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Parametric Representation
of Univalent Mappings
in Several Complex Variables

Ian Graham, Hidetaka Hamada and Gabriela Kohr

Abstract. Let B be the unit ball of Cn with respect to an arbitrary norm. We prove that the analog of
the Carathéodory set, i.e. the set of normalized holomorphic mappings from B into Cn of “positive
real part”, is compact. This leads to improvements in the existence theorems for the Loewner differ-
ential equation in several complex variables. We investigate a subset of the normalized biholomorphic
mappings of B which arises in the study of the Loewner equation, namely the set S0(B) of mappings
which have parametric representation. For the case of the unit polydisc these mappings were studied
by Poreda, and on the Euclidean unit ball they were studied by Kohr. As in Kohr’s work, we consider
subsets of S0(B) obtained by placing restrictions on the mapping from the Carathéodory set which
occurs in the Loewner equation. We obtain growth and covering theorems for these subsets of S0(B)
as well as coefficient estimates, and consider various examples. Also we shall see that in higher dimen-
sions there exist mappings in S(B) which can be imbedded in Loewner chains, but which do not have
parametric representation.

1 Loewner Chains and Biholomorphic Mappings in Cn

Let Cn denote the space of n complex variables z = (z1, . . . , zn) ′, equipped with an
arbitrary norm ‖ · ‖. The symbol ′ means the transpose of vectors and matrices. Let
Br = {z ∈ Cn : ‖z‖ < r} and let B = B1. In the case of one complex variable Br

is denoted by Ur and U1 by U . If G ⊂ Cn is an open set, let H(G) denote the set of
holomorphic mappings from G into Cn. If f ∈ H(Br), we say that f is normalized
if f (0) = 0 and D f (0) = I. Let S(Br) be the set of normalized biholomorphic
mappings in H(Br). The set of normalized convex (respectively starlike) mappings of
Br is denoted by K(Br) (respectively S∗(Br)). When n = 1, the sets S(U ), S∗(U ) and
K(U ) are denoted by S, S∗ and K respectively.

By L(Cn,Cm) we denote the space of continuous linear operators from Cn into
Cm with the standard operator norm. Let I denote the identity in L(Cn,Cn). For each
z ∈ Cn\{0}, let T(z) = {lz ∈ L(Cn,C) : lz(z) = ‖z‖, ‖lz‖ = 1}. This set is nonempty,
by the Hahn-Banach theorem. It is used to define mappings of B of “positive real
part”. When ‖ · ‖ is the Euclidean norm, T(z) reduces to only one element given by
lz(w) = 〈w, z/‖z‖〉, w ∈ Cn, for any z ∈ Cn \ {0}, where 〈u, v〉 =

∑n
j=1 u j v̄ j is the

Euclidean inner product of Cn.
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We recall that a mapping F : B× [0,∞)→ Cn is called a Loewner chain if F(·, t) is
biholomorphic on B, F(0, t) = 0, DF(0, t) = et I for t ≥ 0 and

F(z, s) ≺ F(z, t), z ∈ B, 0 ≤ s ≤ t <∞,

where the symbol≺means the usual subordination.
It is known that starlikeness can be characterized in terms of Loewner chains:

f ∈ S∗(B) iff f (z, t) = et f (z), z ∈ B, t ≥ 0, is a Loewner chain [Pf-Su1]. For the
analytical characterization of starlikeness the reader may consult [Su1] and [Su2].

A locally biholomorphic mapping f ∈ H(B), normalized by f (0) = 0 and
D f (0) = I, is called close-to-starlike if there is a mapping g ∈ S∗(B) such that

Re lz
(

[D f (z)]−1g(z)
)
> 0,

for all z ∈ B \ {0} and lz ∈ T(z).
Let C(B) denote the set of close-to-starlike mappings on B. Pfaltzgraff and Suf-

fridge [Pf-Su1] showed that close-to-starlikeness can be also characterized in terms
of Loewner chains: f ∈ C(B) iff there is a mapping g ∈ S∗(B) such that

f (z, t) = f (z) + (et − 1)g(z), z ∈ B, t ≥ 0,

is a Loewner chain.
Next we recall the notion of spirallikeness, due to Gurganus [Gu] on the unit

Euclidean ball of Cn, and Suffridge [Su3] on the unit ball of a complex Banach space.
If A ∈ L(Cn,Cn) we define

m(A) = inf
{

Re lz
(

A(z)
)

: z ∈ Cn, ‖z‖ = 1, lz ∈ T(z)
}
.

Let A be such that m(A) > 0. A normalized biholomorphic mapping f ∈ H(B) is
called spirallike relative to A if f (B) is a spirallike domain with respect to A, that is

e−sA f (B) ⊂ f (B), s ≥ 0,

where

e−sA =
∞∑

k=0

(−1)k

k!
skAk.

Suffridge [Su3] showed that if f is a normalized locally biholomorphic mapping
on B, then f is spirallike relative to a linear operator A with m(A) > 0 if and only if

Re lz
(

[D f (z)]−1A f (z)
)
> 0, z ∈ B \ {0},

for each lz ∈ T(z).
If A = e−iαI, where α ∈ R, |α| < π/2, and f is spirallike relative to A, we say that

f is spirallike of type α ([Ha-Ko1]).
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Hamada and Kohr [Ha-Ko1] showed that spirallikeness of type α has the follow-
ing characterization in terms of Loewner chains: f is spirallike of type α if and only
if

f (z, t) = e(1−ia)t f (eiat z), z ∈ B, t ≥ 0,

is a Loewner chain, where a = tanα. However, it is known that in general a spirallike
mapping relative to an operator A cannot be “nicely” imbedded in a Loewner chain
on the unit ball B of Cn with n ≥ 2 [Ha-Ko1]. Let Ŝα(B) denote the set of spirallike
mappings of type α on B.

The set M of normalized mappings of “positive real part” on B plays a funda-
mental role in the study of the Loewner differential equation. As in [Ko3], we shall
introduce various subsets of M, and consider properties of the corresponding solu-
tions of the Loewner differential equation.

Definition 1.1 Let g : U → C be a holomorphic univalent function such that g(0) =
1, g(ζ̄) = g(ζ) for ζ ∈ U (so, g has real coefficients in its power series expansion),
Re g(ζ) > 0 on U , and assume g satisfies the following conditions

(1.1)

{
min|ζ|=r Re g(ζ) = min{g(r), g(−r)}
max|ζ|=r Re g(ζ) = max{g(r), g(−r)},

for r ∈ (0, 1). For example, the assumption (1.1) is satisfied by all functions which
are convex in the direction of the imaginary axis and symmetric about the real axis
(see [He-Sh]).

Let

Mg =
{

p ∈ H(B) :p(0) = 0,Dp(0) = I,

1

‖z‖
lz
(

p(z)
)
∈ g(U ), z ∈ B \ {0}, lz ∈ T(z)

}
.

Note that, if lz ∈ T(z) then

1

‖z‖
lz
(

p(z)
)

= 1 + O(‖z‖)→ 1 as z → 0.

For g(ζ) = (1 + ζ)/(1 − ζ), ζ ∈ U , we obtain the well known set Mg = M of
mappings with “positive real part on B”, i.e.

M =
{

p ∈ H(B) : p(0) = 0,Dp(0) = I,Re lz
(

p(z)
)
> 0, z ∈ B \ {0}, lz ∈ T(z)

}
.

We first establish coefficient estimates and upper bounds for the growth of map-
pings in M (compare with [Ko1]). These lead to the conclusion that M is compact.

Theorem 1.2 Let p ∈ M and Pm = 1
m! D

m p(0) for m ≥ 1. Then the following
assertions hold:
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(i)
∣∣ lz(Pm(z)

) ∣∣ ≤ 2 for m ≥ 2, ‖z‖ = 1 and lz ∈ T(z). These bounds are sharp
when B is the unit ball of Cn with respect to a p-norm, 1 ≤ p ≤ ∞.

