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The property of weak sequential completeness plays a special role in the theory of
Boolean algebras of projections and spectral measures on Banach spaces. For instance,
if X is a weakly sequentially complete Banach space, then

(i) every strongly closed bounded Boolean algebra of projections on X is complete
(3, XVII.3.8, p. 2201); from which it follows easily that

(ii) every spectral measure on X of arbitary class (2, F), where 2 is a cr-algebra of
sets and F is a total subset of the dual space of X, is strongly countably additive;
and hence that

(iii) every prespectral operator on X is spectral.
(See also (1, Theorem 6.11, p. 165) for (iii).)

In fact, a necessary and sufficient condition for (i) to be valid is that X should not
contain a subspace isomorphic to the sequence space c0 (4). In the present note, it is
shown that properties (ii) and (iii) are equivalent and that a necessary and sufficient
condition for one, and hence both, to hold is that X should not contain a subspace
isomorphic to the sequence space (T. This answers affirmatively a question raised by H.
R. Dowson, who asked whether every prespectral operator on a separable Banach
space is necessarily spectral. Actually, a slight refinement (Theorem 2 below) gives a
separability condition which is both necessary and sufficient for an individual prespec-
tral operator to be spectral.

For the most part, the terminology and notation will be as in (1). Throughout, X is a
complex Banach space with dual space X*, (x, 4>) denotes the value of 4> e X* at x 6 X,
and L(X) is the algebra of all bounded linear operators on X. The closed subspace
generated by a subset A of X is denoted by elm A and the spectrum of a bounded
linear operator by Sp (T).

Given a cr-algebra 2 of subsets of a set £1 and a total subset F of X*, a spectral
measure of class (2, F) on X is an identity preserving Boolean algebra homomorphism
E of 2 onto a bounded Boolean algebra of projections on X such that, for all x in X
and all y in F, (E(-)x, y) is countably additive on 2. It is a consequence of a theorem of
Pettis (2, rv.10.1, p. 318) that a spectral measure E(-) of class (2, X*) is strongly
countably additive (i.e. £ ( )x is countably additive in the norm topology for each x in
X). The o--algebra of Borel subsets of the complex plane C is denoted by 2P. An
operator T in L(X) is prespectral if there is a total subset F of X* and a spectral
measure E(-) on X of class (2P, F) such that

E(a)T=TE(o) and Sp (T | E(cr)X) c <j (1)
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for all a e 2P. In this case, T is said to be prespectral of class F and E(-) is called a
resolution of the identity of class F for T. A prespectral operator has a unique
resolution of the identity of a given class, but may have distinct resolutions of the
identity of (necessarily) different classes (1, Chapter 5). T is spectral if there is a
strongly countably additive spectral measure E(-) on X, defined on 2P and satisfying
(1). Note that, using Pettis's theorem as above or by (1, Theorem 6.5, p. 161), an
operator on X is spectral if and only if it is prespectral of class X*. Furthermore, it
follows from the uniqueness theorem for resolutions of the identity of a given class that,
given a prespectral operator T with resolution of the identity JB(-) of class F, T is
spectral if and only if £(•) is strongly countably additive.

Theorem 1. The following statements are equivalent.
(i) X does not contain a subspace isomorphic to €°°.

(ii) Every spectral measure on X of arbitrary class (2, F), where 1 is a a-algebra of
sets and F is a total subset of X*, is strongly countably additive.

(iii) Every prespectral operator on X is spectral.

Proof. To prove (i) ^ (ii), assume (i) holds and let £(•) be a spectral measure on X
of class (2, F), where 2 is a a-algebra of subsets of a set Q. and F is a total subset of X*.
Suppose that fi(-) is not strongly countably additive. Then there is a sequence {an} of
mutually disjoint elements of 2 and an element x in X such that the series.

I E(an)x (2)
n = l

does not converge in norm to y =E(Un=i <*Vi)x- If this series converged in norm to
some element z of X, we would have

for all 7 e F and hence z = y since F is total. This contradiction shows that the series (2)
does not converge in norm. Hence there exist e > 0 and increasing sequences {n(fc)},
{m(fc)} of positive integers with n(fc)<m(fc)<n(fc + l) and

1 m(lc) ||

£ E(an)xpe
n=n(k) ' I

for fc=l,2,... .Let

Tfc=o-n(fc)U...Ua-m(fc)

for k = 1, 2 , . . . . Then {Tfc} is a sequence of mutually disjoint elements of 2 such that

for all k.
Given an element a = {ak} in €™, let fa:Q—>C be defined by

oo

L = I
k - l
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where Xv. is the characteristic function of Tfc. Note that this series converges pointwise
on (I since the rfc's are disjoint and that fa is a bounded measurable function on (fl, £).
Let

0a={J/a(A)E(dA)}x (a
the integral being denned as in (1, p. 120). Then 6 is a linear mapping of €° into X
such that

= 4M||x||||a|U
for all a e €°°, where

M = sup{||E(o-)||:o-eX}.
Fixing a ={ak}e€°°, we have

M\\9a\\ S |

= K||lE(Tk)x||

for each positive integer k. Hence

lolU (oeO-
Thus 8 is bicontinuous and its range is a subspace of X which is isomorphic to (T. This
contradicts (i) and hence establishes (i) ̂  (ii).

