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§ 1. Introduction.

It is well known that the polynomial in x,

2nn\ dxn

has the following properties:—

(A) it is the coefficient of tn in the expansion of (1 — 2xt -f *2)-i;

(B) it satisfies the three-term recurrence relation

{n + l ) P M + 1 - ( 2 » + l)xPn + nPn-1 = 0;

(C) it is the solution of the second order differential equation

(a;2 - l ) i / 2 + 2xVl -n(n+l)y=0;

(D) the sequence Pn(x) is orthogonal for the interval (— 1, 1),

n
i.e. when m 4= n, Pm(x) Pn(x)dx = 0.

Several other familiar polynomials, e.g., those of Laguerrer

Hermite, Tschebyscheff, have properties similar to some or all of the
above. The aim of the present paper is to examine whether, given a
sequence of functions (polynomials or not) which has one of these
properties, the others follow from it : in other words we propose to
examine the inter-relation of the four properties. Actually we relate
each property to the generating function.

§ 2. Generating Functions and Recurrence Relations.

2 . 1 . Given the generating function.

Suppose that

F(x,t)= i Ln(x)t»,
»=o

the series being assumed convergent in \t\ < K. Such a function is
called the generating function of Ln(x).

Suppose further that, for any given x, F (x, t) satisfies a linear
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differential equation in t, of order v, whose coefficients are poly-
nomials in t. Taking v = 2, let F (x, t) satisfy

S *™ (p« (x) ^ + ?m (*) - ^ + rm (x) -j-j } = £ 0M (a;) <•» (2)

where Ic1<k.

Then, substituting from (1) and equating coefficients of tn+k, we
see that, for n I> 0,

i-
2 {pk-\+ (n + A ) g i . x + 1 + ( w + A)(w + A

+ p* £„ + (Pi-! + (n + 1) g*} in+i = 0 (3)

Hence the Ln satisfy a recurrence relation (3) in which the
coefficients are polynomials of degree 2 in n, and the number of
terms is in general 1c + 3, but may be less; e.g. p^ may be zero. The
coefficient of Ln+r in (3) may be written

ar (x) . n2 + fir (x). n + yr (x),

so that the recurrence relation may be written
k + 2

£ Ln + r(arn* + prn + y , . ) = 0 (4)
r=0

where ar, /3r, yr are functions of r and a; only.
In addition to (3) there are, of course, relations governing the

initial terms Ln, Lly . . . . Lk+i, namely

pmL0+pm-1L1+ + 2h Lm

+ qmL1 + 2qm^1L2 + + (m + l)q0Lm+1

+ 2 r m L t + 3 . 2 r m _ , i 3 + . . . . + (m + 2) (m + 1) r 0 Z m + I = ^ m . . . . (5)

for m = 0, 1, 2, . . . . Jfc — 1.
Now it is clear from the method of establishing (4) that, if (2) is

replaced by a differential equation of the same type but of order v,
then

(i) there is a recurrence relation with not more than (v + k + 1)
terms, and the coefficients of Ln+r are polynomials of degree v in n,

(ii) the initial terms Lo, Llt . . . . Lf:+V-1 satisfy k relations similar
in form to (5).

Further, if in (2) k1 = k + ju, where p. ^> 0, the recurrence relation
(4) will be true, in general, only for W >̂/LX + 1.
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Summing up, we have the following result:—
T H E O R E M 1. / / the generating function defined by (1) satisfy the
differential equation

dF d" F
P(x,t)F + Q{x,t) — + • • • • + Y(x,t) -JL = @(x,t), (6)

where P, Q, . . . . Y are polynomials in t of degree k, and 0 is a poly-
nomial in t of degree ku then a recurrence relation

k + v

2 £) l + , ( a r n * + j 8 r n » - 1 + . . . . + K, ) = 0, (7)
J-=O

in which ar, fir, . . . . Kr are functions of r and x, is satisfied for n ^> 0
when kr < k, for n ^> k1 — k + 1 when kx ^> k.