(ii) ‖Pm(z)‖ ≤ 2km for m ≥ 2 and ‖z‖ = 1, where km = mm/(m−1).
(iii) for each r ∈ (0, 1) there is a constant M = M(r), which is independent of p, such

that ‖p(z)‖ ≤ M(r) for ‖z‖ ≤ r.

In fact M(r) ≤ 4r
(1−r)2 .

Proof Fix z ∈ Cn with ‖z‖ = 1 and lz ∈ T(z). Let q(ζ) = 1
ζ lz
(

p(ζz)
)

for ζ ∈ U \{0}
and q(0) = 1. Then q is holomorphic on the unit disc and Re q(ζ) > 0 on U .
Indeed, since there is a one-to-one correspondence between T(αz) and T(z) given by

lαz(·) = |α|
α lz(·), for each α ∈ C \ {0}, we obtain for ζ ∈ U \ {0} that

Re q(ζ) = Re
1

ζ
lz
(

p(ζz)
)

=
1

|ζ|
lζz

(
p(ζz)

)
> 0.

Thus q belongs to the Carathéodory class and hence∣∣∣ 1

m!
q(m)(0)

∣∣∣ ≤ 2, m ≥ 2

(see e.g. [Po]). On the other hand, using the Taylor expansion of q, we obtain

q(ζ) = 1 +
∞∑

m=1

1

m!
q(m)(0)ζm

= 1 +
∞∑

m=2

lz
( 1

m!
Dm p(0)(zm)

)
ζm−1.

Consequently, identifying the coefficients in the power series expansions, we deduce
that

q(m−1)(0) =
1

m
lz
(

Dm p(0)(zm)
)
, m ≥ 2.

The desired bounds in (i) now follow. In order to see that these bounds are sharp on
the unit ball of Cn with respect to a p-norm, 1 ≤ p ≤ ∞, let |λ| = 1 and

p(z) =
(

z1
1 + λz1

1− λz1
, . . . , zn

1 + λzn

1− λzn

) ′
,

for z = (z1, . . . , zn) ′ ∈ B. Then p ∈ H(B), p(0) = 0, Dp(0) = I and using the
expression of T(z) in [Su2, Section 2] we can show that Re lz

(
p(z)

)
> 0 for all

z ∈ B \ {0} and lz ∈ T(z).
We next prove the second statement. Our proof depends on an inequality given

in [Har] (also see [Har-Re-Sh]) which uses the numerical radius of a homogeneous
polynomial mapping to estimate the norm. Harris’ result is that if Pm : Cn → Cn is a
homogeneous polynomial mapping of degree m, then

‖Pm‖ ≤ km|V (Pm)|, m ≥ 1,
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where km = mm/(m−1) when m > 1 and k1 = e [Har, Theorem 1]. In this inequality
the norm of Pm is

‖Pm‖ = sup{‖Pm(z)‖ : z ∈ B̄},

and |V (Pm)| is the numerical radius of Pm, that is

|V (Pm)| = lim
s→1−0

sup{|λ| : λ ∈ V (Pm,s)},

where Pm,s(z) = Pm(sz), 0 < s < 1, and V (Pm,s) is the numerical range of Pm,s, i.e.,

V (Pm,s) =
{

lz
(

Pm,s(z)
)

: lz ∈ T(z), ‖z‖ = 1
}
.

Now, let Pm = 1
m! D

m f (0). Then Pm is a homogeneous polynomial of degree m
and thus we obtain

‖Pm‖ ≤ km|V (Pm)|.

Taking into account the first part of the proof and the above relations, we easily de-
duce that

|V (Pm)| ≤ 2, m ≥ 2,

and consequently
‖Pm‖ ≤ 2km, m ≥ 2.

This completes the proof of (ii). Finally it suffices to apply (ii), to deduce that

‖p(z)‖ ≤ r +
∞∑

m=2

‖Pm(z)‖ ≤ r
(

1 + 2
∞∑

m=2

kmrm−1
)

≤ r
(

1 + 4
∞∑

m=2

mrm−1
)

= M(r) ≤ 4r

(1− r)2
, ‖z‖ ≤ r < 1,

where we have used the fact that km ≤ 2m for m ≥ 2. This completes the proof.

Corollary 1.3 The set M is compact.

Proof It is clear that M is a normal family. Suppose that {pk}k≥1 is a sequence of
mappings in M which converges locally uniformly to p ∈ H(B). Then p(0) = 0,
Dp(0) = I, and if z is fixed with ‖z‖ = 1 and lz ∈ T(z), the function

q(ζ) =

{
1
ζ lz
(

p(ζz)
)
, ζ 6= 0

1, ζ = 0

is holomorphic on U and satisfies Re q(ζ) ≥ 0. But q(0) = 1 and hence Re q(ζ) > 0
for ζ ∈ U by the minimum principle for harmonic functions. This implies that
p ∈M.

The basic existence theorem for the Loewner differential equation on B (see [Pf,
Theorem 2.1]) can now be improved by omitting the boundedness assumptions on
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h(z, t). This property follows automatically from the fact that M is compact. We note
that for the case of the maximum norm ‖ · ‖, it is shown in [Por1, Corollary 1] that

‖h(z, t)‖ ≤ ‖z‖ · 1 + ‖z‖
1− ‖z‖

, z ∈ B, t ≥ 0.

We also explicitly state that the solution is locally Lipschitz in t locally uniformly
with respect to z ∈ B rather than just locally absolutely continuous in t . The Lipschitz
property may be used together with a version of Vitali’s theorem in several complex
variables (Theorem 1.9) to show that the exceptional set of measure 0 in t for which
the differential equation is not satisfied is independent of z.

Theorem 1.4 Let g : U → C satisfy the assumptions of Definition 1.1 and let ht (z) =
h(z, t) : B× [0,∞)→ Cn satisfy the following conditions:

(i) for each t ≥ 0, ht (·) ∈Mg ;
(ii) for each z ∈ B, h(z, t) is a measurable function of t ∈ [0,∞).

Then the limit

(1.2) lim
t→∞

et v(z, s, t) = f (z, s)

exists locally uniformly on B for each s ≥ 0, where v = v(z, s, t) is the unique solution
of the initial value problem

(1.3)
∂v

∂t
= −h(v, t), a.e. t ≥ s, v(s) = z.

The mapping v(z, s, t) = es−t z + · · · is a univalent Schwarz mapping on B and it is
a locally Lipschitz function of t ≥ s locally uniformly with respect to z ∈ B.

Moreover, f (z, s) = f
(

v(z, s, t), t
)

, z ∈ B, 0 ≤ s ≤ t < ∞ (thus f (z, s) is a
Loewner chain), f (z, ·) is a locally Lipschitz function on [0,∞) locally uniformly with
respect to z ∈ B, and for a.e. t ≥ 0,

∂ f

∂t
(z, t) = D f (z, t)h(z, t), ∀z ∈ B.

Proof We have to show that f (z, t) is a locally Lipschitz function of t ∈ [0,∞) locally
uniformly with respect to z ∈ B, and for almost all t ≥ 0,

∂ f

∂t
(z, t) = D f (z, t)h(z, t), ∀z ∈ B.

The other conclusions can be obtained directly from [Por3, Theorems 2 and 3] and
[Pf, Theorem 2.1]. (It is observed in the proof of [Pf, Theorem 2.1] that v(z, s, t) is a
locally Lipschitz function of t ≥ s locally uniformly with respect to z ∈ B.) We will
use similar arguments to [Por1, Lemma 4].
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Fix z0 ∈ B and let 0 ≤ s ≤ t <∞. From (1.3) one deduces that

v(z0, s, t)− z0 = −
∫ t

s
h
(

v(z0, s, τ ), τ
)

dτ .

Since [Pf, Lemma 2.2] holds on the unit ball of Cn with respect to an arbitrary
norm, we conclude that

(1.4)
‖v(z, s, t)‖(

1− ‖v(z, s, t)‖
) 2 ≤ es−t ‖z‖

(1− ‖z‖)2
, z ∈ B.

On the other hand, from the statement (iii) of Theorem 1.2, we obtain

(1.5) ‖v(z0, s, t)− z0‖ ≤ M(‖z0‖)(t − s).

