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Non-technical Summary

The fossil record is notoriously incomplete. The spatial distribution of fossils reflects in part
the geography of biodiversity gradients, areas of sediment deposition and present-day rock
exposure, and locations of wealthy nations with long-standing investments in Western science.
Importantly for paleobiologists, the geographic location and size of fossil sampling gaps varies
through time, between environments, and from one group of organisms to another. This spa-
tial structure in recorded fossil occurrences has many consequences for ecological and evolu-
tionary investigations. If the fossil record is taken at face value, results and conclusions will be
inaccurate, sometimes to the point of being misleading. Therefore, it is essential to standardize
the spatial distribution of fossil occurrences (the total area covered by sites and the spread
across sites) before addressing research questions about diversity dynamics, geographic
range size, or other ecological variables. We review sources of spatial structure in the fossil
record, means to account for them, and possible consequences of leaving them unaddressed.
Several of the tools we discuss are compiled into a new software package named divvy, in the R
language of data analysis. We call for the paleobiology community to take up spatial stand-
ardization as a routine consideration in studying the informative but patchy fossil record.

Abstract

The fossil record is spatiotemporally heterogeneous: taxon occurrence data have patchy spatial
distributions, and this patchiness varies through time. Large-scale quantitative paleobiology
studies that fail to account for heterogeneous sampling coverage will generate uninformative
inferences at best and confidently draw wrong conclusions at worst. Explicitly spatial methods
of standardization are necessary for analyses of large-scale fossil datasets, because nonspatial
sample standardization, such as diversity rarefaction, is insufficient to reduce the signal of
varying spatial coverage through time or between environments and clades. Spatial standard-
ization should control both geographic area and dispersion (spread) of fossil localities. In
addition to standardizing the spatial distribution of data, other factors may be standardized,
including environmental heterogeneity or the number of publications or field collecting units
that report taxon occurrences. Using a case study of published global Paleobiology Database
occurrences, we demonstrate strong signals of sampling; without spatial standardization, these
sampling signatures could be misattributed to biological processes. We discuss practical issues
of implementing spatial standardization via subsampling and present the new R package divvy
to improve the accessibility of spatial analysis. The software provides three spatial subsampling
approaches, as well as related tools to quantify spatial coverage. After reviewing the theory,
practice, and history of equalizing spatial coverage between data comparison groups, we out-
line priority areas to improve related data collection, analysis, and reporting practices in
paleobiology.

Introduction

Quantitative paleobiologists seek to measure attributes of recorded fossil occurrences that
truthfully reflect the biological attributes of past ecosystems, such as biodiversity dynamics,
community structure, or functional ecology. This goal is complicated by the strong confound-
ing signatures of stochasticity and sampling on fossil-derived estimates (Signor et al. 1982;
Behrensmeyer and Kidwell 1985; Smith 2001; Bush and Bambach 2004; Kiessling 2005;
Patzkowsky and Holland 2012; Vilhena and Smith 2013; Raja et al. 2022; Nanglu and
Cullen 2023). Stochasticity stems from many, unidentifiable sources, including misidentifica-
tion, measurement error, and site-to-site variability. Sampling, meanwhile, encompasses an
expansive set of processes that systematically bias fossil observation probability, such as
taphonomy, sedimentation, erosion, and collector and taxonomist effort. (See Table 1 for addi-
tional definitions.)
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For 70 years, paleobiologists have detailed the effects of fossil
preservation, rock exposure area, and research effort on paleo-
biodiversity estimates (e.g., Gregory 1955; Raup 1976, 1977).
Correspondingly, empiricists have developed many frameworks
to account for such sampling disparities—for instance, taxon-free
metrics for live–dead analysis across intervals of environmental
change (Smith et al. 2020), stratigraphic paleobiology to tease
apart the geological structure of the fossil record (Patzkowsky
and Holland 2012), and rarefaction techniques to standardize
the completeness of reported taxon richness (Alroy et al. 2001;
Alroy 2010; Close et al. 2018). These individual methods are
well suited to studies of restricted geographic scope, such as faunal
investigations of a single formation. Increasingly, however, such
local or regional studies are eclipsed in the quantitative

paleobiology literature by analyses at larger spatial scales, from
continents or ocean basins to planet-wide scope, fueled by the
rapid growth of digital fossil occurrence databases in the last
two decades (Deng et al. 2020; Dillon et al. 2023).

When datasets span many strata, taxa, or time periods,
manually correcting for the individual influences of fossilization,
excavation, and publication practices becomes prohibitively time-
consuming. Consequently, many analyses bypass these steps with
the assumption that stochasticity and sampling structure contrib-
ute less signal to results than does original biological signal (e.g.,
Sepkoski et al. 1981; Benton and Emerson 2007). However, fossil
data violate this assumption frequently, leading to imprecise or
inaccurate results. For instance, differential sampling of equatorial
and temperate zones can mask true shifts in latitudinal

Table 1. Glossary of disciplinary terms relevant to taxon occurrences and spatial standardization.

Term Definition

A. Biology

α-diversity Richness at the finest spatial grain of study, e.g., a single site

β-diversity Variation and turnover in taxon composition between sites, often parameterized as (dis)similarity, replacement, and/or nestedness

γ-diversity Total richness across the largest spatial scale of study

Collection A taxon occurrence list tied to a single point coordinate on the Earth, e.g., records from a stratigraphic horizon at a site

Species–area effect The positive relationship between spatial coverage and observed richness

B. Geography

Area Cumulative square kilometers of observation sites

Dispersion Degree of aggregation between observation sites

Extent Dimensions of the bounds around all observation sites

Minimum spanning
tree

Metric from network analysis that connects all observation sites with line segments between successively nearest neighboring sites

Occupancy Count of sites (e.g., raster grid cells) where a taxon occurs

Raster A grid specifying the division of an area into cells with given coordinate reference system

Spatial heterogeneity Uneven distribution of entities (e.g., habitats or taxa) over a landscape

Wallacean shortfall Undersampling of geographic range distributions for living or fossil taxa, especially as the result of systematic, spatial differences in
research investment

C. Research practices

CARE Indigenous data governance principles of Collective benefit, Authority of Indigenous peoples, Responsibility, and Ethics

FAIR Open access principles that data be Findable, Accessible, Interoperable, and Reusable

Low-power problem The finding that many bodies of literature have insufficient sample size or replicates to be able to detect null relationships correctly

D. Statistics

Coverage Relative to the full distribution of a focal variable (e.g., total land area in a time bin or true frequency distribution of taxa), the
scope represented by observations

Power Probability of correctly rejecting the null hypothesis if it were false, i.e., avoiding false negatives

Power analysis Calculation of required sample size for a given effect size, significance threshold, and power, or power associated with a given
empirical sample size, effect size, and significance threshold

Rarefaction Type of subsampling that equalizes the quantity of a given unit (e.g., number of taxon occurrences) in each subsample

Sample Set of observations taken to represent an entire group, usually because it is impractical or impossible to observe every group
member

Sampling Processes that influence the probability of recording an observation, e.g., fossilization

Stochasticity Random error, e.g., from misidentification or measurement error (contrast with systematic bias)

Subsampling The process of taking a subset of a sample, e.g., bootstrapping or rarefaction

Systematic bias Differences between observed and true values that are consistent in direction or magnitude (contrast with stochasticity)
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biodiversity gradients through time (Allison and Briggs 1993;
Alroy et al. 2001; Bush and Bambach 2004; Menegotto and
Rangel 2018; Jones et al. 2021) and distort mean global tempera-
ture reconstructions (Jones and Eichenseer 2022). Differential
spatial coverage between time steps can induce changes in esti-
mated diversity dynamics, such as introducing false signals of
unconstrained diversification (Close et al. 2017; Dunne et al.
2023). In the following sections, we review further evidence and
present a case study demonstrating the potential reversal of
study conclusions between face-value and standardized fossil data.