Returning for a moment to the form (3) of the recurrence relation,
we see that if the Ln (x) are to be polynomials in x, then P, Q, .. Y, 0
must also be polynomials in x. But this condition is not sufficient.
We have also that the last non-vanishing coefficient in (3) [or its
analogue for v+2] must be independent of x. I t is easy to see in
any given numerical example whether such a condition is satisfied,
but the condition does not lend itself to the enunciation of any
general theorem.

2 . 2. Given the recurrence relation.
Suppose now that Ln(x) is a function of x which satisfies, for

n = 0, 1, 2 . . . . , the (N + 1) term recurrence formula
T = N

S Ln+r (arn
2 + prn + 7r)=0, (8)

r = 0

in which the ar, fir, yr are functions of r and x only.
This may be written as

r=N
2 Ln + ).{ar(n + r){n + r - 1) + hr{n~\-r) + er} = 0, (9)

r = 0

or replacing n by n — 2 and rearranging the coefficients,
N+2
S Ln+r{Ar(n + r)(n + r - 1) + Br(n + r) + Cr}=0. . .(10)

r = 2

Here Ar , Br, Cr are functions of r and x only, and the relation is
true for » = - 2, - 1, 0, 1, 2,

This again, for the purpose of comparing it with (3), may be
written

N + 2
0.Ln + 0.Ln+1+ £ Ln+r{Ar(n + r)(n + r-l) + Br(n + r) + Cr}

r = 2
0 . Ln+N+i = 0.
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Now, putting k = N + 2,

Pi = 1>A-I = Ik = 0; ?0 = U = rx = 0,

and, for A = 2, 3, . . . . k,

we see that polynomials in t of degree k (= N + 2) or less,

P (a;, l ) = J j , (*) <»,
m = 0

are defined in terms of the Ar, Br , Cr of (10), or what is the same
thing, in terms of the ar, f3r, yr of (8). These polynomials are such
that, if

F{x,t) = Y,Ln{x)tn, (1)

the series being assumed convergent for 111 < some K, F (x, t) satisfies
the linear differential equation

dF dF
P(x, t)F + Q(x, t)w + R(x,t) -^ = 2 6m(x)t» (11)

01 m m = 0

But, since the recurrence relation (10) holds for n = — 2, — 1, the
values of 0A-J, #i~2 must be zero. Hence if Ln(x) are defined by an
(iST + 1) term recurrence relation, then F (x, t), denned by (1), satisfies

dF dF
P(x,t)F + Q(x,t)^-- + E(x,t)^-= 2 6m(x)t» (11a)

Further, since Lo, Llt . . . . i ^ - i are arbitrary, the form of (11a) shews
that, if they are chosen suitably, we may make the right hand side
of (lla) zero.

2 . 2 1 . The question of convergence in 2 . 2 .

Trivial examples of (8), such as

(n + 2) Ln + 2 - (n + 2)*Ln + 1 -(n+\)Ln = 0,

with L1 = \, Lz = 2, so that Ln> n\, show that if (8) does contain n2

among its coefficients, then convergence of 2 Lnt
n will, in general,

require a^ 4= 0.

Suppose then that in (8), | a-N{%) \ >K1 for all x of a certain region D
of the x plane, and that | ar | , | |3r j , \yr\ are each < K, for r = 0, 1, . . N,.
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and for all x in D. Then, when n is sufficiently large,

aNn* + PNn +yN\ >Kin*/2,

\Ln + N\< --~.3Kn*{\Ln\ + \Ln+1\+ . . . . + \Ln + N^\},
71 J\ j

•or, put t ing A = 6K / Kx and rewriting,

Ln\ < A { | A , _ 1 | + \Ln-t\ + . . . . + \LU-N\) (12)

Suppose (12) is t rue for n^m. For n = 0, 1, . . . . m — 1, let 8n be an
increasing sequence such tha t 9n~^>\Ln\. For n = m, m + 1, . . . .
define 6n by the formula

On = Ax (£„_! + 0n_B + . . . . + 0«-.y), (13)

where Ax is greater than either A or 1, we have

6n>\Ln\, » = 0, 1, 2, . . . .