From (1.2) and (1.4), we deduce that

‖ f (z, t)‖ ≤ et ‖z‖
(1− ‖z‖)2

, z ∈ B, s ≥ 0,

and using Cauchy’s integral formula it is not difficult to prove that for all T > 0 and
r ∈ (0, 1) there is an L = L(r,T) > 0 such that

(1.6) ‖ f (z1, t)− f (z2, t)‖ ≤ L‖z1 − z2‖, ‖z1‖ ≤ r, ‖z2‖ ≤ r, t ∈ [0,T].

Consequently, using the relations (1.5) and (1.6), we obtain

‖ f (z0, s)− f (z0, t)‖ =
∥∥ f
(

v(z0, s, t), t
)
− f (z0, t)

∥∥
≤ L‖v(z0, s, t)− z0‖ ≤ LM(t − s) = K(t − s),

for 0 ≤ s ≤ t ≤ T. Therefore, f (z0, ·) is Lipschitz on [0,T] locally uniformly with
respect to z0, for each T ≥ 0.

It remains to prove that

∂ f

∂t
(z, t) = D f (z, t)h(z, t), a.e. t ≥ 0, ∀z ∈ B.

For this purpose it suffices to differentiate both sides of the equality

f (z, s) = f
(

v(z, s, t), t
)

with respect to t and to use (1.3), to deduce that

0 = D f (w, t)|w=v(z,s,t)
∂v

∂t
(z, s, t) +

∂ f

∂t
(w, t)|w=v(z,s,t)

= −D f (w, t)|w=v(z,s,t)h
(

v(z, s, t), t
)

+
∂ f

∂t
(w, t)|w=v(z,s,t),
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for almost all t ≥ s ≥ 0 and all z ∈ B. This completes the proof.
Taking into account Theorem 1.4 we introduce the following definition (cf. [Por1],

[Ko3]. Also see [Ha-Ko2]).

Definition 1.5 Let g : U → C satisfy the assumptions of Definition 1.1. Also let
f ∈ H(B). We say f ∈ S0

g(B) if there is a mapping h : B × [0,∞) → Cn, satisfying
the assumptions from Theorem 1.4, such that

lim
t→∞

et v(z, t) = f (z)

locally uniformly on B, where v = v(z, t) is the unique solution of the initial value
problem

∂v

∂t
= −h(v, t), a.e. t ≥ 0, v(z, 0) = z,

for all z ∈ B.
The set S0

g(B) is called the set of mappings which have g-parametric representation
on B (cf. [Ko3]). If g(ζ) = (1 + ζ)/(1 − ζ), we denote the set S0

g(B) by S0(B), and
we call this latter set the set of mappings which have parametric representation on B (cf.
[Por1], [Ko3], [Ha-Ko2]).

It is clear that S0
g(B) ⊆ S0(B) ⊆ S(B) and in the case n = 1, S0(U ) = S, by

[Po, Theorems 6.1 and 6.3]. However, if n > 1, S(B) is a larger set than S0(B). On
the other hand, we shall prove that in several complex variables there are mappings
which can be imbedded in Loewner chains without having parametric representation
(Example 2.12).

In the rest of this paper we shall study certain properties of the set S0
g(B), in par-

ticular growth and covering theorems and bounds of coefficients of mappings in
S0

g(B). These results generalize to the case of the unit ball with respect to an arbitrary
norm some results obtained by Poreda [Por1] in the case of the unit polydisc and by
Kohr [Ko3] in the case of the Euclidean ball. Also Hamada and Kohr [Ha-Ko2] ob-
tained certain results concerning parametric representation of univalent mappings
on bounded balanced convex domains with the Minkowski function of class C1 in
Cn \ {0}. We shall see that the most important subsets of S(B) are also subsets of
S0

g(B) for certain values of g.
We next give the following result which may be used to generate many examples

of mappings in S0
g(B) (respectively S0(B)). This result is a consequence of [Pf, Theo-

rem 2.3] and [Por3, Theorem 6].

Lemma 1.6 Let f : B × [0,∞) → Cn be such that f (· , t) ∈ H(B), f (0, t) = 0,
D f (0, t) = et I, for each t ≥ 0 and f (z, ·) is a locally Lipschitz continuous function of
t ∈ [0,∞) locally uniformly with respect to z ∈ B. Let g : U → C satisfy the conditions
of Definition 1.1 and let h : B × [0,∞) → Cn satisfy the requirements of Theorem 1.4.
Suppose that

∂ f

∂t
(z, t) = D f (z, t)h(z, t), a.e. t ≥ 0,

for all z ∈ B. Further, assume there exists an increasing sequence {tm} such that tm > 0,
tm →∞ and

lim
m→∞

e−tm f (z, tm) = F(z)
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locally uniformly on B. Then f (z, t) is a Loewner chain and

lim
t→∞

et v(z, s, t) = f (z, s)

locally uniformly on B for each s ≥ 0, where v = v(z, s, t) is the solution of the initial
value problem (1.3). Hence f (z) = f (z, 0) ∈ S0

g(B).

In connection with the above result we say that a mapping f (z, t) is a g-Loewner
chain (cf. [Ko3]) if f and g satisfy the assumptions of Lemma 1.6. In the case of one
variable, if g(ζ) = (1 + ζ)/(1− ζ), ζ ∈ U , a g-Loewner chain is a Loewner chain in
the usual sense, by [Po, Theorem 6.2].

Let S1
g(B) denote the set of those mappings in S(B) which can be imbedded in g-

Loewner chains. That is, f ∈ S1
g(B) if and only if there is a g-Loewner chain f (z, t)

such that f (z) = f (z, 0), z ∈ B. When g(ζ) = (1 + ζ)/(1 − ζ), let S1
g(B) = S̃(B).

Combining the results of Theorem 1.4 and Lemma 1.6, one concludes that S0
g(B) =

S1
g(B) and therefore,

S0(B) = S̃(B) ⊆ S(B).

Example 1.7 Let 0 < c ≤ 1 and let f : B → Cn be a normalized locally biholomor-
phic mapping on B such that

(1 + ‖z‖)‖[D f (z)]−1D2 f (z)(z, ·)‖ ≤ 2c, z ∈ B.

Then f ∈ S0
g(B), where g(ζ) = (1 + cζ)/(1− cζ), ζ ∈ U .

Proof In [Ha-Ko-Li, Theorem 4.2] and [Ha-Ko4, Theorem 3.2] it is shown that if f
satisfies the above assumption, then f is starlike on B. Therefore f (z, t) = et f (z) is
a Loewner chain. Moreover, if p(z) = [D f (z)]−1 f (z) − z, z ∈ B, then in the proof
of [Ha-Ko4, Theorem 3.2] it is proved that ‖p(z)‖ ≤ c for z ∈ B. Since p ∈ H(B),
p(0) = 0, it follows in view of the Schwarz lemma that

‖p(z)‖ ≤ c‖z‖, z ∈ B.

Hence, if h(z, t) = [D f (z)]−1 f (z) for z ∈ B and t ≥ 0, then it is obvious to deduce
that∣∣ (1− c2)lz

(
h(z, t)− z

)
− 2c2‖z‖

∣∣ ≤ 2c‖z‖, z ∈ B \ {0}, lz ∈ T(z), t ≥ 0.

This relation is equivalent to∣∣∣∣ 1

‖z‖
lz
(

h(z, t)
)
− 1 + c2

1− c2

∣∣∣∣ ≤ 2c

1− c2
, z ∈ B \ {0}, lz ∈ T(z), t ≥ 0.

Therefore we have shown that h(z, t) ∈ Mg , z ∈ B, t ≥ 0, where g(ζ) = (1 + cζ)/
(1− cζ). Moreover, since

lim
t→∞

e−t f (z, t) = f (z)
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locally uniformly on B and since f (z, t) satisfies all assumptions from Lemma 1.6, we
conclude that f (z) = f (z, 0) ∈ S0

g(B), as desired. This completes the proof.

