On Generating Functions.

By W. L. Ferrar.

(Received 6th November 1929. Read 17th January 1930.)
§ 1. Introduction.
It is well known that the polynomial in x,

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
$$

has the following properties:-
(A) it is the coefficient of t^{n} in the expansion of $\left(1-2 x t+t^{2}\right)^{-\frac{1}{2}}$;
(B) it satisfies the three-term recurrence relation

$$
(n+1) P_{n+1}-(2 n+1) x P_{n}+n P_{n-1}=0
$$

(C) it is the solution of the second order differential equation

$$
\left(x^{2}-1\right) y_{2}+2 x y_{1}-n(n+1) y=0 ;
$$

(D) the sequence $P_{n}(x)$ is orthogonal for the interval ($-1,1$), i.e. when $m \neq n, \quad \int_{-1}^{1} P_{m}(x) P_{n}(x) d x=0$.

Several other familiar polynomials, e.g., those of Laguerre, Hermite, Tschebyscheff, have properties similar to some or all of the above. The aim of the present paper is to examine whether, given a sequence of functions (polynomials or not) which has one of these properties, the others follow from it: in other words we propose to examine the inter-relation of the four properties. Actually we relate each property to the generating function.

§2. Generating Functions and Recurrence Relations.

2.1. Given the generating function.

Suppose that

$$
\begin{equation*}
F(x, t)=\sum_{n=0}^{\infty} L_{n}(x) t^{n} \tag{1}
\end{equation*}
$$

the series being assumed convergent in $|t|<K$. Such a function is called the generating function of $L_{n}(x)$.

Suppose further that, for any given $x, F(x, t)$ satisfies a linear
differential equation in t, of order ν, whose coefficients are polynomials in t. Taking $\nu=2$, let $F(x, t)$ satisfy

$$
\begin{equation*}
\sum_{m=0}^{k} t^{m}\left\{p_{m}(x) F+q_{m}(x) \frac{\partial F}{\partial t}+r_{n}(x) \frac{\partial^{2} F}{\partial t^{2}}\right\}=\sum_{m=0}^{k_{1}} \theta_{m}(x) t^{m} \tag{2}
\end{equation*}
$$

where $k_{1}<k$.
Then, substituting from (1) and equating coefficients of t^{n+k}, we see that, for $n \geqslant 0$,

$$
\begin{align*}
& \sum_{\lambda=2}^{k}\left\{p_{k-\lambda}+(n+\lambda) q_{k-\lambda+1}+(n+\lambda)(n+\lambda-1) r_{k-\lambda+2}\right\} L_{n+\lambda} \\
& +\left\{(n+k+1) q_{0}+(n+k)(n+k+1) r_{1}\right\} L_{n+k+1}+(n+k+1)(n+k+2) r_{0} L_{n+k+2} \\
& +p_{k} L_{n}+\left\{p_{k-1}+(n+1) q_{k}\right\} L_{n+1}=\mathbf{0} \quad \ldots \ldots \ldots \ldots \ldots \ldots(3) \tag{3}
\end{align*}
$$

Hence the L_{n} satisfy a recurrence relation (3) in which the coefficients are polynomials of degree 2 in n, and the number of terms is in general $k+3$, but may be less; e.g. p_{k} may be zero. The coefficient of L_{n+r} in (3) may be written

$$
a_{r}(x) \cdot n^{2}+\beta_{r}(x) \cdot n+\gamma_{r}(x)
$$

so that the recurrence relation may be written

$$
\begin{equation*}
\sum_{r=0}^{k+2} L_{n+r}\left(a_{r} n^{2}+\beta_{r} n+\gamma_{r}\right)=0 \tag{4}
\end{equation*}
$$

where $a_{r}, \beta_{r}, \gamma_{r}$ are functions of r and x only.
In addition to (3) there are, of course, relations governing the initial terms $L_{0}, L_{1}, \ldots . L_{k+1}$, namely

$$
\begin{align*}
& \quad p_{m} L_{\mathbf{0}}+p_{m-1} L_{\mathbf{1}}+\ldots+p_{0} L_{m} \\
& +q_{m} L_{1}+2 q_{m-1} L_{2}+\ldots+(m+1) q_{0} L_{m+1} \\
& +2 r_{m} L_{2}+3.2 r_{m-1} L_{3}+\ldots+(m+2)(m+1) r_{0} L_{m+2}=\theta_{m} \tag{5}\\
& \text { for } m=0,1,2, \ldots k-1
\end{align*}
$$