An efficient, holistic approach to account for biases in paleon-
tological data at large scales is to standardize the spatial coverage
of taxon occurrences, because geographic data distribution is an
emergent property arising in large part from sampling and sto-
chastic processes. Correcting for multiple sampling processes
individually (e.g., applying richness rarefaction and facies analy-
sis) may fail to account fully for spatial heterogeneity, but stan-
dardizing for spatial heterogeneity within and between datasets
can mitigate the influence of multiple sampling biases at once.
Traditional standardization methods such as richness rarefaction
cannot replace spatial standardization because spatial heterogene-
ity interacts with the original structure of biological communities
—regardless of subsequent sampling processes. That is, bias
resulting from the primary species–area relationship (detailed in
the following section, “Processes That Structure Fossil
Occurrence Distributions,” and Fig. 1 and Table 1) will remain
even after stripping away biases of taphonomy, stratigraphy, and
research effort. In contrast, spatial standardization will reduce
the influence of the species–area effect from biological and sam-
pling processes combined. Richness rarefaction or other nonspa-
tial standardization may still be necessary as additions to spatial
standardization but should not be treated as substitutes.

Here, we (1) detail biological, geological, and historical sources
of spatial heterogeneity in published fossil occurrence data; (2)
explain why standardization of both the spatial area and spatial
dispersion of taxon occurrences is indispensable; (3) discuss prac-
tical considerations for analyzing spatially subsampled data; (4)
illustrate a case where spatial standardization substantively
changed paleoecological conclusions; and (5) introduce the R
package divvy to implement spatial subsampling methods.
Concluding notes review the state of spatial standardization in
quantitative paleobiology and suggest data access and methodo-
logical development priorities to pursue.

Processes That Structure Fossil Occurrence Distributions

Biodiversity is uneven in its spatial distribution in the present day
and throughout recorded evolutionary history, at all spatial scales.
Biogeographers describe this unevenness by partitioning species
richness into three hierarchical spatial levels (Fig. 1). At the
local scale (e.g., a single quadrat, raster grid cell, or quarry), tax-
onomic richness is termed alpha diversity. At the largest scale of
the whole study area (e.g., the extent of a research station, ocean
basin, or planet), total richness is termed gamma diversity.
Turnover, the factor by which gamma exceeds mean alpha, is
termed beta diversity, and increases as the total area of sampling
increases or as the dispersion of sampling locations spreads
(Whittaker 1960, 1972; Connor and McCoy 1979; Tuomisto
2010). This biological link between diversity and spatial coverage,
the species–area effect (Preston 1962; MacArthur and Wilson
1967), carries across all spatial grains throughout the Phanerozoic
(Sepkoski 1976; Barnosky et al. 2005).

Fossil occurrences undergo additional spatial structuring from
geological processes after organisms die. Taphonomy, sedimenta-
tion, and erosion all affect the geographic distribution, abun-
dance, and present-day exposure of fossils (Signor et al. 1982;
Behrensmeyer and Kidwell 1985; Smith 2001; Patzkowsky and
Holland 2012; Vilhena and Smith 2013). So long as these factors
are randomly and identically distributed across regions or time
intervals of comparison, large-scale biodiversity studies may pro-
ceed without systematic bias in conclusions (Bush et al. 2004).
There are also cases where multiple sources of systematic bias dif-
fer in direction, with the net effect that a study can ignore all these
confounding factors and still manage to arrive at results with the
same direction and approximate magnitude as when samples are
standardized (Bush and Bambach 2004; Marcot 2014). However,
such studies probably represent a rare minority of cases, and
therefore it is prudent to account for the spatial structure of fossil
distribution as a matter of course (Benson et al. 2021).

Human research effort applies a final spatial filter on the dis-
tribution of specimens that enter the paleontological (and neon-
tological) record. For fossil data to enter an occurrence
database, people must unearth, identify (in binomial Latin taxon-
omy), georeference (in Cartesian coordinates), and report the
findings (usually in English). Given these obstacles to publishing
fossil occurrence data, it should be unsurprising that studies dat-
ing back decades have noted the co-distribution of paleo-
biodiversity with modern-day research effort and in-country
wealth (e.g., Raup 1977; Kiessling 2005). The underrepresentation
of fossil occurrences in the Global South stems from long-
standing and ongoing imperial extraction of material and intellec-
tual resources that deprives people in these areas from studying
and communicating their paleontological heritage (Monarrez
et al. 2022; Raja et al. 2022). Unequal research investment globally
shapes the density of published knowledge about extant species,
too; ecologists use the terms Wallacean, Hutchinsonian, and
Linnean shortfalls for the sampling gaps that truncate recorded
geographic ranges, environmental occupancy, and counts of
described species, respectively (Hortal et al. 2015; Oliveira et al.
2016).

Biological, geological, and historical spatial processes add bias
to all ecological metrics derived from fossil distributions, not only
metrics related to spatial traits. For instance, exploratory analyses
indicate that community connectedness metrics vary with spatial
sampling coverage in a similar way that geographic range size mea-
surements do (C. Malanoski personal communication 2022).
Similarly, spatial unevenness affects estimates from all large-scale
datasets, including neontological occurrence datasets. The
Paleobiology Database (PBDB) has become one of the most popu-
lar sources for fossil occurrences reported globally, resulting in 450
publications to date (https://paleobiodb.org, accessed 16 March
2023), and thus has received particular scrutiny for its spatial
biases. However, spatial standardization is equally relevant for
records from the Global Biodiversity Information Facility (GBIF;
https://www.gbif.org), Ocean Biodiversity Information System
(OBIS; https://obis.org), Neotoma Paleoecology Database (https://
www.neotomadb.org), and other datasets spanning upward of a
continent or ocean basin (Boakes et al. 2010; Beck et al. 2014;
Menegotto and Rangel 2018; Moudrý and Devillers 2020).

Methods to Standardize Spatial Coverage

All the biological, geological, and historical processes described in
the preceding section contribute to spatial heterogeneity of fossil
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occurrence data. Unfortunately, accounting for these processes
individually—for instance, by restricting analysis to sites of simi-
lar preservation potential and performing richness rarefaction—
fails to remove signatures of spatial heterogeneity from results
(Bush et al. 2004; Close et al. 2020). Even site–occupancy models
borrowed from ecology, which simultaneously estimate taxon
detection rates and occurrence rates (Reitan et al. 2022), overlook
the differential influences of spatial turnover that arise whenever
data from one comparison group are distributed differently in
geographic space from those of another group. As discussed else-
where, sampling correction using residuals-based biodiversity
estimates is also unsuitable: not only are these methods sensitive
to the choice of sampling proxy, but the final model in a succes-
sion lacks the information to estimate errors appropriately
(Brocklehurst 2015; Sakamoto et al. 2017; Dunhill et al. 2018).