Example 1.8 Let f : B → Cn be a normalized locally biholomorphic mapping on
the unit Euclidean ball B of Cn such that

(1− ‖z‖2)‖[D f (z)]−1D2 f (z)(z, ·)‖ ≤ 1, z ∈ B.

Then f ∈ S0(B).

Proof Let

f (z, t) = f (ze−t ) + (et − e−t )D f (ze−t )z, z ∈ B, t ≥ 0.

In [Pf, Theorem 2.4] it is shown that if f satisfies the above assumption, then f (z, t)
is a Loewner chain and thus f is biholomorphic on B. Also if we let

E(z, t) = −(1− e−2t )[D f (ze−t )]−1D2 f (ze−t )(ze−t , ·), z ∈ B, t ≥ 0,

then in the proof of [Pf, Theorem 2.4] it is shown that ‖E(z, t)‖ ≤ ‖z‖. Moreover, if

h(z, t) = [I − E(z, t)]−1[I + E(z, t)](z), z ∈ B, t ≥ 0,

then h(· , t) ∈ H(B), h(0, t) = 0, Dh(0, t) = I and Re〈h(z, t), z〉 > 0 for z ∈ B \ {0}
and t ≥ 0. Therefore h(z, t) ∈ M. Further, since limt→∞ e−t f (z, t) = z locally
uniformly on B, one concludes in view of Lemma 1.6 that f (z) = f (z, 0) ∈ S0(B).
This completes the proof.

Pfaltzgraff remarks that the constant 1 in the hypothesis of Example 1.8 must be
strengthened to 1/3 if instead of the Euclidean norm we use an arbitrary norm of Cn

(see [Pf, p. 67]).
We conclude this section with a result which gives a sufficient condition for a

Loewner chain to satisfy the generalized Loewner differential equation. The proof
makes use of a version of Vitali’s theorem in several complex variables (see e.g. [Na,
p. 9]).

We recall that a set of uniqueness for the holomorphic functions on a domain Ω ⊂
Cn is a subset Q of Ω with the property that if Φ is a holomorphic function on Ω
and Φ|Q = 0 then Φ ≡ 0. We note that there exist countable sets of uniqueness, for
example any countable dense subset of Ω is a set of uniqueness.

Theorem 1.9 (Vitali’s Theorem in Several Complex Variables) Let Ω be a domain
in Cn and let Q ⊂ Ω be a set of uniqueness for the holomorphic functions on Ω. Suppose
that {Φk}k≥1 is a sequence of holomorphic functions on Ω which is locally bounded
and which has the property that {Φk}k≥1 converges for all z ∈ Q. Then there exists a
holomorphic function Φ on Ω such that Φk → Φ locally uniformly on Ω.
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We note that this theorem also can be applied to holomorphic mappings whose
target space is Cn.

Theorem 1.10 Let f (z, t) be a Loewner chain which is locally Lipschitz in t locally
uniformly with respect to z. Then there is a mapping h = h(z, t) such that h(z, t) ∈ M

for each t ≥ 0, h(z, t) is measurable in t for each z ∈ B, and for a.e. t ≥ 0,

(1.7)
∂ f

∂t
(z, t) = D f (z, t)h(z, t), ∀z ∈ B.

Moreover, if there is a sequence {tm} such that tm > 0, tm →∞ and

lim
m→∞

e−tm f (z, tm) = F(z)

locally uniformly on B, then f (z) = f (z, 0) ∈ S0(B).

Proof First we prove (1.7). To this end, let v = v(z, s, t) be the transition mapping
defined by the chain f (z, t), i.e.

f (z, s) = f
(

v(z, s, t), t
)
, z ∈ B, 0 ≤ s ≤ t <∞.

Taking into account the normalization of f (z, t), we deduce that Dv(0, s, t) = es−t I
for t ≥ s ≥ 0. By using the subordination property and applying the mean value
theorem to the real and imaginary parts of the components of f , we obtain

1

r
[ f (z, t + r)− f (z, t)] =

1

r

[
f (z, t + r)− f

(
v(z, t, t + r), t + r

)](1.8)

= A(z, t, r)
( 1

r
[z − v(z, t, t + r)]

)
, z ∈ B, t ≥ 0, r > 0,

where A(z, t, r) is a real-linear operator which tends to the invertible complex linear
operator D f (z, t) as r → +0. In view of this we deduce that the difference quotient
in the first member of (1.8) has a limit as r → +0 if and only if the same is true of
the difference quotient in the last member of (1.8). Since f (z, t) is locally Lipschitz
in t locally uniformly with respect to z, the difference quotients on the left-hand side
of (1.8) are locally bounded holomorphic functions of z. Let Q be a countable set of
uniqueness for the holomorphic functions on B. For each z ∈ Q the limit as r → +0
of these difference quotients exists except when t ∈ Ez, where Ez is a subset of [0,∞)
of measure 0. The set E =

⋃
{Ez : z ∈ Q} also has measure 0, and Vitali’s theorem

implies that for t /∈ E, the difference quotient on the left-hand side of (1.8) has a limit
as r → +0 which is holomorphic in z. Moreover, since v(z, s, t) is a Schwarz mapping
and Dv(0, s, t) = es−t I, the difference quotient on the right has a limit h(z, t) in M,
by [Su2, Lemmas 1 and 3]. The mapping h(z, t) is measurable in t ∈ [0,∞) for each
z ∈ B, since ∂ f

∂t (z, t) and [D f (z, t)]−1 are measurable in t .
Finally, it suffices to apply Lemma 1.6 with g(ζ) = (1 + ζ)/(1− ζ), to deduce that

f (z, 0) ∈ S0(B). This completes the proof.
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Remark 1.11 In higher dimensions, univalent solutions of the generalized Loewner
equation (1.7) need not be unique (cf. [Bec2]). For if f (z, t) is a Loewner chain
which satisfies the differential equation (1.7), and if Φ : Cn → Cn is a normalized
entire biholomorphic mapping, not the identity, then g(z, t) = Φ

(
f (z, t)

)
is another

Loewner chain satisfying (1.7).

2 Main Results

2.1 Growth Results for Mappings in S0
g(B)

One of the main results of this section is a growth theorem for mappings in S0
g(B). To

this end, we need to use the following lemma (cf. [Ko3]).

Lemma 2.1 Let g and h satisfy the assumptions of Theorem 1.4. If v = v(z, s, t) is the
solution of the initial value problem (1.3), then

es‖z‖ exp

∫ ‖z‖

‖v(z,s,t)‖

[
1

max{g(x), g(−x)}
− 1

]
dx

x
(2.1)

≤ et‖v(z, s, t)‖ ≤ es‖z‖ exp

∫ ‖z‖

‖v(z,s,t)‖

[
1

min{g(x), g(−x)}
− 1

]
dx

x
,

for z ∈ B and t ≥ s ≥ 0.

Proof Fix s ≥ 0 and z ∈ B \ {0} and let v(t) = v(z, s, t). Also let lz ∈ T(z). Then for
all t, t ′ with s ≤ t < t ′, we have

∣∣ ‖v(t)‖ − ‖v(t ′)‖
∣∣ ≤ ‖v(t)− v(t ′)‖ ≤

∥∥∥∥∫ t ′

t

dv(τ )

dτ
dτ

∥∥∥∥
≤
∫ t ′

t

∥∥∥∥ dv(τ )

dτ

∥∥∥∥ dτ =
∫ t ′

t

∥∥−h
(

v(τ ), τ
)∥∥ dτ ≤ M(t ′ − t),

by the statement (iii) of Theorem 1.2. Hence ‖v(t)‖ is absolutely continuous for
t ∈ [s,∞) and thus ‖v(t)‖ is differentiable a.e. on [s,∞). Moreover,

∂‖v‖
∂t

= Re
[

lv
( ∂v

∂t

)]
for lv ∈ T

(
v(t)
)

a.e. on [s,∞), by [Ka, Lemma 1.3]. Equivalently,

(2.2)
∂‖v‖
∂t

= −Re
[

lv
(

h(v, t)
)]
, a.e. on [s,∞).