Now it is clear from the method of establishing (4) that, if (2) is replaced by a differential equation of the same type but of order ν, then
(i) there is a recurrence relation with not more than $(\nu+k+1)$ terms, and the coefficients of L_{n+r} are polynomials of degree ν in n,
(ii) the initial terms $L_{0}, L_{1}, \ldots L_{k+\nu-1}$ satisfy k relations similar in form to (5).

Further, if in (2) $k_{1}=k+\mu$, where $\mu \geqslant 0$, the recurrence relation (4) will be true, in general, only for $n \geqslant \mu+1$.

Summing up, we have the following result:-
Theorem 1. If the generating function defined by (1) satisfy the differential equation
$P(x, t) F+Q(x, t) \frac{\partial F}{\partial t}+\ldots+Y(x, t) \frac{\partial^{\nu} F}{\partial t^{\nu}}=\Theta(x, t)$,
where $P, Q, \ldots Y$ are polynomials in t of degree k, and Θ is a polynomial in t of degree k_{1}, then a recurrence relation

$$
\begin{equation*}
\sum_{r=0}^{k+\nu} L_{n+r}\left(\alpha_{r} n^{\nu}+\beta_{r} n^{\nu-1}+\ldots+\kappa_{r}\right)=0 \tag{7}
\end{equation*}
$$

in which $a_{r}, \beta_{r}, \ldots \kappa_{r}$ are functions of r and x, is satisfied for $n \geqslant 0$ when $k_{1}<k$, for $n \geqslant k_{1}-k+1$ when $k_{1} \geqslant k$.

Returning for a moment to the form (3) of the recurrence relation, we see that if the $L_{n}(x)$ are to be polynomials in x, then $P, Q, \ldots Y, \Theta$ must also be polynomials in x. But this condition is not sufficient. We have also that the last non-vanishing coefficient in (3) [or its analogue for $\nu \neq 2$] must be independent of x. It is easy to see in any given numerical example whether such a condition is satisfied, but the condition does not lend itself to the enunciation of any general theorem.
2.2. Given the recurrence relation.

Suppose now that $L_{n}(x)$ is a function of x which satisfies, for $n=0,1,2 \ldots$, the $(N+1)$ term recurrence formula

$$
\begin{equation*}
\sum_{r=0}^{r=N} L_{n+r}\left(\alpha_{r} n^{2}+\beta_{r} n+\gamma_{r}\right)=0 \tag{8}
\end{equation*}
$$

in which the $\alpha_{r}, \beta_{r}, \gamma_{r}$ are functions of r and x only.
This may be written as

$$
\begin{equation*}
\sum_{r=0}^{r=N} L_{n+r}\left\{a_{r}(n+r)(n+r-1)+\delta_{r}(n+r)+\epsilon_{r}\right\}=0, \tag{9}
\end{equation*}
$$

or replacing n by $n-2$ and rearranging the coefficients,

$$
\begin{equation*}
\sum_{r=2}^{N+2} L_{n+r}\left\{A_{r}(n+r)(n+r-1)+B_{r}(n+r)+C_{r}\right\}=0 . . \tag{10}
\end{equation*}
$$

Here A_{r}, B_{r}, C_{r} are functions of r and x only, and the relation is true for $n=-2,-1,0,1,2, \ldots$.