The only adequate way to control for biases deriving from spa-
tial structure is with explicit spatial standardization (e.g., Antell
et al. 2020; Close et al. 2020; Womack et al. 2021). In particular,
analyses must control for both the area and dispersion compo-
nents of spatial coverage. Additional factors that may be relevant
to standardize include data list structures (e.g., PBDB collections)
and habitat distribution.

Area

With more sites in a dataset, more taxa tend to be recovered, as
discussed earlier with regard to the species–area effect (Fig. 1).
An immediate if partial remedy to the influence of area on biodi-
versity metrics is rarefaction on the number of sites. Rarefaction is

a class of subsampling that equalizes the quantities of a given unit.
To limit confusion in the previous sections, only standardization
of taxonomic richness is referred to as “rarefaction,” while stand-
ardization of spatial coverage is referred to as “subsampling.” We
continue to use rarefaction over subsampling as the term for rich-
ness standardization throughout this piece, although either termi-
nology is appropriate—for instance, “coverage-based rarefaction”
(Chao and Jost 2012) and “shareholder-quorum subsampling”
(Alroy 2010) are equivalent methods to equalize the coverage of fre-
quency distribution curves for diversity estimation.

Rarefaction of sites is intended to equalize sampling area on a
map, but note the definition of a site may vary between studies.
For example, a paleoecologist interested in comparing terrestrial
vertebrate diversity between habitats might subsample (rarefy)
an equal number of quarries from each paleoenvironment,
while a paleobiogeographer interested in North American plant
diversity through time might subsample an equivalent number
of equal-area raster grid cells from each time step. The area or
number of sites to set as a quota for standardization should
form a sample size large enough to adequately characterize the
variable of interest. As a common rule of thumb, a sample size
of six data points is often taken as a bare minimum in statistics
to estimate a mean value with acceptable precision. However,
given the large site-to-site variability of many metrics in paleo-
ecology, a minimum of twice this may be more appropriate. As
precedents in paleobiological literature, Womack et al. (2021)
set a quota of 13 raster cells, and Antell et al. (2020) selected
10, 12, or 15 raster cells depending on the dataset and mode of
analysis.

Figure 1. A schematic of the species–area effect, in map view. The total sampling area (gray boxes) in A and C is twice as large as in B; these bounding regions
could represent the total preserved outcrop area from three time steps or continents of comparison. Individual sampling sites within a study region are indicated
with clear boxes, and species occurrences are represented with lowercase letters. Species count at an individual site is alpha diversity (annotated at only one site in
each panel, for simplicity). Total species count within a study area is gamma diversity. There are many metrics for beta diversity related to species turnover
between sites, but a simple and original measure is the ratio of gamma to mean alpha (Whittaker 1960, 1972). Note that both beta and gamma diversity increase
as sampling area doubles from B to A, even though the distributions of alpha diversity, species’ geographic range size, and site density are identical. Without
accounting for the difference in sampling area, (paleo)ecologists might falsely infer time bin A more diverse than B and with smaller proportional range sizes.
C also has larger beta and gamma diversity than B, despite the same number and cumulative area of sampled sites, because the dispersion between sites is larger.
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Dispersion

Even after variable numbers and square kilometers of sites
between comparison datasets are accounted for, the spatial distri-
bution of occurrences still imprints a signature on ecological
parameter estimates. For the same amount of sampled area, a
larger spacing between sites tends to correspond to more commu-
nity turnover and larger beta diversity (Fig. 1), again due to the
species–area effect. Therefore, spatial standardization must
account for the dispersion of occurrences as well as areal coverage.

Subsetting occurrences into regions defined by a standard
bounding extent can limit the variance of site dispersion across
time steps or environments, at least to a moderate degree.
Objective ways to define regional subsample boundaries include
circles centered on random occurrences (Antell et al. 2020), min-
imum spanning trees split at their longest branches into subtrees
(Close et al. 2017), and latitude–longitude boxes (Marcot et al.
2016). Precursors to these automated regionalization methods
date back to early studies on public fossil database records; for
example, the first step in a collections-based subsampling proce-
dure proposed by Alroy (2000) was the omission of the small sub-
set of faunal lists from eastern North America, “to minimize the
biogeographic spread of sampling through time” (p. 716).

The diameter or length to set as a maximum limit of subsam-
ple dispersion ideally would be informed by empirical data about
the extent of biogeographic regions relevant to the study. For
instance, a subsample region significantly larger than an average
(paleo)continent or ocean basin would be too wide to limit beta
diversity in many cases. On the other hand, a subsample region
smaller than the average geographic range size of focal taxa
would unnecessarily truncate observations in a study of range
size. Practically, the subsampling parameter controlling dispersion
is often set at the smallest size that still allows subsamples in every
comparison group to attain the quota for included sites or area.
Antell et al. (2020) reported results from circular subsamples
with diameters of 3000 km (1500 km radius; Fig. 2A) and
1500 km (750 km radius) in conjunction with sensitivity tests
for site rarefaction quotas of 6, 10, and 12 sites. Close et al.
(2017) defined subsample regions based on minimum spanning
trees connecting the centroids of occupied raster grid cells and
set the maximum summed tree length at 3200 km ± 10%
(Fig. 2B). Close et al. (2020) modified this subsampling procedure
and reported results at summed tree lengths of ∼2400, 4000, and
5600 km (∼1500, 2500, and 3500 miles). Womack et al. (2021)
also used minimum spanning tree length as a metric for standard-
ization, with a cutoff of 1000–1100 km.

Collections and Other Data Lists

One common, nonspatial method of correcting for differential
sampling effort is rarefaction of occurrence lists (also called faunal
lists in the paleobiological literature, although the method is
equally applicable to flora). For PBDB data, the primary list struc-
ture is the “collection,” a term with only a loose definition that
refers to any sampling unit tied to a single point coordinate on
the Earth. Collections may contain any number of specimen
records from any number of clades or publications; these taxon
lists may be equivalent to expedition localities, stratigraphic hori-
zons, or other episodes of field collection, but such definitions are
inconsistent between studies in the database.

Paleobiologists have published many variations of list rarefac-
tion. The basic logic follows earlier theory in ecology (Shinozaki

1963); a later addition of weighting by number of occurrences
included in lists was meant to mitigate sampling biases reflected
in list length (reviewed in Alroy 2000). Rarefaction of fossil occur-
rence lists has been discussed as an indirect approach to spatial
subsampling. Previous work has taken the number of collections
as a proxy for beta diversity and the length of collections for alpha
diversity (Bush et al. 2004). However, these proxies are imperfect
in both theory and practice: accounting solely for the number of
lists or the number of occurrences they contain cannot directly
control the geographic dispersion of sites. Many authors agree
the performance of list rarefaction methods varies with the spatial
structure of occurrences, and so any such method represents an
incomplete correction for fossil sampling biases (Alroy et al.
2001; Bush et al. 2004). Researchers at the time of development
of list-based methods admitted dissatisfaction with their proxies
for this reason and remarked, “routines that directly control the
geographic and environmental composition of a subsample
need to be developed” (Bush et al. 2004: p. 668).