On the other hand, let p : U → C be given by

p(ζ) =

{
1
ζ lz
(

h(ζ z
‖z‖ , t)

)
, ζ 6= 0

1, ζ = 0.
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Then p ∈ H(U ), p(0) = g(0) = 1, and since h(z, t) ∈ Mg we deduce that
p(ζ) ∈ g(U ) for ζ ∈ U . Indeed, since there is a one-to-one correspondence between

T(αz) and T(z) given by lαz(·) = |α|
α lz(·), for each α ∈ C \ {0}, one deduces that

lz/‖z‖(·) = lz(·), and thus for ζ ∈ U \ {0} we have

p(ζ) =
1

ζ
lz

(
ht

(
ζ

z

‖z‖

))
=

1

ζ
lz/‖z‖

(
ht

(
ζ

z

‖z‖

))
=

1∥∥ζ z
‖z‖
∥∥ lζz/‖z‖

(
ht

(
ζ

z

‖z‖

))
∈ g(U ).

Therefore p ≺ g, and by the subordination principle we deduce that p(Ur) ⊆ g(Ur)
for each r, 0 < r < 1. Next, in view of the maximum and respectively the minimum
principle for harmonic functions, we conclude that

min{g(|ζ|), g(−|ζ|)} ≤ Re p(ζ) ≤ max{g(|ζ|), g(−|ζ|)}, ζ ∈ U .

For ζ = ‖z‖ in the above relations, we obtain

(2.3) ‖z‖min{g(‖z‖), g(−‖z‖)} ≤ Re lz
(

h(z, t)
)
≤ ‖z‖max{g(‖z‖), g(−‖z‖)}.

We now integrate in both sides of (2.2) with respect to t and use (2.3), to obtain

−
∫ ‖v‖

‖z‖

dx

x min{g(x), g(−x)}
= −

∫ t

s

1

‖v(τ )‖min
{

g
(
‖v(τ )‖

)
, g
(
−‖v(τ )‖

)}
· d‖v(τ )‖

dτ
dτ ≥

∫ t

s
dτ = t − s

and

−
∫ ‖v‖

‖z‖

dx

x max{g(x), g(−x)}
= −

∫ t

s

1

‖v(τ )‖max
{

g
(
‖v(τ )‖

)
, g
(
−‖v(τ )‖

)}
· d‖v(τ )‖

dτ
dτ ≤

∫ t

s
dτ = t − s.

Finally straightforward computations in the above relations yield (2.1), as desired.
This completes the proof.

We now are able to obtain the following growth result for the set S0
g(B). This result

generalizes [Ko3, Theorem 2.3].

Theorem 2.2 Let g : U → C satisfy the assumptions of Definition 1.1 and f ∈ S0
g(B).

Then

‖z‖ exp

∫ ‖z‖

0

[
1

max{g(x), g(−x)}
− 1

]
dx

x
(2.4)

≤ ‖ f (z)‖ ≤ ‖z‖ exp

∫ ‖z‖

0

[
1

min{g(x), g(−x)}
− 1

]
dx

x
, z ∈ B.

https://doi.org/10.4153/CJM-2002-011-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-011-2


Parametric Representation of Univalent Mappings 337

Proof Since f ∈ S0
g(B) we have

(2.5) f (z) = lim
t→∞

et v(z, t)

locally uniformly on B, where v = v(z, t) is the solution of the initial value problem

∂v

∂t
= −h(v, t), a.e. t ≥ 0, v(z, 0) = z,

for all z ∈ B. Taking into account the relations (2.1), one deduces that

‖z‖ exp

∫ ‖z‖

‖v(z,t)‖

[
1

max{g(x), g(−x)}
− 1

]
dx

x

(2.6)

≤ et‖v(z, t)‖ ≤ ‖z‖ exp

∫ ‖z‖

‖v(z,t)‖

[
1

min{g(x), g(−x)}
− 1

]
dx

x
, z ∈ B, t ≥ 0.

Since
lim

t→∞
et‖v(z, t)‖ = ‖ f (z)‖ <∞,

we must have
lim

t→∞
‖v(z, t)‖ = lim

t→∞
e−t‖et v(z, t)‖ = 0.

Letting t → ∞ in (2.6) and using (2.5), we obtain the estimate (2.4), as desired.
This completes the proof.

We remark that if f (z, t) is a g-Loewner chain, then using similar reasoning as in
the above result, we obtain the following growth theorem.

Corollary 2.3 Let g : U → C satisfy the assumptions of Definition 1.1 and f (z, t) be a
g-Loewner chain. Then

‖z‖ exp

∫ ‖z‖

0

[
1

max{g(x), g(−x)}
− 1

]
dx

x

≤ ‖e−t f (z, t)‖ ≤ ‖z‖ exp

∫ ‖z‖

0

[
1

min{g(x), g(−x)}
− 1

]
dx

x
, z ∈ B, t ≥ 0.

A case of particular interest in Theorem 2.2 is the case g(ζ) = (1 + ζ)/(1 − ζ),
ζ ∈ U . We remark that in view of Lemma 1.6, all mappings in S∗(B), Ŝα(B) and C(B)
belong to S0(B). To see this, it suffices to observe that the Loewner chains which
characterize the above sets satisfy the assumptions of Lemma 1.6. Therefore, we have
the following inclusion relations

• S∗(B) ⊂ C(B) ⊂ S0(B) and Ŝα(B) ⊂ S0(B), |α| < π

2
.
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We have the following growth result for the set S0(B) (cf. [Por1], [Ko3]). In par-
ticular, the growth result for normalized starlike ([Ba-Fi-Go], [Chu], [Ha2]) and
close-to-starlike mappings [Che-Re] can be deduced from Theorem 2.2.

Corollary 2.4 If f ∈ S0(B) then

‖z‖
(1 + ‖z‖)2

≤ ‖ f (z)‖ ≤ ‖z‖
(1− ‖z‖)2

, z ∈ B.

Consequently, f (B) ⊇ B1/4.

Remark 2.5 We remark that if B(p) denotes the unit ball with respect to a p-norm
‖ · ‖, 1 ≤ p ≤ ∞, where

‖z‖ =

{
[
∑n

j=1 |z j |p]1/p, 1 ≤ p <∞
max1≤ j≤n |z j |, p =∞,

then the result of Corollary 2.4 is sharp. To see this, let

f (z) =
(

z1

(1− z1)2
, . . . ,

zn

(1− zn)2

) ′
, z = (z1, . . . , zn) ′ ∈ B(p).

Then f is normalized starlike on B(p) (see e.g. [Ha-Ko2]) and for z =
(r, 0, . . . , 0) ′ ∈ B(p), with r ∈ (0, 1), ‖z‖ = r and ‖ f (z)‖ = r

(1−r)2 . Moreover,
for z = (−r, 0, . . . , 0) ′ ∈ B(p), we have ‖z‖ = r and ‖ f (z)‖ = r

(1+r)2 .
On the other hand, from Corollary 2.4 we obtain the following important conse-

quence in higher dimensions.

Corollary 2.6 S0(B) is a normal family. Thus in Cn, n ≥ 2, S(B) is a larger set than
S0(B).

Actually we believe that S0(B) is a compact set.

2.2 Examples of Mappings in S0
g(B)

The following result, obtained recently in [Gr-Ha-Ko-Su], gives many examples of
mappings in S0(B) when B is the unit Euclidean ball of Cn. Properties of the operator
Ψn,0,β have been recently studied in [Gr-Ko-Ko].

Theorem 2.7 Let α ∈ [0, 1] and β ∈ [0, 1/2] be such that α + β ≤ 1. If f ∈ S then
Ψn,α,β( f ) ∈ S0(B), where

Ψn,α,β( f )(z) =
(

f (z1), z2

( f (z1)

z1

)α(
f ′(z1)

) β
, . . . , zn

( f (z1)

z1

)α(
f ′(z1)

) β) ′
,

for z = (z1, . . . , zn) ′ ∈ B. The branches of the power functions are chosen such that(
f (z1)

z1

)α ∣∣∣∣
z1=0

= 1 and
(

f ′(z1)
) β ∣∣

z1=0
= 1.
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In the case α = 0 and β = 1/2 we obtain the Roper-Suffridge extension operator
[Ro-Su1]. Properties of this operator have been investigated in [Ro-Su1], [Gr-Ko].