But since Ax > 1, we have 9n — dn-t > 0 and so, for K ^> m,

flB<X1JV0B_1.

Hence if we make un — 8n for n = 0, 1, . . . . m — 1, and define un for
n = m, TO + 1, . . . . by the formula

un= XtN. un-x,

we have, for all values of n,

But the series 2wn£nhas a radius of convergence l/XlN, and so,
for values of x in D, the series S Zn t

n has a non-zero radius of
convergence.

2 . 3 . Formal statement of the result.

Summing up and extending slightly the previous work, we have
the following

THEOREM II. / / a sequence of functions Ln(x) satisfy an (N + 1) term
recurrence formula

r = N
I, Ln+riarn* +prn"~1 +....+ Kr) = 0, n = 0, 1, 2 (14)

r = 0

in which ar , j8r , . . . . Kr are functions of r and x only, then

F(x,t) = -ZLn(x)t", (15)
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assuming the expansion to be convergent for , t \ < K, satisfies a linear

differential equation of order v whose coefficients are polynomials in t.

If the differential equation is

dF d"F
P(x,t)F + Q (x, t)— + + Y (x, t)— = 0 (a;, t),

it is tolerably simple to shew that P, Q Y are polynomials in t
of degree (N + 2^ — 2) at most, and that 0 is a polynomial in t of
degree A7 + v — 3 at most. In the particular case i> = 2 a suitable
choice of the arbitrary Lo, Llt . . . . £ n - i will make 0 = 0, but in the
general case 0 cannot thus be made to vanish unless the coefficients
in (14) have certain special values. Finally, two distinct, generating
functions arising from different solutions of the same recurrence formula,
satisfy differential equations which can differ only in the value of 0.

THEOREM III. If in the recurrence relation (14) and for all x in a

certain region A of the x plane,

( i ) [ a, . | , | / 3 r I , . . . . I KT I are each < K, for r = 0 , 1 , . . . . K,

(ii) | aN\ > Ku

then the series (15) defining F(z,t) converges uniformly with regard to
x in A over a circle \t\<^ K2.

§ 3. Generating Functions and Differential Equations in x.

Suppose now that F (x, t) satisfies a differential equation

and that F (x, t) = 2 Ln (x) tn.

S u p p o s e f u r t h e r , t h a t f o r ] 11 <^ K a n d 5 = 1 , 2 , . . . . k, t h e s e r i e s

£ d*Ln

„!,*?'"• <">

converge uniformly with regard to x in some region A.

Then, substituting the appropriate series for F and its derivatives

in (16), we have

2 a,% « (x) tr S - j — - r-j = 0 .
r=o s=o «=r dxS (n-r)l
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From the coefficient of tn, when n ^> h, we see that

v v / \ n[ dsLn n2 2 ar s (cc) , r-. - j = 0,

or writing
h

a0, s + 2 w(w—1) . . . . ( % — / • + 1) a r s(a;) = .4s(a;, n), . . ( 1 8 )

2 J s (z, rc) ̂  = 0, (19)
8 = 0 aX

where As (x, n) is a polynomial of degree h at most in n.

If now n < h, we have from the coefficient of <n

2 2 ar g (x), -. —^— = 0;
r = 0 s = 0

 r' w (» - r)! rfx«
but this, for ra = 0, 1, 2, . . . . A — 1, is the same as

^ { ( ) ( + ) r , . ( ) }
s = 0 ax r=0

Hence (19) is the form of a differential equation satisfied by
Ln (x) for n = 0, 1, 2, We have then

THEOREM IV. / / the generating function F (x, t) satisfy a partial
differential equation

h gr (- k s«

r=0 al \s=0 ox

then, subject to the uniform convergence of

/or a; iw some A and \t\ <^ K, the Ln (x) satisfy a linear differential
equation of order k, namely

k d»Ln

2 ,!,(*,„)——- = 0 (19)
3 = 0 aX

where As (x, n) is a polynomial of degree h or less in n.