Modern computing power and geographic information sys-
tems allow us to answer the call for explicitly spatial standardiza-
tion methods. The site-based rarefaction described earlier is
broadly analogous to unweighted list rarefaction, given the
one-to-one correlation between reference counts and raster grid
cell counts in global PBDB datasets (Alroy et al. 2008). The addi-
tional control on dispersion described in the preceding subsection
further standardizes beta diversity. Ideally, standardization proce-
dures would include an additional step to subsample the fre-
quency distribution of taxon abundance data at each site and
thereby control alpha diversity at the local scale (Bush et al.
2004). An analogous step in species distribution modeling for
extant taxa is subsampling the number of occurrences of a focal
taxon within each equal-area grid cell of a study area (Beck
et al. 2014). Regrettably, harmonized abundance data are not
yet available for many large composite fossil datasets.

Habitat Heterogeneity

An additional confounding factor when attempting to account for
geographic distribution of data is that habitat heterogeneity influ-
ences the species–area effect independently of area itself (Furness
et al. 2023). Although the ecological community has yet to agree
on a common measure of habitat heterogeneity (Loke and
Chisholm 2022), it is readily apparent that occurrences spanning
multiple environments likely differ in their estimated ecological
attributes compared with occurrences from a homogeneous envi-
ronment. Standardizing for dispersion can mitigate differences in
habitat heterogeneity to a limited degree but fails to address the
problem directly. The most rigorous way to account for differen-
tial coverage of paleo-habitats between comparison groups is
facies analysis, a cornerstone of stratigraphic paleobiology
(Patzkowsky and Holland 2012). This approach is most feasible
when the study area lies within a single basin where it is possible
to construct a comprehensive model of sequence stratigraphy
from field observations.

When environmental occurrence data cannot be resolved in a
sequence–stratigraphic framework, as for most public database
and museum records or other inherited datasets, it is worth
attempting habitat standardization through grosser means.
Extracting the “environment” and “lithology” fields associated
with specimen occurrences in the PBDB, for instance, can catego-
rize records into coarse divisions such as shallow- versus
deep-water, siliciclastic versus carbonate, and fine- versus coarse-

Spatial standardization of occurrence data 5

https://doi.org/10.1017/pab.2023.36 Published online by Cambridge University Press

https://doi.org/10.1017/pab.2023.36


grained substrate settings (Nürnberg and Aberhan 2013; Antell
et al. 2020). Environmental data in large public databases should
be treated with appropriate suspicion. As with all variables in big
data, inconsistencies in data-entry lexicons and outright errors
abound. Data vetting is critical to any analytic workflow, not
only as a preliminary step but recurring throughout investigation,
as additional data inconsistencies may appear. An alternative
approach to estimate water depth is to pair occurrence coordinates
with paleo–digital elevation models (e.g., Close et al. 2020),
although such models also contain large imprecision.

Considerations for Analysis of Spatial Subsamples

Statistical Properties of Subsamples

There are several ways analysis differs when based on subsamples
instead of a single dataset of full geographic extent. Subsampling

is already common in paleobiology in the forms of bootstrapping
tests and richness estimators (including shareholder-quorum sub-
sampling), and many ecology texts are available to describe these
applications and their properties (e.g., Bolker 2008; Chao and Jost
2012; Close et al. 2018). Here, we review statistical features to con-
sider in the specific case of spatial subsampling.

One obvious feature of a subsample is that it contains only a
subset of the information in the full dataset. Nevertheless, after
iterating a subsampling procedure, many or all observations
may be represented in at least one subsample and so still contrib-
ute to the overall analysis. Each subsample generates ecological
estimates that are meaningfully comparable to those of any
another subsample. This equivalency facilitates fair ecological
comparisons between time steps or environments, or between
organismal groups that differ in fossil record coverage.

Variance among subsamples broadly reflects variance among
geographic regions. To the degree that the area and location of

Figure 2. Five spatial subsamples of Pliocene bivalve occurrences from the Paleobiology Database (available as data object bivalves in the R package divvy). For
each subsample, site dispersion is constrained by a circle of 3000 km diameter (A) or a minimum spanning tree with maximum great circle distance of 3000 km (B).
Within each subsampling region, the number of occurrence sites is rarefied to 12 (open circles). Sites are raster grid cells of approximately equal area and shape.
The random points to initiate subsamples are identical in A and B. Note that subsamples here are impervious to potential biogeographic barriers, for example, the
Isthmus of Panama, which was not emergent for the full duration of the Pliocene. Subsamples can also overlap with each other, as shown in southeastern North
America for two circular subsamples and three minimum spanning trees. Subsamples with overlapping regional boundaries may differ in the random subsets of
sites they contain.
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subsamples correspond to bioregions (Fig. 2), error bars from
subsampled estimates within a category (e.g., time bin) thus indi-
cate a first-order signal of biogeographic heterogeneity.
Empirically, total variance reflects the sum signal of both biogeo-
graphic heterogeneity and stochasticity, in the sense of true ran-
dom differences. Estimating the relative contributions of these
factors may be cumbersome or impossible in most cases.
Therefore, variance of subsampled estimates should be interpreted
as arising both from error in estimating true values within regions
and from spread in the true values across regions. It may be mis-
leading to label ranges of subsampled estimates as confidence
intervals, which implies variance surrounding a single, meaning-
ful population mean. A single mean across the world rarely exists
for biodiversity data. A neutral phrasing to discuss variance
among subsample estimates within a category could be just that:
a given quantile range of values across subsamples, corresponding
to regional variation in population means, with error.

Power Analysis

No standardization procedure fully eliminates the biases it aims to
correct. Rather, the goal of standardization is to reduce the effect
size of biases to less than that of the hypothesized signal under
investigation. Unfortunately, in many cases, the strength of
expected signal is unknown, which may have been the impetus
for conducting the study in the first place. In studies where anal-
ysis returns null results, uncertainty about a signal’s effect size can
lead to uncertainty of whether to infer the true absence of that sig-
nal or merely insufficient power to detect it (Altman and Bland
1995). Power analyses can foresee and sometimes remediate
such scenarios.

A power analysis generates an equation to relate effect size,
sample size, significance threshold (probability of rejecting the
null hypothesis when true; ceiling for allowed chance of type I
error), and statistical power (probability of rejecting the null
hypothesis when false; limit on type II error). Experimental,
resource-intensive studies such as clinical trials solve this equation
for the minimum sample size sufficient to detect a given effect
size at a given significance threshold (usually 5%) and power
(usually 80%). For analysts of natural experiments such as the fos-
sil record, sample size is usually a given, and an alternative goal
may be to solve for the power to detect the signal at a given
strength or range of strengths. Many bespoke software tools are
already developed for power analysis of specific statistical tests
or models, such as the R packages SIMR for generalized linear
mixed-effects models (Green and MacLeod 2016) and pwr for
t-tests, analysis of variance, Pearson correlation, and other com-
mon parametric tests (Champely 2020). Simulations are a flexible
strategy to approach power analysis within any statistical frame-
work (Bolker 2008).