Next, we consider conditions under which the mapping F : B → Cn given by
F(z) = P(z)z belongs to S∗g (B), where P is a complex valued holomorphic function
with P(0) = 1 and S∗g (B) denotes the subset of S0

g(B) consisting of those normalized
starlike mappings f of B such that

1

‖z‖
lz
(

w(z)
)
∈ g(U ), z ∈ B \ {0}, lz ∈ T(z),

where w(z) = [D f (z)]−1 f (z), z ∈ B.
We have the following result:

Theorem 2.8 Let P : B → C be a holomorphic function on B such that P(0) = 1 and
let F(z) = P(z)z, z ∈ B. Also let g : U → C satisfy the requirements of Definition 1.1.
Then F ∈ S∗g (B) if and only if

1 +
DP(z)z

P(z)
∈ 1

g
(U ), z ∈ B.

Proof We will use similar arguments to those in [Pf-Su2, Theorem 2]. Let L(z) =
DP(z)(·)

P(z) . Then

[DF(z)]−1 =
1

P(z)

(
I − zL(z)(·)

1 + L(z)z

)
, z ∈ B.

Let lz ∈ T(z), for z ∈ B \ {0}. A short computation yields that

w(z) = [DF(z)]−1F(z) =
z

1 + L(z)z
,

and since lz ∈ T(z), we obtain

1

‖z‖
lz
(

w(z)
)

=
1

1 + L(z)z
.

Therefore we deduce that F ∈ S∗g (B) if and only if 1
1+L(z)z ∈ g(U ). This completes the

proof.
We remark that if g(ζ) = (1 + ζ)/(1− ζ), this result has recently been obtained in

[Pf-Su2].
We shall also give some applications of the above result. We remark that in the case

g(ζ) = (1+ζ)/(1−ζ), the result below was obtained by Pfaltzgraff and Suffridge [Pf-
Su2]. In this case Corollary 2.9 gives the following extension result: if each f j ∈ S∗,
j = 1, . . . , n, then F ∈ S∗(B).

Corollary 2.9 For each j = 1, 2, . . . , n, let f j(ζ) be a normalized holomorphic function

on U such that f j (ζ)
ζ f ′j (ζ) ≺ g(ζ), for ζ ∈ U , where g : U → C satisfy the requirements
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from Definition 1.1. Moreover, assume 1/g is a convex function on U . If λ j ≥ 0 and∑n
j=1 λ j = 1, then

(2.7) F(z) = z
n∏

j=1

(
f j(z j)

z j

)λ j

, z ∈ B,

is a mapping in S∗g (B).

Proof Note that since each f j satisfies the assumptions in the hypothesis, we have
f j ∈ S∗g . Thus the mapping F given by (2.7) is a holomorphic mapping on B, and
also F(0) = 0 and DF(0) = I. Let P denote the product in the statement and let
L(z) = DP(z)(·)/P(z). Then

1 + L(z)(z) =
n∑

j=1

λ j

z j f ′j (z j)

f j(z j)

and since
z j f ′j (z j )

f j (z j )
≺ 1

g(z j )
and 1/g is a convex function, we have

1

1 + L(z)z
=

1∑n
j=1 λ j

z j f ′j (z j )

f j (z j )

∈ g(U ).

Finally, it suffices to apply the result of Theorem 2.8 to deduce the desired conclusion.
This completes the proof.

Corollary 2.10 For each j = 1, 2, . . . , n, let f j be a normalized starlike function of
order 1/2 on U and let F be defined by (2.7). Then F ∈ S∗g (B), where g(ζ) = 1 + ζ .

We have seen that the class of spirallike mappings of type α, |α| < π/2, is a sub-
class of S0(B). However, in general a spirallike mapping relative to a linear operator
need not belong to S0(B). In other words, in higher dimensions there exist mappings
in S(B) \ S0(B), which do not have parametric representation. We have the following
example on the unit Euclidean ball of Cn:

Example 2.11 Let n = 2 and f : B ⊂ C2 → C2,

f (z) = (z1 + az2
2, z2) ′, z = (z1, z2) ′ ∈ B.

Let A : C2 → C2, A(z) = (2z1, z2) ′, z = (z1, z2) ′ ∈ B. Then m(A) > 0 and

[D f (z)]−1A f (z) = (2z1, z2) ′, z = (z1, z2) ′ ∈ B,

hence f is a normalized spirallike mapping relative to A, for all a ∈ C. In particular
f ∈ S(B). Let a ∈ R with a > 2

√
15. Let z0 = (0, 1/2) ′. Then f (z0) = (a/4, 1/2) ′

and

‖ f (z0)‖ > 2 =
‖z0‖

(1− ‖z0‖)2
.
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Taking into account Corollary 2.4, one deduces that f 6∈ S0(B).
The above observations suggest that one should consider another subset of S(B),

namely the set S1(B) consisting of those normalized biholomorphic mappings of B
which can be imbedded in Loewner chains. Thus

f ∈ S1(B) if and only if there is a Loewner chain f (z, t) such that f (z, 0) =
f (z), for z ∈ B.

Combining Theorem 1.4 and Definition 1.5, we have the following inclusions:

• S0(B) = S̃(B) ⊆ S1(B) ⊆ S(B).

In the case of one complex variable, S0(U ) = S1(U ) = S, by [Po, Theorems 6.1,
6.2 and 6.3].

The following example shows that S0(B) is a proper subset of S1(B) in higher di-
mensions.

Example 2.12 (i) As noted in Remark 1.11, if f (z, t) is a (normalized) Loewner
chain and Φ : Cn → Cn is an entire normalized biholomorphic mapping, not the
identity, then Φ

(
f (z, t)

)
is also a (normalized) Loewner chain.

We first remark that for any such Φ there exists a point z0 ∈ Cn such that ‖Φ(z0)‖>
‖z0‖. For otherwise, Φ maps B to itself and Cartan’s theorem on fixed points
(cf. [Ru]) implies that Φ must be the identity. After conjugation with a unitary trans-
formation, we may assume that there exists ρ > 0 such that ‖Φ(ρ, 0, . . . , 0)‖ > ρ.

Now let B be the unit Euclidean ball of Cn and consider the Loewner chain

f (z, t) =
(

et z1

(1− z1)2
, . . . ,

et zn

(1− zn)2

) ′
, z = (z1, . . . , zn) ′ ∈ B,

whose initial element f (z) = f (z, 0) satisfies

‖ f (r, 0, . . . , 0)‖ =
r

(1− r)2
, 0 ≤ r < 1.

Choose r such that r
(1−r)2 = ρ, where ρ is as above. It is obvious that Φ ◦ f is the

first element of a Loewner chain, thus Φ ◦ f ∈ S1(B), and∥∥Φ
(

f (r, 0, . . . , 0)
)∥∥ > r

(1− r)2
.

In view of Corollary 2.4 we conclude that Φ ◦ f /∈ S0(B).
(ii) For example, let n = 2 and Φ(z) = (z1, z2 + z2

1) ′, z = (z1, z2) ′ ∈ C2. Then Φ
is an entire normalized biholomorphic mapping on C2. Also if

f (z, t) =
(

et z1

(1− z1)2
,

et z2

(1− z2)2

) ′
, z ∈ B, t ≥ 0,

then

Φ
(

f (z, t)
)

=
(

et z1

(1− z1)2
,

et z2

(1− z2)2
+

e2t z2
1

(1− z1)4

) ′
, z ∈ B, t ≥ 0,
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is a Loewner chain. Let f (z) = f (z, 0), z ∈ B. It is clear that for each r ∈ (0, 1),

∥∥Φ
(

f (r, 0)
)∥∥ =

r

(1− r)2

√
1 +

r2

(1− r)4
>

r

(1− r)2
.