This again, for the purpose of comparing it with (3), may be written

$$
\begin{aligned}
& 0 . L_{n}+0 . L_{n+1}+\sum_{r=2}^{N+2} L_{n+r}\left\{A_{r}(n+r)(n+r-1)+B_{r}(n+r)+C_{r}\right\} \\
& +0 . L_{n+N+3}+0 . L_{n+N+4}=0 .
\end{aligned}
$$

Now, putting $k=N+2$,

$$
p_{k}=p_{k-1}=q_{k}=0 ; \quad q_{0}=r_{0}=r_{1}=0
$$

and, for $\lambda=2,3, \ldots k$,

$$
r_{k-\lambda+2}=A_{\lambda}, \quad q_{k-\lambda+1}=B_{\lambda}, \quad p_{k-\lambda}=C_{\lambda}
$$

we see that polynomials in t of degree $k(=N+2)$ or less,

$$
P(x, t)=\sum_{m=0}^{k} p_{m}(x) t^{m}
$$

are defined in terms of the A_{r}, B_{r}, C_{r} of (10), or what is the same thing, in terms of the $a_{r}, \beta_{r}, \gamma_{r}$ of (8). These polynomials are such that, if

$$
\begin{equation*}
F(x, t)=\Sigma L_{n}(x) t^{n} \tag{I}
\end{equation*}
$$

the series being assumed convergent for $|t|<$ some $K, F(x, t)$ satisfies the linear differential equation

$$
\begin{equation*}
P(x, t) F+Q(x, t) \frac{\partial F}{\partial t}+R(x, t) \frac{\partial^{2} F}{\partial t^{2}}=\sum_{m=0}^{k-1} \theta_{m}(x) t^{m} . \ldots \ldots(\tag{II}
\end{equation*}
$$

But, since the recurrence relation (10) holds for $n=-2,-1$, the values of $\theta_{k-1}, \theta_{k-2}$ must be zero. Hence if $L_{n}(x)$ are defined by an $(N+1)$ term recurrence relation, then $F(x, t)$, defined by (1), satisfies

$$
\begin{equation*}
P(x, t) F+Q(x, t) \frac{\partial F}{\partial t}+R(x, t) \frac{\partial^{2} F}{\partial t^{2}}=\sum_{m=0}^{N=1} \theta_{m}(x) t^{m} \tag{lla}
\end{equation*}
$$

Further, since $L_{0}, L_{1}, \ldots L_{N_{-1}}$ are arbitrary, the form of (11a) shews that, if they are chosen suitably, we may make the right hand side of (lla) zero.
2.21. The question of convergence in 2.2.

Trivial examples of (8), such as

$$
(n+2) L_{n+2}-(n+2)^{2} L_{n+1}-(n+1) L_{n}=0
$$

with $L_{1}=1, L_{2}=2$, so that $L_{n}>n$!, show that if (8) does contain n^{2} among its coefficients, then convergence of $\Sigma L_{n} t^{n}$ will, in general, require $a_{N} \neq 0$.

Suppose then that in (8), $\left|\alpha_{N}(x)\right|>K_{1}$ for all x of a certain region D of the x plane, and that $\left|\alpha_{r}\right|,\left|\beta_{r}\right|,\left|\gamma_{r}\right|$ are each $<K$, for $r=0,1, \ldots N$,
and for all x in D. Then, when n is sufficiently large,

$$
\begin{gathered}
\left|\alpha_{N} n^{2}+\beta_{N} n+\gamma_{N}\right|>K_{1} n^{2} / 2 \\
\left|L_{n+N}\right|<\frac{2}{n^{2}} \frac{2}{K_{1}} \cdot 3 K n^{2}\left\{\left|L_{n}\right|+\left|L_{n+1}\right|+\ldots+\left|L_{n+N-1}\right|\right\}
\end{gathered}
$$

or, putting $\lambda=6 K / K_{1}$ and rewriting,

$$
\begin{equation*}
\left|L_{n}\right|<\lambda\left\{\left|L_{n-1}\right|+\left|L_{n-2}\right|+\ldots+\left|L_{n-N}\right|\right\} \tag{12}
\end{equation*}
$$

