LETTERS TO THE EDITOR

ON ARNOLD'S TREATMENT OF MORAN'S BOUNDS

M. J. BUCKLEY* AND E. SENETA,* University of Sydney

Abstract

We prove a conjecture of Arnold (1968) which simplifies the determination of an optimal bound on absorption probability originally due to Moran (1960).

ABSORPTION PROBABILITY; MARKOV-CHAIN MODEL WITH SELECTION

In a problem concerning calculation of an optimal bound on absorption probability in Wright's Markov-chain model with selection (for the context refer to Moran (1960), Arnold (1968)), it is required to find

$$\theta_N = \sup \{\theta \mid \pi_i(\theta) \leq p_i, i = 0, 1, 2, \dots, 2N\},\$$

where for $\theta \in (0, \infty)$,

$$\pi_i(\theta) = \frac{1 - \exp(-\theta i/N)}{1 - \exp(-2\theta)}, \qquad p_i = \frac{(1 + \sigma)i}{2N + \sigma i}, \qquad i = 0, \dots, 2N.$$

Here N (integer, ≥ 1), and σ (>0) are assumed known. Since for $i = 1, 2, 3, \dots, 2N-1$, $\pi_i(\theta)$ is an increasing function of $\theta > 0$, and $\lim_{\theta \downarrow 0^+} \pi_i(\theta) = i/2N < p_i$, $\lim_{\theta \uparrow \infty} \pi_i(\theta) = 1 > p_i$, it follows that there exists a unique $\theta_i^* > 0$ such that $\pi_i(\theta_i^*) = p_i$, with $\pi_i(\theta) < p_i$ for $\theta < \theta_i^*$, $\pi_i(\theta) > p_i$, $\theta > \theta_i^*$. Clearly

$$\theta_N = \min \{\theta_1^*, \theta_2^*, \cdots, \theta_{2N-1}^*\}$$

where for each i, θ_i^* is the unique root in $(0, \infty)$ of the equation $f_{\theta}(i/2N) = 0$, where for $0 \le x \le 1$,

$$f_{\theta}(x) = (1 + \sigma)x(1 - \exp(-2\theta)) - (1 + \sigma x)(1 - \exp(-2\theta x)).$$

Thus for fixed $i = 1, \dots, 2N-1$, $f_{\theta}(i/2N) > 0$ for $\theta < \theta_i^*$; <0 for $\theta > \theta_i^*$. Using a different notation, Arnold (1968) arrived at this result; and conjectured that

$$\theta_1^* > \theta_2^* > \cdots > \theta_{2N-1}^*.$$

Received 30 November 1982.

^{*} Postal address for both authors: Department of Mathematical Statistics, University of Sydney, NSW 2006, Australia.

Letters to the editor 213

We prove this conjecture, whence $\underline{\theta}_N = \theta_{2N-1}^*$, resulting in considerable saving in computational labour as perceived by Arnold, in determining $\underline{\theta}_N$.

Suppose the conjecture is false: then there exist $i_1, i_2, 1 \le i_1 < i_2 \le 2N - 1$, such that $\theta_{i_1}^* \le \theta_{i_2}^*$. Taking any henceforth fixed θ satisfying $\theta_{i_1}^* \le \theta \le \theta_{i_2}^*$, it follows that $f_{\theta}(i_2/2N) \ge f_{\theta_{i_1}}(i_1/2N) \ge f_{\theta}(i_1/2N)$. By the mean-value theorem, since f(0) = 0 there is a ξ_1 , $0 < \xi_1 < i_1/2N$, such that $f_{\theta}'(\xi_1) \le 0$; and, since $f_{\theta}(1) = 0$, a ξ_2 , $i_2/2N < \xi_2 < 1$, such that $f_{\theta}'(\xi_2) \le 0$. By applying the mean-value theorem again, there is a ξ_3 , $i_1/2N < \xi_3 < i_2/2N$, such that $f_{\theta}'(\xi_3) \ge 0$. Now applying the mean-value theorem to the function $f_{\theta}'(x)$, there exist numbers ζ_1 , $(\xi_1 < \zeta_1 < \xi_3)$ and $\zeta_2(\xi_3 < \zeta_2 < \xi_2)$ such that $f_{\theta}''(\zeta_1) \ge 0$, $f_{\theta}''(\zeta_2) \le 0$. Since $f_{\theta}''(x) = 4\theta \exp(-2\theta x)(\theta - \sigma + \theta \sigma x)$, there is a unique $x = x_0$ such that $f_{\theta}''(x_0) = 0$, and for $x > x_0$, $f_{\theta}''(x) > 0$, while for $x < x_0$, $f_{\theta}''(x) < 0$. Since we have $\zeta_1 < \zeta_2$ with $f_{\theta}''(\zeta_1) \ge 0$, $f_{\theta}''(\zeta_2) \le 0$ a contradiction results, completing the proof.

It follows from (1) that

$$\bar{\theta}_{N} = \inf \{ \theta \mid \pi_{i}(\theta) \ge p_{i}, i = 0, 1, 2, \dots, 2N \}$$

= $\max \{ \theta_{1}^{*}, \theta_{2}^{*}, \dots, \theta_{2N-1}^{*} \} = \theta_{1}^{*}.$

It is of interest to find quantities such as $\underline{\theta} = \sup\{\theta; f_{\theta}(x) \geq 0, 0 \leq x \leq 1\}$, so $\underline{\theta} \leq \underline{\theta}_N$, and $\overline{\theta}$ defined analogously (so $\overline{\theta} \geq \overline{\theta}_N$), which will lead to bounds at least as tight as those of Moran (1960) and likewise valid for all N. It is readily seen by a contradiction argument similar to the above that $f_{\theta}(x) \geq 0$ for all $0 \leq x \leq 1$ if and only if $f'_{\theta}(1) \leq 0$, which leads to $\underline{\theta}$ as the unique root in $(0, \infty)$ of $\exp 2\theta - 1 = (1 + \sigma)2\theta$, while $\overline{\theta}$ is the unique root of $1 - \exp -2\theta = 2\theta/(1+\sigma)$, being the smallest θ in $(0, \infty)$ for which $f'_{\theta}(0) \leq 0$. Note (without digression as to causes) that $\{2\overline{\theta}/(1+\sigma)\}$ is the survival probability of a Galton-Watson process with offspring p.g.f. $f(s) = \exp(1+\sigma)(s-1)$ and $e^{-2\overline{\theta}}$ is the extinction probability. The argument used to prove (1) can again be used to prove e.g. that $\underline{\theta}_N > \underline{\theta}_{N+1}$, whence as $N \to \infty$ $\underline{\theta}_N \downarrow \underline{\theta}$; and similarly $\underline{\theta}_N \uparrow \overline{\theta}$. Note also that Moran's (1960) explicit simple bounding interval, $[\sigma/(1+\sigma), \sigma]$, containing $[\underline{\theta}, \overline{\theta}]$, in particular leads to simple explicit bounds on the above survival probability.

References

ARNOLD, B. C. (1968) A modification of a result due to Moran. J. Appl. Prob. 5, 220–223. MORAN, P. A. P. (1960) The survival of a mutant gene under selection II. J. Austral. Math. Soc. 1, 485–491.