Therefore Φ ◦ f /∈ S0(B). We remark that
{

e−tΦ
(

f (z, t)
)}

t≥0
is not a normal

family.
Note that if f (z, t) is a Loewner chain which is locally Lipschitz in t ≥ 0 locally

uniformly with respect to z ∈ B, and such that {e−t f (z, t)}t≥0 is a normal family,
then in view of Theorem 1.10, f (z) = f (z, 0) ∈ S0(B). Thus f satisfies the growth
estimate from Corollary 2.4.

2.3 Subsets of Mappings in S0
g(B) With g(ζ) = 1 + ζ

We next study the set S0
g(B) when g(ζ) = 1 + ζ , ζ ∈ U .

In this case g(U ) is the open disc centered at 1 and of radius 1. Therefore,

Mg =
{

p ∈ H(B) : p(0) = 0,Dp(0) = I,∣∣∣∣ 1

‖z‖
lz
(

p(z)
)
− 1

∣∣∣∣ < 1, z ∈ B \ {0}, lz ∈ T(z)

}
.

Let u ∈ Cn with ‖u‖ = 1 and lu ∈ T(u). For a normalized locally biholomorphic
mapping f on B, let

G f (α, β) =
2α

lu
(

[D f (αu)]−1
(

f (αu)− f (βu)
)) − α + β

α− β
, α, β ∈ U .

Let G denote the set of all normalized locally biholomorphic mappings f on B that
satisfy the condition Re G f (α, β) > 0, for all α, β ∈ U , |β| ≤ |α|, u ∈ Cn with ‖u‖ =
1 and lu ∈ T(u). This set, called the set of quasi-convex mappings of type A, has been
recently introduced by Roper and Suffridge [Ro-Su2], as a natural generalization to
higher dimensions of the convex functions in the plane. They proved the inclusion
relation

• K(B) ⊂ G ⊂ S∗(B),

and obtained a number of interesting properties of the mappings in G. In particular
they showed that in the case of the Euclidean norm the 1/2 growth result for the set
K(B) is also valid for the set G. We shall prove that this result remains true in the case
of an arbitrary norm. We shall refer to the set G as the set of quasi-convex mappings.

Now let f ∈ G. In [Ro-Su2] it is shown that f satisfies the relation

Re

{
‖z‖

lz
(

[D f (z)]−1 f (z)
) } >

1

2
, z ∈ B \ {0}, lz ∈ T(z),
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which is equivalent to∣∣∣∣ 1

‖z‖
lz
(

[D f (z)]−1 f (z)
)
− 1

∣∣∣∣ < 1, z ∈ B \ {0}, lz ∈ T(z).

If we set p(z) = [D f (z)]−1 f (z) and use the above inequality, one deduces that
p ∈ Mg . Moreover, let f (z, t) = et f (z). Since f ∈ G it follows that f ∈ S∗(B), and
thus f (z, t) is a Loewner chain. If h(z, t) = p(z), z ∈ B, t ≥ 0, then obviously the
differential equation

∂ f

∂t
(z, t) = D f (z, t)h(z, t), z ∈ B, t ≥ 0,

holds. Since limt→∞ e−t f (z, t) = f (z) locally uniformly on B and h(z, t) ∈ Mg ,
we see that f (z, t) satisfies all assumptions of Lemma 1.6. Consequently, f (z, t) is
a g-Loewner chain and f (z, 0) = f (z) ∈ S0

g(B). Therefore we have proved that
G ⊂ S0

g(B), and thus we have the following inclusions:

• K(B) ⊂ G ⊂ S0
g(B) with g(ζ) = 1 + ζ, ζ ∈ U .

These inclusions between K(B), G and S0
g(B) with g(ζ) = 1 + ζ , were one of

the motivations for considering the set S0
g(B). In particular the growth results for

normalized convex mappings on B and quasi-convex mappings can be deduced from
Theorem 2.2 (see [Su4], [Fi-Th], [Ro-Su2], [Ha-Ko3], [Ko2], [Ha1]).

Corollary 2.13 Let g(ζ) = 1 + ζ , ζ ∈ U , and f ∈ S0
g(B). Then

‖z‖
1 + ‖z‖

≤ ‖ f (z)‖ ≤ ‖z‖
1− ‖z‖

, z ∈ B.

Consequently, f (B) ⊇ B1/2.

Note that the above growth result is sharp in the case of the unit ball B(p) with
respect to a p-norm, 1 ≤ p ≤ ∞. To see this, let

f (z) =
( z1

1− z1
, . . . ,

zn

1− zn

) ′
, z = (z1, . . . , zn) ′ ∈ B(p).

Then f is normalized biholomorphic on B(p) and using the expression of T(z) in
[Su2, Section 2] we can prove that∣∣∣∣ 1

‖z‖
lz
(

[D f (z)]−1 f (z)
)
− 1

∣∣∣∣ < 1, 0 < ‖z‖ < 1, lz ∈ T(z).

Thus f ∈ S0
g(B) with g(ζ) = 1 + ζ . Moreover, for z = (r, 0, . . . , 0) ′ with r ∈ [0, 1),

we have ‖z‖ = r and ‖ f (z)‖ = r
1−r . Also for z = (−r, 0, . . . , 0) ′, ‖z‖ = r and

‖ f (z)‖ = r
1+r .
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2.4 Bounds of Coefficients of Mappings in S0
g(B)

We now prove the following estimate for the second order coefficients of mappings
in the set S0

g(B) (compare with [Por1, Theorem 3] and [Ko3, Theorem 2.4]). Note
that if f (z, t) is a g-Loewner chain, then f (z, 0) satisfies (2.8).

Theorem 2.14 Let g : U → C satisfy the assumptions of Definition 1.1 and let f ∈
S0

g(B). Then

(2.8)
∣∣∣ 1

2!
lw
(

D2 f (0)(w,w)
) ∣∣∣ ≤ |g ′(0)|, w ∈ Cn, ‖w‖ = 1, lw ∈ T(w).

Proof Since f ∈ S0
g(B), there is a mapping h = h(z, t) ∈Mg such that

f (z) = lim
t→∞

et v(z, t)

locally uniformly on B, where v(t) = v(z, t) is the solution of the initial value problem

∂v

∂t
(z, t) = −h(v, t), a.e. t ≥ 0, v(z, 0) = z.

Let f : B× [0,∞)→ Cn be given by

f (z, s) = lim
t→∞

et w(z, s, t)

locally uniformly on B, where w(t) = w(z, s, t) is the unique solution of the initial
value problem

(2.9)
∂w

∂t
= −h(w, t), a.e. t ≥ s, w(s) = z,

for z ∈ B and s ≥ 0. Then it is obvious to see that w(z, 0, t) = v(z, t), for all z ∈ B
and t ≥ 0, hence f (z, 0) = f (z), z ∈ B.

Fix z ∈ B \ {0}, lz ∈ T(z) and t0 ≥ 0. Let

pt0 (ζ) =

{
1
ζ lz
(

ht0 (ζ z
‖z‖ )

)
, ζ ∈ U \ {0},

1, ζ = 0.

Then pt0 is a holomorphic function on U , and as in the proof of Lemma 2.1 we
have pt0 (ζ) ∈ g(U ) for ζ ∈ U . Hence pt0 ≺ g, and thus |p ′t (0)| ≤ |g ′(0)| by the
subordination principle.

Since

ht0

(
ζ

z

‖z‖

)
=

z

‖z‖
ζ +

1

2!
D2ht0 (0)

(
z

‖z‖
,

z

‖z‖

)
ζ2 + · · · , ζ ∈ U ,

we obtain by identifying the coefficients in the power series expansions that

p ′t0
(0) =

1

2!
lz

(
D2ht0 (0)

(
z

‖z‖
,

z

‖z‖

))
.
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Consequently, we deduce the following relation

(2.10)

∣∣∣∣∣ 1

2!
lz

(
D2ht0 (0)

(
z

‖z‖
,

z

‖z‖

))∣∣∣∣∣ ≤ |g ′(0)|.