Suppose (12) is true for $n \geqslant m$. For $n=0,1, \ldots m-1$, let θ_{n} be an increasing sequence such that $\theta_{n} \geqslant\left|L_{n}\right|$. For $n=m, m+1, \ldots$ define θ_{n} by the formula

$$
\begin{equation*}
\theta_{n}=\lambda_{1}\left(\theta_{n-1}+\theta_{n-2}+\ldots+\theta_{n-N}\right) \tag{13}
\end{equation*}
$$

where λ_{1} is greater than either λ or 1 , we have

$$
\theta_{n}>\left|L_{n}\right|, \quad n=0,1,2, \ldots
$$

But since $\lambda_{1}>1$, we have $\theta_{n}-\theta_{n-1}>0$ and so, for $n \geqslant m$,

$$
\theta_{n}<\lambda_{\mathbf{1}} N \theta_{n-\mathbf{1}}
$$

Hence if we make $u_{n}=\theta_{n}$ for $n=0,1, \ldots m-1$, and define u_{n} for $n=m, m+1, \ldots$ by the formula

$$
u_{n}=\lambda_{1} N \cdot u_{n-1}
$$

we have, for all values of n,

$$
u_{n} \geqslant \theta_{n}>\left|L_{n}\right|
$$

But the series $\Sigma u_{n} t^{n}$ has a radius of convergence $1 / \lambda_{1} N$, and so, for values of x in D, the series $\Sigma L_{n} t^{n}$ has a non-zero radius of convergence.

2.3. Formal statement of the result.

Summing up and extending slightly the previous work, we have the following

Theorem II. If a sequence of functions $L_{n}(x)$ satisfy an $(N+1)$ term recurrence formula

$$
\begin{equation*}
\sum_{r=0}^{r=N} L_{n+r}\left(\alpha_{r} n^{\nu}+\beta_{r} n^{\nu-1}+\ldots+\kappa_{r}\right)=0, \quad n=0,1,2 . \tag{14}
\end{equation*}
$$

in which $a_{r}, \beta_{r}, \ldots \kappa_{r}$ are functions of r and x only, then

$$
\begin{equation*}
F(x, t)=\Sigma L_{n}(x) t^{n} \tag{15}
\end{equation*}
$$

assuming the expansion to be convergent for $|t|<K$, satisfies a linear differential equation of order v whose coefficients are polynomials in t.

If the differential equation is

$$
P(x, t) F+Q(x, t) \frac{\partial F}{\partial t}+\ldots \ldots+Y(x, t) \frac{\partial^{\nu} F}{\partial t^{v}}=\Theta(x, t),
$$

it is tolerably simple to shew that $P, Q, \ldots Y$ are polynomials in t of degree $(N+2 \nu-2)$ at most, and that Θ is a polynomial in t of degree $N+\nu-3$ at most. In the particular case $\nu=2$ a suitable choice of the arbitrary $L_{0}, L_{1}, \ldots L_{n-1}$ will make $\Theta=0$, but in the general case Θ cannot thus be made to vanish unless the coefficients in (14) have certain special values. Finally, two distinct.generating functions arising from different solutions of the same recurrence formula, satisfy differential equations which can differ only in the value of Θ.

Theorem III. If in the recurrence relation (14) and for all x in a certain region λ of the x plane,
(i) $\left|a_{r}\right|,\left|\beta_{r}\right|, \ldots,\left|\kappa_{r}\right|$ are each $<K$, for $r=0,1, \ldots N$,
(ii) $\left|\alpha_{N}\right|>K_{1}$,
then the series (15) defining $F(x, t)$ converges uniformly with regard to x in Δ over a circle $|t| \leqslant K_{2}$.
§3. Generating Functions and Differential Equations in x.
Suppose now that $F(x, t)$ satisfies a differential equation

$$
\begin{equation*}
\sum_{r=0}^{h} t^{r} \frac{\partial^{r}}{\partial t^{r}}\left\{\sum_{s=0}^{k} a_{r, s}(x) \frac{\partial^{s} F}{\partial x^{s}}\right\}=0 \tag{16}
\end{equation*}
$$