The implication (ii) => (iii) is clear. To prove (iii) ^> (i) we show that, if X has a
subspace isomorphic to €°°, then there is a non-spectral prespectral operator on X.
Suppose then that X contains a subspace isomorphic to €°°. It is convenient to identify
this subspace with €°°, so that C° is actually contained algebraically in X. Since €°° is
injective (6, p. 105), there is a closed subspace Y of X such that

X = £~®Y. (3)

It is known that there exist prespectral operators on £°° which are not spectral. An
example of such an operator is given, for instance, in (1, pp. 144 et seq.). (It is not
explicitly stated in (1) that the prespectral operator presented there is not spectral, but
this follows from the fact that it has a resolution of the identity which is not strongly
countably additive.) Let S be such a non-spectral prespectral opeator on C, with
resolution of the identity E(-) of class F, and define T in L(X) by

T = S © 0

relative to the decomposition (3). Identifying X* with (€")* © Y* in the natural way, it
is readily verified that T is prespectral of class F© Y*, with resolution of the identity
F(-) given by

relative to (3), where 8 is the probability measure on C with unit mass at the point 0
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and IY is the identity operator on Y. Noting that F(-) is not strongly countably additive,
it follows that T is not spectral.

Corollary. If X is either weakly sequentially complete or separable, then statements
(ii) and (iii) of Theorem 1 are valid.

Proof. A closed subspace of a weakly sequentially complete (resp. separable)
Banach space is weakly sequentially complete (resp. separable). Since €°° is neither
weakly sequentially complete nor separable, the result follows immediately from
Theorem 1.

Remarks. 1. Theorem 1 has been stated for complex Banach spaces because the
theory of spectral operators is usually developed in that context. However, it is clear
that (i) and (ii) are equivalent in the real case, provided °̂° is interpreted appropriately.

2. The example of a prespectral operator on €°° cited in the proof of Theorem 1 has
two distinct resolutions of the identity. It follows that each of the statements (i)-(iii) in
Theorem 1 is equivalent to the following.

(iv) Every prespectral operator on X has a unique resolution of the identity.
It would be of interest to know whether there is a result for individual prespectral
operators corresponding to (iii)<=> (iv). That is, is it true that an individual prespectral
operator is spectral if and only if it has a unique resolution of the identity?

3. Note that, in the proof of (i) => (ii), the existence of the total set T was used only
in one place. It is natural to ask whether there are circumstances in which every finitely
additive spectral meaure on X, for which no countable additivity assumption what-
soever is made, is in fact strongly countably additive. However, no such result is
possible if X is non-zero. To see this, take n to be the positive integers N and let X be
the cr-algebra of all subsets of il. Let <f> be a non-zero multiplicative linear functional
on °̂° which is not a coordinate functional, so that <]> corresponds to a point of £IN\N,
and let

E(cr) = 4>(xJl (<reX),

where I is the identity operator on X and Xa is the characteristic function of o\ Then
E(-) is a finitely additive spectral measure, but there exists no non-zero y in X* such
that (E(-)x, y) is countably additive for all x in X.

The result of Theorem 1 can be used to give a necessary and sufficient condition for a
prespectral operator to be spectral as follows.

Theorem 2. Let T be a prespectral operator on X, with resolution of the identity E(-)
of class P. Let

ME(x) = elm {E{o-)x : ae 2P}

for xeX. Then T is spectral if and only if ME(x) is separable for every xeX.

Proof. Suppose firstly that ME(x) is separable for every x in X. Fix x e X and let Fo

denote the restriction of T to ME(x), a total subset of ME(x)*. Note that ME(x) is
E(-)-invariant and that the restriction of E(-) to ME(x) is a spectral measure of class To.

https://doi.org/10.1017/S0013091500003989 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500003989


SPECTRAL MEASURES ON SPACES NOT CONTAINING <T 45

By the above corollary, separability implies that this restriction is strongly countably
additive and, since x is arbitrary, it follows that E(-) is strongly countably additive.
Hence T is a spectral operator.

Conversely, let T be spectral. Then E(-) is strongly countably additive. Let 10 be a
countable base for the topology of C and let 2j be the collection of finite unions of sets
in 20- It will be shown that

ME(x) = elm {E(o-)x: a e 2 J (4)

for each xeX. Since 2j is countable, it will follow that each space ME(x) is separable
as required.

Fix x e X and let ijieX* satisfy

x,4>> = 0 (<re2x).

Then the positive and negative parts, fi+ and /x~ respectively, of the real part of the
complex measure (E(-)x, <j>) agree on each set in Xt and hence on each open set, since
every open set in C is the union of an increasing sequence of sets in 2 t . Using the
regularity of /A+ and JA~ (5, Theorem G, p. 228), it follows that ji+ = /A~ and hence that
the real part of {E(-)x, <j>) is the zero measure. Similarly, the imaginary part of
(E(-)x, <f)) vanishes identically and so

The Hahn-Banach theorem now gives (4) and completes the proof.
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