An example of simulation-based power analysis in paleobiol-
ogy is one conducted by Antell et al. (2020), reanalyzed in the
case study presented in this article. After PBDB data were spatially
standardized, results indicated a lack of relationship between the
predictor (regional species count) and dependent variable (geo-
graphic range size). To estimate the study’s power to detect the
hypothesized nonzero relationship between these variables, the
authors simulated a biotic signal at a range of magnitudes and cal-
culated the probability of correctly recovering the signal given
empirical subsample sizes. In this case, the analysis retained
strong power to detect true signal even after subsampling
(Antell et al. 2020: SI fig. 3, SI Methods section S3.3). However,

there is no guarantee of such an outcome for every PBDB
study. Spatially explicit neutral models are a related class of sim-
ulation with recent application in paleobiology; Dunne et al.
(2023) used this approach to demonstrate that the putative tetra-
pod radiation after the Carboniferous rainforest collapse can be
explained entirely through increased spatial sampling coverage
instead of increased endemism and speciation.

Power analysis remains an underutilized tool with valuable
potential in paleobiology and macroecology. If more studies in
these fields were to estimate their power or significance, it is pos-
sible many would find the present sample size and distribution of
fossil occurrences insufficient to reliably detect the signals they
aim to identify. The low-power problem is well documented in
related fields such as ecology and animal behavior (Smith et al.
2011; Kimmel et al. 2023), and the large number of study designs,
analytic modes, and tested relationships practiced in paleoscience
make it susceptible to the problem (Ioannidis 2005). A finding of
insufficient power is useful: although it would be wise to exercise
restraint in pursuing an investigation until sufficient data became
available to address the research question robustly (Nanglu and
Cullen 2023), the power analysis alone would be a valuable con-
tribution to identify the exact scope of further data required
and redirect collection efforts to address that targeted need.

Case Study: Consequences of Analyzing Non-standardized
Data

A recent study by Antell and others (2020) set out to quantify the
degree to which species’ geographic distributions through time
reflected the number of species that might be in competition.
The classic and intuitive theory of ecological release posits that
competition restricts species’ resource use and thereby abundance
and geographic distribution: when many species compete over
limited resources, each species on average will have a smaller
share, reducing reproduction and population expansion
(Roughgarden 1972). This expectation of an inverse diversity–dis-
tribution relationship has large-scale consequences for both mac-
roecology and macroevolution, as a possible explanation for
diversity-dependent mathematical patterns of diversification—
the self-regulation of extinction and speciation rates (Alroy
et al. 2008; Rabosky 2013; Aguilée et al. 2018; Foote 2023; Pie
et al. 2023). Testing the relationship between diversity and geo-
graphic range size at the large scales of these hypotheses is far
from straightforward, however, because both variables share
tight correlations with the geographic coverage of sampling.

One method of standardizing estimates of geographic range
size for heterogeneous sampling coverage through time is calcu-
lating proportional occupancy: the number of occupied sites or
raster grid cells as a fraction of all sampled sites or cells.
Proportional occupancy has many precedents in the paleobiolog-
ical literature (e.g., Foote et al. 2007; Harnik et al. 2012; Finnegan
et al. 2015). Here, we reanalyze the data from Antell et al. (2020)
to calculate mean proportional occupancy of species in each time
bin. Data consist of PBDB occurrences from ∼17,000 brachiopod
and bivalve species from all marine sites throughout the
post-Cambrian Phanerozoic, binned to equal-area grid cells (aver-
age width 100 km) in 63 time bins (Appendix Table A1). The cor-
relation between mean proportional occupancy and species count,
as a proxy for number of potential competitors, is plotted in
Figure 3A. Corrected for time-series correlation by pre-whitening
the predictor time series as residuals of a first-order autoregressive
model (as in all correlations reported throughout this section), the
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Kendall’s tau correlation coefficient is −0.42 (95% confidence
interval [−0.56, −0.27]). This result is a stunningly strong corre-
lation, in agreement with the negative relationship posited by eco-
logical theory—but is it trustworthy?

The species–area effect induces strong relationships between
observed richness and geographic sampling coverage.
Figure 4A,B plots species count against spatial coverage of sam-
pling; positive relationships appear in both plots, with magni-
tudes large enough to explain the entirety of the focal
correlation in the preceding paragraph. Species count increases
approximately linearly as a function of the number of equal-
area grid cells in a time bin (Fig. 4A), with a nonparametric
correlation (Kendall’s tau) of 0.41 (95% CI = [0.26, 0.56];
Appendix Fig. A1A). Species count also increases monotoni-
cally as a function of the dispersion of sampled sites in a
time bin (summed distance of minimum spanning tree con-
necting all occupied cell centroids), as plotted in Figure 4B.
The correlation magnitude was similar, with tau of 0.44 (95%
CI = [0.31, 0.56]; Appendix Fig. A1B). However, the shape of
the latter relationship appears nonlinear, consistent with an
exponential or power law form, as is common for species–
area relationships (Matthews et al. 2016).

The relationship between geographic sampling coverage and
range size as measured by proportional occupancy is equally
strong but negative in direction. Proportional occupancy
decreases sharply as a function of either equal-area grid cells in
a time bin (Fig. 4C and Appendix Fig. A1C, tau = −0.67, 95%
CI = [−0.77, −0.55]) or dispersion of those grid cells (Fig. 4D
and Appendix Fig. A1D, tau =−0.65, 95% CI = [−0.74, −0.54]).
This result can be explained by fluctuations in coverage of the
enormous study area through time, which disproportionately
impact the numerator and denominator of fractional occupancies.
With more extensive sampling, linear increases in the denomina-
tor (total sampling area, with a maximum size of the planet’s sur-
face area) outpace modest increases in the numerator (observed
range size, which has an asymptotic limit at the true range size
of a species). Furthermore, the scaling of mismeasurement in pro-
portional range size is unequal between taxa: as study area
increases beyond the extent of a species’ geographic range, the dif-
ference in proportional occupancy of widespread species will be
greater than that of restricted species (mathematical proof in
Antell et al. (2020): SI Methods S1).

Proportional occupancy is inadequate to standardize differen-
tial spatial coverage of fossil occurrences through time. Detection

Figure 3. Scatter plots indicate the relationship between species count and mean per-species occupied grid cells in 63 time bins, either as a proportion of all
occupied grid cells (A) or as a count within subsample regions of 12 cells (B). Outlier points are labeled by geological stage and overplotted on C: Ar,
Artinskian; Gz, Gzhelian; Hir, Hirnantian. C, Species count in each stage, either tallied globally (dashed line) or within subsampled regions (solid line). Note log-
arithmic y-axis scale in C. Error bars in B and C denote interquartile range across 500 replicate subsampled regions. Geological periods: O, Ordovician; S, Silurian; D,
Devonian; C, Carboniferous; P, Permian; Tr, Triassic; J, Jurassic; K, Cretaceous; Pg, Paleogene; N, Neogene.
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ratios, a similar metric used in ecology, have received analogous
criticism (Reitan et al. 2022). However, spatial subsampling repre-
sents a viable alternative to measure geographic range size as well
as species richness, because the method can control sampling area
and dispersion directly. The original 2020 study tested 12 varia-
tions of subsampling methods for the global occurrence dataset.
Here, we reanalyze data from the main text results: 500 replicates
of subsampling with a quota of 12 equal-area grid cells in regions
defined by a 1500 km radius. The cells within each circular region
were drawn with weighted probabilities inversely proportional to
the square of the distance from the subsampling center point, a
procedure designed to further limit dispersion of samples where
sufficient data were available closer to the center.