and that $F(x, t)=\Sigma L_{n}(x) t^{n}$.
Suppose further, that for $|t| \leqslant K$ and $s=1,2, \ldots k$, the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{d^{s} L_{n}}{d x^{8}} t^{n} \tag{17}
\end{equation*}
$$

converge uniformly with regard to x in some region Δ.
Then, substituting the appropriate series for F and its derivatives in (16), we have

$$
\sum_{r=0}^{h} \sum_{s=0}^{k} a_{r, s}(x) t^{r} \sum_{n=r}^{\infty} \frac{d^{s} L_{n}}{d x^{s}} \frac{n!t^{n-r}}{(n-r)!}=0 .
$$

From the coefficient of t^{n}, when $n \geqslant h$, we see that

$$
\sum_{r=0}^{h} \sum_{s=0}^{k} a_{r, s}(x) \frac{n!}{(n-r)!} \frac{d^{s} L_{n}}{d x^{s}}=0
$$

or writing

$$
\begin{align*}
a_{0, s}+ & \sum_{r=1}^{h} n(n-1) \ldots(n-r+1) \alpha_{r, s}(x)=A_{s}(x, n), \tag{18}\\
\sum_{s=0}^{k} A_{s}(x, n) \frac{d^{s} L_{n}}{d x^{s}}=0, & \ldots \ldots \ldots \tag{19}
\end{align*}
$$

where $A_{s}(x, n)$ is a polynomial of degree h at most in n.
If now $n<h$, we have from the coefficient of t^{n}

$$
\sum_{r=0}^{n} \sum_{s=0}^{k} a_{r, s}(x) \frac{n!}{(n-r)!} \frac{d^{s} L_{n}}{d x^{s}}=0
$$

but this, for $n=0,1,2, \ldots h-1$, is the same as

$$
\sum_{s=0}^{k} \frac{d^{s} L_{n}}{d x^{s}}\left\{\sum_{r=0}^{n} n(n-1) \ldots(n-r+1) a_{r, s}(x)\right\}=0 .
$$

Hence (19) is the form of a differential equation satisfied by $L_{n}(x)$ for $n=0,1,2, \ldots$. We have then
Theorem IV. If the generating function $F(x, t)$ satisfy a partial differential equation

$$
\begin{equation*}
\sum_{r=0}^{h} t^{r} \frac{\partial^{r}}{d t^{r}}\left\{\sum_{s=0}^{k} \alpha_{r, s}(x) \frac{\partial^{s} F}{\partial x^{s}}\right\}=0 \tag{16}
\end{equation*}
$$

then, subject to the uniform convergence of

$$
\sum_{n=1}^{\infty} \frac{d^{\curvearrowright} L_{n}}{d x^{8}} t^{n}, \quad(s=1,2 \ldots k)
$$

for x in some Δ and $|t| \leqslant K$, the $L_{n}(x)$ satisfy a linear differential equation of order k, namely

$$
\begin{equation*}
\sum_{s=0}^{k} A_{s}(x, n) \frac{d^{s} L_{n}}{d x^{s}}=0 \tag{19}
\end{equation*}
$$

where $A_{s}(x, n)$ is a polynomial of degree h or less in n.
Corollary. Conversely, if a sequence of functions $L_{n}(x)$ satisfy differential equations of type (19), we can, by writing

$$
A_{z}(x, n) \equiv \sum_{r=0}^{h} n(n-1) \ldots(n-r+1) a_{r}, \quad(x)
$$

obtain the "generating differential equation" (16). Subject to the uniform convergence of the series

$$
\sum_{n} \frac{d^{s} L_{n}}{d x^{s}} t^{n}
$$

the generating function of the L_{n} will be a solution of this differential equation.

