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LETTERS TO THE EDITOR

ON ARNOLD’S TREATMENT OF MORAN’S BOUNDS

M. J. BUCKLEY* AnD
E. SENETA,* University of Sydney

Abstract

We prove a conjecture of Arnold (1968) which simplifies the
determination of an optimal bound on absorption probability origi-
nally due to Moran (1960).

ABSORPTION PROBABILITY; MARKOV-CHAIN MODEL WITH SELECTION

In a problem concerning calculation of an optimal bound on absorption probability in
Wright’s Markov-chain model with selection (for the context refer to Moran (1960),
Arnold (1968)), it is required to find

QN=Sup{0 I 77;(0)§pg,i=0, 1’ 23 T "2N},

where for 6 € (0, »),

1—exp (—6i/N) (1+0)i
() =——— , = -, i=0,---,2N.
m(6) 1—exp (—26) P 2N+ i '
Here N (integer, =1), and o (>0) are assumed known. Since for i=1,2,3,---,2N—1,

a;(0) is an increasing function of 6 >0, and lim, | o+ m(6) = i/2N <p;, limg 1. m(6) =1>
p., it follows that there exists a unique % >0 such that m(8%) = p, with m(6)<p; for
6<6%, m(6)>p, 6>0%. Clearly

O =min {0%, 6%, - -, 03y _1}

where for each i, 6% is the unique root in (0, ©) of the equation f,(i/2N) =0, where for
0=x=1,

fo(x)=(1+0)x(1—exp (—26))—(1+0x)(1 —exp (—26x)).

Thus for fixed i=1,---,2N—1, f,(i/2N)>0 for §<0%;, <0 for 6>0% Using a
different notation, Arnold (1968) arrived at this result; and conjectured that

(1) 0%>0%> ... >0%,_..
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We prove this conjecture, whence Oy =60%_,, resulting in considerable saving in
computational labour as perceived by Arnold, in determining 6.

Suppose the conjecture is false: then there exist iy, i, l_z,<i2S2N 1, such that
0 = 7. Taking any henceforth fixed 8 satisfying 6% = 0 = 0¥, it follows that f,(i,/2N)=
fe. (12/2N) 0=fe, (i1/2N) Zfo(i1/2N). By the mean-value theorem, since f(0) =0 there
is a &, 0<¢, <z,/2N such that f3(£,)=0; and, since f,(1) =0, a &, i,/2N<§&,<1, such
that f3(£,)=0. By applying the mean-value theorem again, there is a &, i;/2N <& <
i2/2N, such that fg(&;) = 0. Now applying the mean-value theorem to the function fy(x),
there exist numbers {;, (& <{,<&) and (& << &) such that f3'(£) =0, fo'(5) =0.
Since fg(x) =46 exp (—26x)(0 — o + 0ox), there is a unique x =Xx, such that fy(xo) =0,
and for x > x,, fo(x) >0, while for x <x,, fg(x)<0. Since we have {, <, with f§(¢,) =0,
fo(£2) =0 a contradiction results, completing the proof.

It follows from (1) that

On=inf {0 | m(0)=p,i=0,1,2, - -,2N}
=max {0%, 6%, -- -, 03y} =0%.

It is of interest to find quantities such as § =sup {6; fo(x)=0,0=x =1}, so § = 6y, and
0 defined analogously (so 6 = 6y), which will lead to bounds at least as tight as those of
Moran (1960) and likewise valid for all N. It is readily seen by a contradiction argument
similar to the above that fo(x) =0 for all 0=x =1 if and only if fs(1) =0, which leads to
0 as the unique root in (0, ®) of exp26—1=(1+0)26, while 8 is the unique root of
1—-exp—26 =26/(1+0), being the smallest 6 in (0, ) for which f4(0) =0. Note (without
digression as to causes) that {26/(1+ o)} is the survival probability of a Galton-Watson
process with offspring p.g.f. f(s)=exp (1+a)(s—1) and e *° is the extinction probabil-
ity. The argument used to prove (1) can again be used to prove e.g. that Oy > Oy,
whence as N— o §y|6; and similarly 6,16. Note also that Moran’s (1960) explicit
simple bounding interval, [o/(1+a), o], containing [@, 8], in particular leads to simple
explicit bounds on the above survival probability.
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