Subsampling successfully diminished the dominating signa-
ture of spatial coverage in the study variables: the corrected
tau correlation between species count and site dispersion cen-
tered on zero (Appendix Table A2). Large fluctuations in spe-
cies count present in the global curve were strongly
moderated in subsampled estimates, particularly in the

Permian and Cenozoic (Fig. 3C), matching the substantive
changes in global richness curves for all marine genera follow-
ing regional subsampling (Close et al. 2020). Geographic
range size was measured as mean count of occupied cells (out
of 12) among species in each subsample, excluding singly occur-
ring species; dividing by the total number of cells to derive pro-
portional occupancy was unnecessary, because every subsample
contained the same number of cells, by design. Species count
and mean occupancy were substantially more independent in
subsampled data (Fig. 3B, Appendix Table A2; tau = −0.11,
95% CI = [−0.25, 0.01]), compared with face-value data
(Fig. 3A). When range size was measured as median summed
minimum spanning tree length, this independence was even
clearer (tau = −0.06, 95% CI = [−0.19, 0.08]). Thus, the overall
conclusions drawn from unstandardized data—that a negative
relationship exists between range size and species count, con-
gruent with the hypothesis of ecological release—dissipates
entirely after accounting for the joint influence of heteroge-
neous spatial coverage on range size and species count.

Figure 4. Scatter plots indicate the pairwise relationship between either species count (A and B) or mean proportional occupancy of equal-area grid cells (C and D)
and spatial sampling coverage, measured as either a count of grid cells (A and C) or summed length of minimum spanning tree connecting occupied cell centroids
(B and D). Outlier points are labeled by the earliest geological stage of a time bin, here and on the timescale in Fig. 3C: Ar, Artinskian; Gz, Gzhelian.
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divvy: Spatial Subsampling and Analytic Tools in R

The preceding sections reviewed both theoretical and empirical
justifications for spatial subsampling in paleobiology and ecology
(and also note Barnosky et al. 2005; Marcot et al. 2016; Close et al.
2017, 2020; Antell et al. 2020: SI Methods S3; Benson et al. 2021;
and references therein). However, despite vigorous discussion of
this topic, accessible tools for spatial subsampling of taxon
occurrence data have remained limited. This lack of shared
protocols and standards for data processing hinders the wider
adoption of spatial standardization in quantitative paleobiology
(Dillon et al. 2023). Although the code for many spatial sub-
sampling methods has been made public alongside the papers it
supports, there is seldom comprehensive documentation, human-
readable syntax, and ongoing maintenance (e.g., bug patches) for
publication-associated code to the same standards of standalone
published software. Additionally, many spatial analysis scripts in
paleobiology and ecology have used functions from the R pack-
ages sp and raster, which were recently deprecated, and the
dependent packages maptools, rgdal, and rgeos, which were
retired in 2023. There is a need for formal, actively maintained
tool kits to perform common spatial analysis steps in paleobiol-
ogy, similar to the divDyn and palaeoverse packages of tools to
streamline common data manipulation tasks (e.g., time-binning)
and perform common calculations (e.g., extinction and origina-
tion rates) in paleobiology (Kocsis et al. 2019; Jones et al. 2023).

The new R package divvy (Antell 2023) helps address current
research community needs by implementing three versions of
spatial subsampling methods, as well as related tools to quantify
spatial coverage of taxon occurrences. Each function is fully doc-
umented, with references and examples, and the undergirding
spatial calculations are built on the sf and terra packages—the
replacements for now-unsupported R spatial packages. Spatial
subsampling in divvy is operationalized in the following
functions:

1. cookies: imposes a radial constraint on the spatial bounds of a
subsample and standardizes area by rarefying the number of
localities (Fig. 2A);

2. clustr: aggregates sites that are nearest neighbors (connecting
them with a minimum spanning tree) to impose a maximum
diameter on the spatial bounds of a subsample, and optionally
rarefies localities (Fig. 2B); and

3. bandit: rarefies the number of localities within bands of equal
latitudinal range.

These functions are adapted from previously published paleobio-
logical methods. Circular subsampling follows the assemblage-
based subsampling framework of Antell et al. (2020), wherein
the user can specify the number of subsampling iterations, radius
of a subsampling region, number of sites, and whether to select
sites at random or with weighted probability to tighten their
spatial aggregation. Nearest-neighbor subsampling modifies the
procedure of Close et al. (2020), wherein the user can specify
the number of subsampling iterations, maximum distance across
a subsampling region (spanning tree), and, optionally, number of
sites. Site rarefaction was not conducted in the original study but
is added as a feature in divvy, for comparability with the other
methods and in keeping with the theory described earlier, to
standardize both area/sites and dispersion of occurrences. The
third subsampling method, rarefaction of sites within latitudinal
bands, has precedent in Marcot et al. (2016). The overall extent

of latitudinal bins is unequal; there is more available surface in
equally spaced latitudinal bands near the equator due to the
spherical shape of the Earth, and longitudinal distributions of
sampling also differ between bands in most empirical cases.
Rarefaction within latitudinal bands accounts for only the area/
site count and not longitudinal dispersion of subsampled locali-
ties. However, given the prevalence of paleobiological studies
investigating gradients across latitudinal bins, site rarefaction
alone represents an important improvement in standardization.

Additional functions available in divvy (v. 1.0.0) include uni-
qify to subset an occurrence dataset to unique taxon-coordinate
combinations, sdSumry to calculate basic spatial coverage and
diversity metadata for a dataset or its subsamples, rangeSize to cal-
culate five measures of geographic range size, and classRast to
generate a raster containing the most common environment or
trait for point occurrences falling in each grid cell. These helper
functions are designed to assist in basic data exploration, format-
ting, and analysis, regardless of any spatial subsampling. For
instance, the analytic script to generate Figures 1 and 2 uses uni-
qify and sdSumry to quickly compute species count, total sampled
sites, and dispersion of sampled sites in each time bin of the non-
standardized full dataset.

There are several vignettes published as part of divvy and avail-
able through the package index at the Comprehensive R Archive
Network (CRAN) https://cran.r-project.org/web/packages/divvy/
index.html or the package website https://gawainantell.github.io/
divvy. The subsampling tutorial gives rationale, practical consid-
erations, and code demonstrations for three types of subsampling
on one of the PBDB datasets included in the package. The case
study compares geographic range size between different marine
environments and ecological groups of Silurian brachiopods.
The conceptual walkthrough illustrates subsampling steps with
diagrams. Together, these articles give example code in empirical
contexts for all divvy functions as complements to the short,
abstract examples included in the help documentation.