It follows, of course, that if

$$
L_{0}(x), L_{1}(x), L_{2}(x) \ldots
$$

be one set of solutions of the equations (19), and

$$
M_{0}(x), M_{1}(x), M_{2}(x) \ldots
$$

be another set, both the generating functions satisfy the same partial differential equation (16).
§4. Generating functions and orthogonal properties.

4.1. Preliminary questions of convergence.

Suppose that $\left|L_{n}(x)\right|<\theta_{i n}$ for $a \leqslant x \leqslant b$, and that for any definite t with $|t|<K$,
(i) $\Sigma\left|L_{n}(x) t^{n}\right|$ converges uniformly with regard to x in $a \leqslant x \leqslant b$. Then it follows that, for $k=1,2, \ldots$,
(ii) $\Sigma\left|n(n-1) \ldots(n-k+1) L_{n}(x) t^{n-k}\right|$,
(iii) $\underset{r, s}{ }\left|L_{r}(x) L_{s}(x) t^{r+s}\right|$,
(iv) $\left.\underset{r, s}{\Sigma} \frac{r!s!}{(r-k)!(s-k)!} L_{r}(x) L_{s}(x) t^{r+s-2 k} \right\rvert\,$,
all behave in the same manner.
4.11. Proof of (ii).

If $|t|=r<R<K$, we can find a definite N, independent of x, such that $n>N$ implies, when $a \leqslant x \leqslant b$,

$$
\left|L_{n}(x) R^{n}\right|<1 .
$$

Hence the terms of (20), for $|t|=r$ and $n>N$, are less than those of

$$
\sum_{n} n(n-1) \ldots(n-k+1)\left(\frac{r}{R}\right)^{n-k}\left(\frac{\mathbf{1}}{R}\right)^{k}
$$

which is a convergent series with terms independent of x. The uniform convergence of (20) follows at once.
4.12. Proof of (iii) and (iv).

We have used (21) as a convenient form to denote

$$
\left|L_{0}{ }^{2}\right|+\left|2 L_{0} L_{1} t\right|+\ldots .+\left|\left(L_{0} L_{n}+L_{1} L_{n-\mathbf{1}}+\ldots .+L_{n} L_{0}\right) t^{n}\right|+\ldots(23)
$$

If N has the same meaning as in 4.11,

$$
\left|L_{0}\right|,\left|L_{1}\right|, \ldots \ldots\left|L_{N}\right|
$$

are each less than some fixed K_{1} for $a \leqslant x \leqslant b$. Hence when $n>2 N$, and $|t|=r<R<K$,

$$
\begin{aligned}
& \left|\left(L_{0} L_{n}+L_{1} L_{n-1}+\ldots+L_{n} L_{0}\right) t^{n}\right| \\
< & K_{2}\left|L_{n} t^{n}+L_{n-1} t^{n-1}+\ldots+L_{n-N} t^{n-N}\right| \\
& +\left|\left(L_{N+1} L_{n-N-1}+\ldots+L_{n-N-1} L_{N+1}\right) t^{n}\right|
\end{aligned}
$$

where $K_{2}=\operatorname{Max}\left(2 K K_{1}, 2 K^{N} K_{1}\right)$, each suffix exceeds N, and there are ($n-2 N-1$) terms in the second modulus.

Hence, for $|t|=r$,

$$
\begin{aligned}
& \left|\left(L_{0} L_{n}+L_{1} L_{n-1}+\ldots+L_{n} L_{0}\right) t^{n}\right| \\
< & K_{2}(N+1)\left(\frac{r}{R}\right)^{n-N}+(n-2 N-1)\left(\frac{r}{R}\right)^{n}
\end{aligned}
$$

Accordingly, the terms of (23) for $n>2 N$, and $a \leqslant x \leqslant b$, are less than those of a convergent series whose terms are independent of x. Hence (iii) is proved.

Finally, (iv) follows from (ii) in the same way that (iii) follows from (i).
4.2. Given the orthogonal property.

Suppose we are given that, for $m \neq n$,

$$
\int_{a}^{b} L_{m}(x) L_{n}(x) d x=0
$$

and, further, that $\Sigma\left|L_{n}(x) t^{n}\right|$ converges uniformly with regard to x in $a \leqslant x \leqslant b$ for $|t|<K$.