COROLLARY. Conversely, if a sequence of functions Ln (x) satisfy
differential equations of type (19), we can, by writing

h
A, (x,n)= 2 n (n — 1) {n — r + 1) ar (x),

0
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obtain the "generating differential equation" (16). Subject to the
uniform convergence of the series

n dxs

the generating function of the Ln will be a solution of this differential
equation.

It follows, of course, that if

L0(x), L1{x), L2{x)

be one set of solutions of the equations (19), and

M0{x), M,(x), M,(x) . . . .

be another set, both the generating functions satisfy the same partial
differential equation (16).

§ 4. Generating functions and orthogonal properties.

4 . 1 . Preliminary questions of convergence.

Suppose that | LH (x) \ < 6n for a<^x<^b, and that for any definite

t w i t h \t\< K,

(i) £ j Ln (x) tn\ converges uniformly with regard to x in a <^ x <^ b.

Then it follows that, for k = 1, 2, . . . . ,

(ii) 2 | n (n - 1) (n - k + 1) Lll{x)tn~k\, (20)
n

(iii) 2\Lr(x)Ll(x)F+>\, (21)

all behave in the same manner.

4. 11, Proof of (ii).

If 111 = r < R < K, we can find a definite N, independent of x,
such that n> N implies, when a <̂  x <^ 6,

\L,,{x)R»\< 1.

Hence the terms of (20), for 11 | = r and n > N, are less than those of
r \n-k/ \ \ k

which is a convergent series with terms independent of x. The
uniform convergence of (20) follows at once.
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4 . 12. Proof of (iii) and (iv).

We have used (21) as a convenient form to denote

| V I + \2L0L1t\ + .... + \(L0Ln + L, Ln-t+ .... +LnL0)t»\ + . .{23}
If N has the same meaning as in 4 . 11,

\L0\,\L1\, \LN\,

are each less than some fixed Kx for a <^ x <^ b. Hence when n > 2JVy

and 111 = r < R < K,

\(L0Ln + L1L,,.1 + . . . . + LnL0)P\
< K%\Lnt» +Ln-1t"-1 + . . . . + Ln-Nt»-N\

tn\

where K2 = Max {ZKK-^, 2KNK-,), each suffix exceeds N, and t h e r e
are (n — 2N — 1) t e rms in the second modulus .

Hence, for i t = r,
| (L0Ln + Lx Lu-1 + + L,,L0)t

n\
/ r \n-N / r \n

< K2 (X + 1) (-gj + (n - 2N - 1) (-gj.
Accordingly, the terms of (23) for n > 2N, and a <^ x <^ b, are less
than those of a convergent series whose terms are independent of x.
Hence (iii) is proved.

Finally, (iv) follows from (ii) in the same way that (iii) follows
from (i).

4 .2 . Given the orthogonal property.
Suppose we are given that, for m 4= n,

Lm (x) Ln (x) dx = 0,
J a

and, further, that S | Ln (x) tn \ converges uniformly with regard to x
in a <; x <^ b for 111 < K.

Then, in virtue of the results of 4 . 1, we may write

70 = P [F(x, t)}*dx = P (Lo + i ^ + .. ..
* a J a

- r :
f6

r. s Ja

; LrLstr+>dx

r, s

0, o
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where

c,1>n= P {Lu(x)Ydx.
J a

Thus, " /„ and, similarly,

is an even function of t."

Further, it is a direct consequence of the above calculations that
?k F

if —- = a,«) + a2<« t J- + anW tn + , then

contains t2n+2 as a factor." (B)

4 . 3 . Given the properties (A) and (B).

Much of the interest of the proof that the orthogonal property
follows from (./I) and (B) lies in seeing how much follows from (̂ 4)
alone. Accordingly, we first assume (.4) only, together with the
convergence condition, " £ | Ln {x) tn! converges uniformly with regard
to x in a <I x <; b, for 11 j < K."

