \\F + gl\\. We distinguish

among four cases:
Case 1: x i {zp, ._1. ,z_,} U U t o ' vk- Then F(x) = f (x). We may choose
yi, y2 € rU^H-em w s u c n t h a t 'Cyi) = U(x^ anc^ "(^2) = L(x). These choices are
possible because I is lsc (u is use, respectively) and by definition of (J (L, respectively).
Then

+ g,(x)] = -f (JC) - gi(x) < -U(x) - g,(x)

< -Kyy) - gi(yi) + e/2 < ||/ + g,\\ + e/2

and

F(x) + gt(x) = / (x) + g,(x) < L(x) + g,(x)

< u(y2) + gi{y2) + e/2 < ||u + g,-|| + e/2.

Thus, |F(JC) + g,(x)\ < max{||/ + g,||, ||u + g,\\) + e.
Case 2: x = Zj for some p < j < 0. Then F(JC) + g,(x) = u(x) + gt(x) —
l(x) + g,(x). Therefore |F(x) + g,(x)| < max{||Z + g,\\, \\u + g,\\] + e.
Case 3: x e V2j for some 0 < j < q. Observe that F\VlJ = f \vy + fij\v2l and
F\v2l > / l v There exists y 1 e V2j such that /2 ; (yi) = L(zj)-f(Zj). Further, there
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exist y2 e f\ew-w€<m w s u c n t h a t l ^ ~ U ^ a n d ̂  e Dz^w-.wtw w s u c h t h a t

u(y3) = L(zj). Then

-F(x) - g,(x) < -f (x) - g,(x) < - U(x) - g,(x)

< -Kyi) - giiyi) + e/2 < ||/ + gi\\ + e/2

and

F(x) + g,(x) = f (JC) +fv (x) + gi(x) < f (x) +f2j (y,) + gi(x)

= f (x) + L(zj) - f (zj) + gt(x)

< u(y3) + g,(y3) + £ < IIw + £,-|| + e.

In this last inequality, we use the assumption that/(;c) — f (Zj) < e/2 because

x, Zj e V2J, and gj(x) - gt(y3) < e/2 because x, y3 e Clzjew-.wew w-
Therefore, \F{x) + gi(x)\ < max{||/ + g,||, \\u + g,\\) + e.

Case 4: x e V2;+1 for some 0 < j < q. This case is handled similar to the treatment
of Case 3.

Combining the results from Cases 1-4 we obtain

\F(x) + gi(x)\ <max{| | / + g,||, \\u + g,\\) + e

for all x e K and all 1 < i < n. Therefore, | | F + g,|l < max{| | / + g,\\, \\u + gj\\) + e
for all 1 < i < n.

We now show that | | F + g,| | > max{| | / + g,\\, \\u + £,|l) - £• Fix 1 < / < n. By
construction there exists z e S such that

m a x { - [ / ( z ) + g,(z)l (u(z) + g,(z))} = max{||/ + g,\\, \\u + gl\\}.

For this choice of z we distinguish between two cases:
Case 1': z = Zj for some p <j < 0. Then

Therefore, max{||/ + gi\\, \\u + g,\\] = \F(Zj) + gi(zj)\ <\\F + g,\\.

Case 2': z = Zj for some 0 < j < q. Then there exist y0 e V2j and y, € V2] + \ such
that f2j(vo) = L(Zj)-f (Zj) and fy+l(yi) = -f (Zj) + U(zj)• We then obtain

IIF + g,\\ > F(y0) + g,(y0) > / (yo ) + L(Zj)-f {Zj) + gl(Zj) - e/2

> L(Zj) + gi(Zj) - £ > u(Zj) + g,(Zj) - E

and

- f (zj) + U(zj) + gl(Zj)} - e/2

+ g,(Zj)] - e.

We therefore obtain | |F + g,\\ > max{||/ + ^-||, ||u + g:\\}. O

https://doi.org/10.1017/S1446788700010120 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010120


[11] Types over C( K) spaces 27

The following proposition establishes the third part of Theorem 1.3.

PROPOSITION 4.3. Let (/,, ux) and (l2, u2) be scpairs associated with types xx and

r2 respectively as in Theorem 1.3. Then the following are equivalent

(i) r, = r2;

(ii) l\ = /2 a«cf «! = w2.

PROOF. The implication (ii) => (i) is trivial. We prove the contrapositive of (i) =>•
(ii) and distinguish between two cases:
Case 1: u\ ^ u2. Then there exists x e K such that u\(x) ^ u2(x). We may assume
without loss of generality that u\(x) > u2(x). Then there exists e > 0 such that
ui(x) > u2(x) + 2e.

Let U — [y e K : u2(y) < u2(x) + E}. Because u2 is use, U is an open
neighbourhood of x. By Urysohn's Lemma there exists a nonnegative continu-
ous function g0 with ||goll = 2r such that gokw = 0 and got*) = 2r, where
r = max{||H1||, II«2II>- Let s = max{||ii||, | | / 2 | | } ; then for i = 1,2 we have

M, + (r + 5)1 + go > /, + (r + i ) l + go > 0

and

||Z, + (r + 5)1 + g01| < ||M, + (r + s)l + go\\.

Therefore, for i = 1,2,

max{||M, + (r + 5)1 + go||, \\h + (r + 5)1 + go\\) = ||«, + (r + 5)1 + go\\.

Furthermore

||ui + (r + 5)1 + goll > r + 5 + 2r + II,

and

II«2 + (r + 5)1 + goll < r + 5 + 2r + u2(x) + s.

Because ux(x) > u2(x) + 2e, we obtain

||u2 + (r + 2)1 + goll < ll«i + (r + 2)1 + go||

and so

max{||M2 + (r + s)l + go||, ||/2 + (r + 5)1 + go||}

< max{||Ml + (r + 5)1 + go||, ||Z, + (r + 5)1

Case 2: Z, ^ Z2. This case is handled using an argument parallel to the one in the
previous case. D
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5. Problems

This section contains suggestions for further work on this topic:

PROBLEM 5.1. Provide a characterization of types over C(K, C), the Banach space
of all complex-valued continuous functions on K.

The following concept provides a generalization of type:
Let £ be a Banach space. Fix n e R. For every rc-tuple x = (xu ... ,xn) e E"

define a function rj : R" x E -> R by setting x-x (ax,... ,an,y)= || £ " = 1 a,jc, +y\.

DEFINITION 5.2. A function x : R" x E -*• R is an n-type over E if it is in the
closure with respect to the topology of pointwise convergence of the set {TJ : x e En).

Let £ be a Banach space. There is 1-1 correspondence between types over E (in
the sense of Definition 1.1) and 1-types over E (in the sense of Definition 5.2):

Indeed, let r : R x E -* R is a 1-type. Then the function a : E —> R defined by
setting tf(y) = r ( l , y) for all y e E is a type over E.

Conversely, suppose a : E —> K is a type over E. Define r : R x E -> K by
setting r (a , v) = |a|<T((l/a)jr) if a ^ 0 and r(0, v) = ||>>||. Then x is a 1-type
over E.

PROBLEM 5.3. Provide a characterization ofn-types over the Banach space C{K)
that generalizes the characterization ofl-types over C(K).
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