Then, in virtue of the results of 4.1 , we may write

$$
\begin{aligned}
I_{0} & =\int_{a}^{b}\{F(x, t)\}^{2} d x=\int_{a}^{b}\left(L_{0}+L_{1} t+\ldots\right)^{2} d x \\
& =\int_{a}^{b} \sum_{r, s} L_{r} L_{s} t^{r+s} d x \\
& =\sum_{r, s} \int_{a}^{b} L_{r} L_{s} t^{r+s} d x \\
& =c_{0,0}+c_{1,1} t^{2}+\ldots+c_{n, n} t^{2 n}+\ldots
\end{aligned}
$$

where

$$
c_{n, n}=\int_{a}^{b}\left\{L_{n}(x)\right\}^{2} d x
$$

Thus, " I_{0} and, similarly,

$$
\begin{equation*}
I_{k}=\int_{a}^{b}\left(\frac{\hat{\partial}^{k} F}{\partial t^{k}}\right)^{2} d x \tag{A}
\end{equation*}
$$

is an even function of t."
Further, it is a direct consequence of the above calculations that "، if $\frac{\partial^{k} F}{\partial t^{k}}=\alpha_{1}^{(k)}+\alpha_{2}^{(k)} t+\ldots .+\alpha_{n}^{(k)} t^{n}+\ldots$. , then

$$
\begin{equation*}
\int_{a}^{b}\left\{\left(\frac{\partial^{k} \boldsymbol{F}}{\partial t^{k}}\right)^{2}-\left(\alpha_{1}^{(k)}+\alpha_{2}^{(k)} t+\ldots+a_{n}^{(k)} t^{n}\right)^{2}\right\} d x \tag{B}
\end{equation*}
$$

contains $t^{2 n+2}$ as a factor."

4.3. Given the properties (A) and (B).

Much of the interest of the proof that the orthogonal property follows from (A) and (B) lies in seeing how much follows from (A) alone. Accordingly, we first assume (A) only, together with the convergence condition, " $\Sigma\left|L_{n}(x) t^{n}\right|$ converges uniformly with regard to x in $a \leqslant x \leqslant b$, for $|t|<K$."

Since I_{k} is an even function of t, the coefficient of t in I_{k} gives $c_{k, k+1}=0$, where we have written

$$
c_{r, s} \equiv \int_{a}^{b} L_{r}(x) L_{s}(x) d x
$$

Considering successively the coefficients of t^{3} in I_{k-1}, t^{5} in I_{k-2}, and so on, we obtain relations

$$
\begin{aligned}
& \lambda_{1} c_{k-1, k+2}+\lambda_{2} c_{k, k+1}=0 \\
& \mu_{1} c_{k-2, k+3}+\mu_{2} c_{k-1, k+2}+\mu_{3} c_{k, k+1}=0
\end{aligned}
$$

where λ, μ are constants. Hence, since $c_{k, k+1}=0$, we deduce that, for all values of r and k,

$$
c_{r, 2 k+1-r}=0
$$

Hence, assuming only the property (A), which is a property of $F(x, t)$ apart from its series development, all we can prove anent the orthogonal property of its coefficients is that

$$
\int_{a}^{b} L_{r}(x) L_{s}(x) d x=0 \text { when } r+s \text { is odd. }
$$

When $r+s$ is even, all we can obtain from (A) is a series of equations

$$
\begin{gathered}
c_{k, k}=\gamma_{k} \\
\lambda_{0} c_{0,2 k}+\lambda_{1} c_{1,2 k-1}+\ldots+\lambda_{k} c_{k, k}=\mu_{k}
\end{gathered}
$$

where nothing is known of the values of γ_{k} and μ_{k} / λ_{k}.
If, however, we further assume the property (B) we have, taking $n=1$ in (B) with $k=\lambda, c_{\lambda, \lambda+2}=0$, taking $n=3$ in (B) with $k=\lambda-1 ; \mu_{1} c_{\lambda-1}, \lambda+3+\mu_{2} c_{\lambda, \lambda+2}=0$, and so on. Hence we deduce that, for all even values of $r+s$,

$$
\int_{a}^{b} L_{r}(x) L_{s}(x) d x=0
$$

except when $r=s$.