Since Ik is an even function of t, the coefficient of t in 1% gives
ck> k+1 = 0, where we have written

rb
crtS=\ Lr (x) Ls (x) dx.

J a

Considering successively the coefficients of ts in Ik-\, t5 in Zi-2j
and so on, we obtain relations

i + i = 0

-i, k + 2 + H-3ck, k + i = 0

where A, fi are constants. Hence, since c^ k+i = 0> w e deduce that,
for all values of r and k,

Cr, 2/1+1-r = 0 .

Hence, assuming only the property (̂ 4), which is a property of
F (x, t) apart from its series development, all we can prove anent the
orthogonal property of its coefficients is that

Cb
I Lr (x) Ls (x) dx = 0 when r + s is odd.
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When r + s is even, all we can obtain from (A) is a series of
equations

ck, k = ~/k

A o C0, 2k + \ Clt 2k - 1 + . . . . + A i Ck, Jc = M i ,

where nothing is known of the values of y/c and /** / A&.

If, however, we further assume the property (B) we have,
taking n = 1 in (5) with k = A, c^ x + 2 = 0>

taking «, = 3 in (B) with lc — A — 1; JUJCX-^ \ + 3 -j- /x2cx, \ + 2 = 0,

and so on. Hence we deduce that, for all even values of r + s,
Cb

Ĵ  Lr(x)Ls (x)dx = 0,

except when r = s.

4.4 . Summary.
We may summarise our results in the following theorem.

THEOREM V. Provided that the series £ | La (x) tn j converges, for \t\ < K,
uniformly with regard to x in a <^x <^b, the necessary and sufficient
condition for the Ln (x) to be orthogonal over (a, b) is that F (x, t) should
have the properties [A) and (B).

The form of these conditions makes it clear that given a
generating function F (x, t), it is easy to see, without recourse to the
integration of Lr Ls, whether or not its coefficients are partially
orthogonal over some interval (a,b), i.e. whether the integral of LrLs

is zero when r + s is odd. In order to see whether the Ln are fully
orthogonal we must have recourse to integrals (B), which involve the
series development of F (x, t), and as this involves the evaluation of

Cb
Lr (x) Ls (x) dx

Ja

in most cases, our procedure is practically a formal verification of the
orthogonal property.

§ 5. Application to Legendre functions.
As an example of how our results work out in a particular case

we consider the Legendre functions. The functions Pn (x), Qlt (x) each
satisfy the recurrence relation

(n + 2) Ln + 2(x) ~x(2n + 3) Ln + 1 (x) + (n + 1) L,, (x) = 0 (23)

The generating function of Pn (x), namely,

F(x, ! ) s r > = (l -2xt + t*)~i
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is a solution of

(1 -2xt + t2) SH-+(t-x)y = O.
at

Accordingly, by 2 .3 , the generating function of the Qn must satisfy
a differential equation

(1 - 2xt + t2)^- + (t-x)y = A 0 + A 1 1 .

Putting Ao = 1, Ax = 0 and solving the equation in the usual manner,
we obtain as the generating function of some solution of (23),

__L log x ~l ~ X (24)
2X 8 x - t + X K '

This reduces for t = 0, when X = + Vl - 2xt + t2, to

Accordingly we have an elementary proof of the fact that — Qn (x) is
generated by (24)1.

Finally, the work of § 3 shows that, since Pn (x) and Qn (x) are
solutions of the differential equation

their generating functions

1 1 x-t +
X' 2X gX' 2X g x - t - X '

are solutions of the partial differential equation2

dF dF d2 F-2x?f + 2t^ +<»tf_£ = 0 (25)
ex ct dt2

1 Laurent, Journal de Math. (3) 1 (1875), 390.
2 The direct verification of the fact that (24) is a solution of (25) is a rather heavy

piece of calculation.
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