Discussion

State of the Field

Because of the spatial structure in biodiversity itself, differential
geographic coverage of observations—whether of living species
or fossil taxa—will always bias ecological comparisons between
time intervals or world regions if left unmitigated. Geological
and human sampling processes further distort inferences of bio-
diversity distributions. These influences cannot be addressed ade-
quately by the inclusion of rarefaction or other nonspatial
standardization procedures during analysis (Bush et al. 2004;
Close et al. 2020). Explicit spatial standardization is necessary
to discern truthful information about past ecosystems.

The magnitude and direction of bias from non-uniform spatial
coverage varies with context. There could exist cases where esti-
mated spatial sampling signal is weaker than the theorized signal
of the primary phenomenon of interest, in which instances,
analysts could justifiably disregard heterogeneous geographic
sampling. Nevertheless, it is prudent in every study to consider
the possible ways and extent to which variable spatial coverage
could affect results and inferences. When analyses are repeated
with spatial standardization, the outcome may not only be adjust-
ment of point estimates or refinement of confidence intervals, but
reversals or nullifications of the biggest conclusions, as in the case
study presented earlier.
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A proliferation of negative results from spatially standardized
data is perhaps unsurprising. The primacy of sampling signal in
raw occurrence data, coupled with the pressure to publish positive
results, potentially means that many findings in the paleobiolog-
ical literature could reflect biases that are misinterpreted as bio-
logical signal. Conversely, it is possible some past conclusions
will be strengthened after controlling for spatial structure of sam-
pling. Considering the ample potential for negative results, rou-
tine use of power analyses may aid interpretation by estimating
the probability that analysis would be able to detect a true signal
if present, given empirical data size and distribution.

Not only are results based on unstandardized data potentially
misleading or outright wrong, but unqualified visualizations of
global curves are uninterpretable. Due to geological and human
sampling distributions and the species–area effect, any global
diversity curve reflects not only diversity but also area and disper-
sion of observation. When a global diversity curve is presented
without additional information about its compartmentalization
across spatial regions, it is impossible to deduce how much of
the global richness at any given time step was contributed by orig-
inal biological diversity and how much by variation in the com-
pleteness of knowledge about the fossil record (Raup 1976;
Vilhena and Smith 2013; Benson et al. 2021). Analogous prob-
lems occur with global curves of other parameters besides diver-
sity, for example, diversification and extinction rates (Allen et al.
2023) and proxy temperature averages (Jones and Eichenseer
2022).

Fortunately, improvements in data access and computing
capacity in recent decades have enabled the development and dis-
tribution of spatial-standardization analysis tools. Multiple
research teams have designed methods to account for unequal
area and dispersion of taxon occurrences between time steps or
other comparison categories, several of which are formalized in
the new R package divvy (Antell 2023). As access to software
for spatial standardization and other standardization methods
improves, more research teams might reevaluate foundational
research questions in quantitative paleobiology with tighter statis-
tical control. Given that global curves have been a staple of the
discipline and feature prominently in discussion of the diversifica-
tion of life on Earth (e.g., Sepkoski et al. 1981; Alroy 2010), broad
adoption of spatial standardization in future studies might impel
far-ranging revisions for long-standing assumptions about pat-
terns and processes in paleoecology and evolutionary biology.

Development of Data Collection, Analysis, and Reporting

We must confront the uneven spatial distributions of recorded
paleontological knowledge not only scientifically through
statistical means but also societally through material means: sub-
sampling can work around data gaps but cannot fill them.
Sustained investment in Western science in many former coloniz-
ing countries has generated overproportionate quantities of fossil
data for a minority of Earth’s surface, primarily in the Global
North and at the expense of the Global South (Rodney 2018;
Raja et al. 2022). Generating a truly global map of fossil biodiver-
sity will require specimen repatriation to former colonized coun-
tries, reparations to support scientific capacity-building,
decolonization of access to literature, de-Anglicization of publish-
ing, and accreditation of traditional knowledge and classification
systems (Liboiron 2021; Nuñez et al. 2021). Resultant data should
be stewarded under the FAIR guiding principles of open access
(i.e., Findable, Accessible, Interoperable, and Reusable) and in

accordance with CARE Principles of Indigenous Data
Governance (i.e., managed for Collective benefit on intergenera-
tional timescales, respecting sovereign Authority to control access,
practicing Responsibility towards Indigenous worldviews and
relationships, and following Ethics for minimizing harm and
ensuring justice in future use; https://www.gida-global.org/care)
(Wilkinson et al. 2016; Carroll et al. 2020; Jennings et al. 2023).

With respect to data analysis, underdeveloped methods
include (1) the treatment of abundance data within sites, (2) rar-
efaction of data lists such as references and collections, and (3)
refining spatial subsampling methods for sensitivity to changing
geographic configurations of bioregions and continents through
time. First, harmonizing the disparate practices for reporting
abundance data (e.g., as counts, proportions, or ordinal values)
will enable big data analyses to equalize the frequency distribution
coverage of taxa within each site. This step might prove a neces-
sary addition to controlling the number and dispersal of sites, to
standardize alpha diversity more completely. Whether or not
sampling bias would be further reduced with rarefaction of the
number of data citations or sources (e.g., references and collec-
tions in PBDB data) is unclear. Studies that have rarefied these
data lists within regionally constrained subsamples (e.g., Marcot
2014; Close et al. 2017; Womack et al. 2021) omitted rarefaction
of sites, while work that rarefied sites omitted rarefaction of data
lists (e.g., Antell et al. 2020). As discussed earlier in “Collections
and Other Data Lists,” sites and lists may be partially redundant
data structures. However, it is possible that spatial standardization
could be refined by thoughtful application of rarefaction for both
sites and lists. When abundance data are lacking but large dispar-
ities in collector effort exist across sites, standardizing publication
counts might serve as a particularly salient addition to spatial
standardization.

A third issue unaddressed by major subsampling approaches is
(paleo)continental configuration. It remains an open question
whether sensitivity to the geography of coastlines and major bio-
geographic barriers is desirable for spatial subsampling. At pre-
sent, the three subsampling routines implemented in divvy are
agnostic to global geography. Until there are widely adopted,
objective, automated methods to partition bioregions, the choice
of where to draw uncrossable limits for regional subsamples will
involve manual analytic choices (e.g., Close et al. 2017). This chal-
lenge is heightened by the extremeness of continental reconfigu-
ration that has occurred over Phanerozoic-scale study intervals:
entire oceans and seaways have opened and closed over that
time span, preventing any through-ranging analysis of marine
biodiversity tracked in the same regions.

It is important for the fidelity of future studies that the paleo-
biology community continue to discuss and converge upon data-
processing and analytic standards, including but not limited to
spatial subsampling methods. The larger the number of possible
methods to analyze a dataset, the less likely an individual reviewer
will have enough familiarity with the specific method used to pro-
vide technical critique, and the more opportunities (whether
unconscious or accidental) for authors to select a method that
generates results in line with expected answers (Ioannidis 2005;
Simmons et al. 2011). Analysts should always select methodolog-
ical approaches to address research questions in the most direct
and robust ways, without prejudice against negative or inconclu-
sive results. Another safeguard against misplaced conclusions is to
run many variations of an analysis and note how sensitive the
results may be to methodological choices. Finally, we should wel-
come null findings, circumspect conclusions, and corrections to
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prior publications as valuable and generative contributions to
paleobiological knowledge.