4.4. Summary.

We may summarise our results in the following theorem.
Theorem V. Provided that the series $\Sigma\left|L_{n}(x) t^{n}\right|$ converges, for $|t|<K$, uniformly with regard to x in $a \leqslant x \leqslant b$, the necessary and sufficient condition for the $L_{n}(x)$ to be orthogonal over (a, b) is that $F(x, t)$ should have the properties (A) and (B).

The form of these conditions makes it clear that given a generating function $F(x, t)$, it is easy to see, without recourse to the integration of $L_{r} L_{s}$, whether or not its coefficients are partially orthogonal over some interval (a, b), i.e. whether the integral of $L_{r} L_{s}$ is zero when $r+s$ is odd. In order to see whether the L_{n} are fully orthogonal we must have recourse to integrals (B), which involve the series development of $F(x, t)$, and as this involves the evaluation of

$$
\int_{a}^{b} L_{r}(x) L_{s}(x) d x
$$

in most cases, our procedure is practically a formal verification of the orthogonal property.
§5. Application to Legendre functions.
As an example of how our results work out in a particular case we consider the Legendre functions. The functions $P_{n}(x), Q_{n}(x)$ each satisfy the recurrence relation

$$
\begin{equation*}
(n+2) L_{n+2}(x)-x(2 n+3) L_{n+1}(x)+(n+1) L_{n}(x)=0 \ldots \ldots \tag{23}
\end{equation*}
$$

The generating function of $P_{n}(x)$, namely,

$$
F(x, t) \equiv X^{-1} \equiv\left(1-2 x t+t^{2}\right)^{-\frac{1}{2}}
$$

is a solution of

$$
\left(1-2 x t+t^{2}\right) \frac{\partial y}{\partial t}+(t-x) y=0
$$

Accordingly, by 2.3, the generating function of the Q_{n} must satisfy a differential equation

$$
\left(1-2 x t+t^{2}\right) \frac{\partial y}{\partial t}+(t-x) y=A_{0}+A_{1} t
$$

Putting $A_{0}=1, A_{1}=0$ and solving the equation in the usual manner, we obtain as the generating function of some solution of (23),

$$
\begin{equation*}
\frac{1}{2 X} \log \frac{x-t-X}{x-t+X} \tag{24}
\end{equation*}
$$

This reduces for $t=0$, when $X=+\sqrt{1-2 x t+t^{2}}$, to

$$
\frac{1}{2} \log \frac{x-1}{x+1}=-Q_{0}(x) .
$$

Accordingly we have an elementary proof of the fact that $-Q_{n}(x)$ is generated by (24) ${ }^{1}$.

Finally, the work of $\S 3$ shows that, since $P_{n}(x)$ and $Q_{n}(x)$ are solutions of the differential equation

$$
\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}-y\{n(n-1)+2 n\}=0
$$

their generating functions

$$
\frac{1}{X}, \quad \frac{1}{2 X} \log \frac{x-t}{x-t} \frac{+X}{-X},
$$

are solutions of the partial differential equation ${ }^{2}$

$$
\begin{equation*}
\left(1-x^{2}\right) \frac{\partial^{2} F}{\partial x^{2}}-2 x \frac{\partial F}{\partial x}+2 t \frac{\partial F}{\partial t}+t^{2} \frac{\partial^{2} F}{\partial t^{2}}=0 \tag{}
\end{equation*}
$$

[^0]
[^0]: ${ }^{1}$ Laurent, Journal de Math. (3) 1 (1875), 390.
 ${ }^{2}$ The direct verification of the fact that (24) is a solution of (25) is a rather heary piece of calculation.