At the publication stage of projects, there are evidence-backed
strategies that research communities can employ to strengthen the
impartiality and transparency of reported findings. Trials in other
scientific disciplines also offer lessons about interventions
unlikely to change publishing culture—for example, education
campaigns about scientific integrity have yet to demonstrate
clear empirical benefits (Marusic et al. 2016). Similarly, raising
expectations of reviewers and editorial teams is unrealistic as a
solution (Nosek et al. 2012). Concrete guidance in the form of
reviewer checklists might prove more effective, for instance,
with items such as reporting of sample size, geographic data cov-
erage, effect size, standardization procedures, and results repeated
when excluded data points are included (Simmons et al. 2011;
Nosek et al. 2012). Additionally, journals could shift publication
standards from perceived importance to explicit criteria of sound-
ness, especially given the poor track record of peer review at iden-
tifying importance (for a review, see Nosek et al. 2012).

Call to Action

Some of the earliest writings in quantitative paleobiology demon-
strated the need to correct synoptic diversity curves for spatial
heterogeneity of sampling through time (Gregory 1955; Raup
1976). Now, more than half a century later, the unprecedented
availability of fossil occurrence data and computational infrastruc-
ture has actualized the possibility of doing so. Adopting spatial
standardization as a routine component of analysis is a grand
challenge for quantitative paleobiology (Dillon et al. 2023) but
also a grand opportunity to make the field more truthful, more
reproducible, and more credible to ecologists, conservation biolo-
gists, and practitioners who draw on life sciences findings to
inform policy.
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Appendix

Appendix Table A1. Time bins to divide the global Phanerozoic dataset (n = 63). A species’ occurrence record was included in a time bin if the name or age of both
its maximum and minimum occurrence estimates fell within the onset and terminus ages (in Ma) for the bin. During binning, ages were rounded to the nearest 0.01
Ma for boundaries younger than 10 Ma, 0.1 Ma for boundaries 50–150 Ma, or 1 Ma for boundaries older than 150 Ma. The number of unique occurrences for each
species is tallied for each time bin. Replicated from table S1 in Antell et al. (2020).

Name Onset Terminus Duration Occurrences

Tremadocian, Floian 485.4 470.0 15.4 196

Dapingian, Darriwilian 470.0 458.4 11.6 347

Sandbian, Katian 458.4 445.2 13.2 1226

Hirnantian 445.2 443.8 1.4 394

Rhuddanian, Aeronian 443.8 438.5 5.3 411

Telychian 438.5 433.4 5.1 337

Sheinwoodian, Homerian 433.4 427.4 6.0 1072

Gorstian, Ludfordian 427.4 423.0 4.4 924

Pridoli 423.0 419.2 3.8 313

Lochkovian, Pragian 419.2 407.6 11.6 1141

Emsian, Eifelian 407.6 387.7 19.9 914

Givetian 387.7 382.7 5.0 1293

Frasnian 382.7 372.2 10.5 937

Famennian 372.2 358.9 13.3 371

Tournaisian 358.9 346.7 12.2 641

Visean 346.7 330.9 15.8 607

Serpukhovian, Bashkirian 330.9 315.2 15.7 344

Moscovian, Kasimovian 315.2 303.7 11.5 561

Gzhelian 303.7 298.9 4.8 613

Asselian, Sakmarian 298.9 290.1 8.8 1716

Artinskian, Kungurian 290.1 272.9 17.2 2937

Roadian 272.9 268.8 4.1 1596

Wordian 268.8 265.1 3.7 1621

Capitanian 265.1 259.1 6.0 1342

Wuchiapingian 259.1 254.1 5.0 2451

Changhsingian 254.1 251.9 2.2 2411

Induan, Olenekian 251.9 247.2 4.7 430

Anisian 247.2 242.0 5.2 782

Ladinian 242.0 237.0 5.0 284

Carnian 237.0 227.0 10.0 503

Norian 227.0 208.5 18.5 689

Rhaetian 208.5 201.3 7.2 481

Hettangian, Sinemurian 201.3 190.8 10.5 581

Pliensbachian 190.8 182.7 8.1 1296

Toarcian 182.7 174.1 8.6 866

Aalenian, Bajocian 174.1 168.3 5.8 588

Bathonian 168.3 166.1 2.2 659

Callovian 166.1 163.5 2.6 719

Oxfordian 163.5 157.3 6.2 437

(Continued )
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Appendix Table A1. (Continued.)

Name Onset Terminus Duration Occurrences

Kimmeridgian 157.3 152.1 5.2 304

Tithonian 152.1 145.0 7.1 486

Berriasian 145.0 139.8 5.2 317

Valanginian, Hauterivian, 139.8 125.0 14.8 656

Barremian

Aptian 125.0 113.0 12.0 509

Albian 113.0 100.5 12.5 522

Cenomanian 100.5 93.9 6.6 590

Turonian 93.9 89.8 4.1 187

Coniacian, Santonian 89.8 83.6 6.2 709

Campanian 83.6 72.1 11.5 422

Maastrichtian 72.1 66.0 6.1 3197

Danian 66.0 61.6 4.4 363

Selandian, Thanetian 61.6 56.0 5.6 272

Ypresian 56.0 47.8 8.2 661

Lutetian, Bartonian 47.8 37.8 10.0 1893

Priabonian 37.8 33.9 3.9 993

Rupelian 33.9 27.8 6.1 773

Chattian, Aquitanian 27.8 20.4 7.4 632

Burdigalian 20.4 16.0 4.5 817

Langhian, Serravallian 16.0 11.6 4.3 2056

Tortonian, Messinian 11.6 5.3 6.3 1760

Zanclean 5.3 3.6 1.7 934

Piacenzian 3.6 2.6 1.0 1333

Pleistocene 2.6 0.0 2.6 2204
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Appendix Table A2. Kendall’s τ (tau) coefficient estimates and 95% quantiles (from 500 subsamples) for pairwise nonparametric correlations between subsampled
species count, mean occupied grid cells (excluding singly occurring species, and out of 12 cells in a subsample), and aggregation of sampling sites (summed length
of minimum spanning tree connecting subsampled cell centroids). In each correlation, the predictor time series was pre-whitened with a first-order autoregressive
model; the residuals of this model were correlated with the response series to account for temporal autocorrelation.

Correlation with predictor time series

Species count Sampling aggregation

Response series Mean 95% Mean 95%

Mean occupancy −0.11 (−0.25, 0.01) −0.17 (−0.32, −0.03)

Species count 1.00 (1.00, 1.00) −0.01 (−0.14, 0.12)

Figure A1. Kendall’s τ (tau) coefficient distributions for correlations between (A) global species count and total occupied cells (sampling area), (B) global species
count and summed minimum spanning tree length between occupied cells (sampling dispersion), (C) mean proportional species occupancy and sampling area,
and (D) mean proportional occupancy and sampling dispersion. Figure 4 panels plot the corresponding scatter plot for each correlation.
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