On the other hand, since f (z, ·) is locally Lipschitz on [0,∞) locally uniformly
with respect to z ∈ B by Theorem 1.4, we deduce that f (z, ·) is differentiable with
respect to t for almost all t ∈ [0,∞). Moreover, since f (z, s) satisfies the relation

f (z, s) = f
(

w(z, s, t), t
)
,

we obtain by differentiating the above equality with respect to t and using (2.9) that
for almost all t ≥ 0,

∂ f

∂t
(z, t) = D f (z, t)h(z, t), z ∈ B.

Fix T > 0 and integrate both sides of the above equality, to obtain

f (z,T)− f (z, 0) =
∫ T

0
D f (z, t)h(z, t) dt.

For fixed z, let Gz : U → C be given by

Gz(ζ) = f (ζz,T)− f (ζz, 0)

and

Hz(ζ) =
∫ T

0
D f (ζz, t)h(ζz, t) dt.

Then Gz(ζ) = Hz(ζ), ζ ∈ U and both mappings Gz and Hz are holomorphic on
U . After simple computations, using the fact that D f (0, t) = et I, we deduce that

d2Hz

dζ2
(0) =

∫ T

0
[2D2 f (0, t)(z, z) + et D2h(0, t)(z, z)] dt,

and hence

D2 f (0,T)(z, z)− D2 f (0, 0)(z, z) =
∫ T

0
[2D2 f (0, t)(z, z) + et D2h(0, t)(z, z)] dt.

By simple transformations this equality is equivalent to the following

e−2TD2 f (0,T)(z, z)− D2 f (0, 0)(z, z) =
∫ T

0
e−t D2h(0, t)(z, z) dt,
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hence

e−2T lz
(

D2 f (0,T)(z, z)
)
− lz

(
D2 f (0, 0)(z, z)

)
(2.11)

=
∫ T

0
lz
(

e−t D2h(0, t)(z, z)
)

dt.

As in Corollary 2.3, we have the following estimate

(2.12) ‖ f (z,T)‖ ≤ eT‖z‖ exp

∫ ‖z‖

0

[
1

min{g(x), g(−x)}
− 1

]
dx

x
.

Next, using the Cauchy formula

1

2!
D2 f (0,T)(u, u) =

1

2πi

∫
|ζ|=r

f (ζu,T)

ζ3
dζ, r < 1,

for u ∈ Cn, ‖u‖ = 1, and taking into account (2.12), we easily obtain that

lim
T→∞

e−2TD2 f (0,T)(z, z) = 0.

If we now let T → ∞ in (2.11) and use the above equality and (2.10), we deduce
that ∣∣∣∣∣ 1

2!
lz

(
D2 f (0, 0)

(
z

‖z‖
,

z

‖z‖

))∣∣∣∣∣ ≤ |g ′(0)|.

Obviously, the above relation is equivalent to∣∣∣ 1

2!
lw
(

D2 f (0, 0)(w,w)
) ∣∣∣ ≤ |g ′(0)|, ‖w‖ = 1, lw ∈ T(w).

Since f (z, 0) = f (z), z ∈ B, the proof is complete.
For the norm of the second order Fréchet derivative of a mapping in S0

g(B) we have
the following estimate.

Corollary 2.15 Let g : U → C satisfy the assumptions of Definition 1.1 and f ∈ S0
g(B).

Then ∥∥∥ 1

2!
D2 f (0)(z, z)

∥∥∥ ≤ 4|g ′(0)|, ‖z‖ = 1.

Proof It suffices to use similar arguments as in the second part of the proof of Theo-
rem 1.2. For this purpose, let P2 = 1

2! D
2 f (0). Then P2 is a homogeneous polynomial

of degree 2 and thus we obtain

‖P2‖ ≤ 4|V (P2)|.

Taking into account (2.8) and the above relations, we easily deduce that

|V (P2)| ≤ |g ′(0)|
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and the result now follows. This completes the proof.
For g(ζ) = (1 + ζ)/(1 − ζ), ζ ∈ U , we obtain the following consequence. In

particular, this result is satisfied by all mappings in S∗(B). The bound (2.13) was
obtained by Kohr [Ko1] in the case of mappings in S∗(B) when B is the unit Euclidean
ball of Cn. We also note that this bound is sharp in the case of the p-norm, with
1 ≤ p ≤ ∞.

Corollary 2.16 If f ∈ S0(B) then

(2.13)
∣∣∣ 1

2!
lw
(

D2 f (0)(w,w)
) ∣∣∣ ≤ 2, ‖w‖ = 1, lw ∈ T(w).

Moreover ∥∥∥ 1

2!
D2 f (0)(z, z)

∥∥∥ ≤ 8, ‖z‖ = 1.

It would be interesting to see if the mappings in S1(B) satisfy the above bound.
Note that using the growth result in Corollary 2.4, one may prove that if f ∈ S0(B)
then ∥∥∥ 1

k!
Dk f (0)(wk)

∥∥∥ ≤ [ e(k + 1)

2

] 2

, ‖w‖ = 1, k ≥ 2.

We leave this bound as an exercise for the reader.
It would be interesting to study the following conjecture in several complex vari-

ables (this could be considered the n-dimensional version of the Bieberbach conjec-
ture for the set S).

Conjecture 2.17 If f ∈ S0(B) then∣∣∣ 1

k!
lw
(

Dk f (0)(wk)
) ∣∣∣ ≤ k, ‖w‖ = 1, lw ∈ T(w), k ≥ 2.

Remark 2.18 In higher dimensions if f ∈ S0(B) it need not be true that∥∥∥ 1

k!
Dk f (0)(wk)

∥∥∥ ≤ k, ‖w‖ = 1, k ≥ 2.

(However, in the case of the maximum norm the above inequalities are true for
k = 2, as shown by Poreda [Por1], and are open for k ≥ 3. On the other hand, Gong
[Go2, Theorem 5.3.1] has recently proved that if f is normalized starlike on the unit
polydisc of Cn, then the above bounds hold for k = 2, 3, and are open for k ≥ 4.)

To see this, let n = 2 and consider the space C2 with the Euclidean structure. Also
let f (z) = (z1 + az2

2, z2) ′ for z = (z1, z2) ′ ∈ B. If |a| = 3
√

3/2 then f is starlike (see
[Ro-Su2, Example 5]). Thus f ∈ S0(B). However, for w = (0, 1) ′, we have∥∥∥ 1

2
D2 f (0)(w2)

∥∥∥ = |a| = 3
√

3

2
> 2.

For g(ζ) = 1 + ζ , ζ ∈ U , we obtain the following bound for the second order
coefficients of mappings in S0

g(B). In particular, this result is satisfied by all mappings
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in K(B) and G respectively (also see [Ko1]). Note that (2.14) is sharp in the case of
the unit ball B(p) with respect to a p-norm, 1 ≤ p ≤ ∞.

Corollary 2.19 If f ∈ S0
g(B) with g(ζ) = 1 + ζ , ζ ∈ U , then

(2.14)
∣∣∣ 1

2!
lw
(

D2 f (0)(w,w)
) ∣∣∣ ≤ 1, ‖w‖ = 1, lw ∈ T(w).

Moreover, ∥∥∥ 1

2!
D2 f (0)(w,w)

∥∥∥ ≤ 4, ‖w‖ = 1,

and

(2.15)
∥∥∥ 1

k!
Dk f (0)(wk)

∥∥∥ < ek,

for k ∈ N, k ≥ 3, and ‖w‖ = 1.

Proof It suffices to prove the bounds (2.15). To this end, fix k ∈ N, k ≥ 3, and
w ∈ Cn, ‖w‖ = 1. Using the Cauchy formula

1

k!
Dk f (0)(wk) =

1

2πi

∫
|ζ|=r

f (ζw)

ζk+1
dζ, 0 < r < 1,

and taking into account Corollary 2.13, we easily obtain

∥∥∥ 1

k!
Dk f (0)(wk)

∥∥∥ ≤ 1

2πrk

∫ 2π

0
‖ f (reiθw)‖ dθ ≤ 1

rk−1(1− r)
.

Setting r = 1− 1/k in this inequality gives∥∥∥ 1

k!
Dk f (0)(wk)

∥∥∥ ≤ k
(

1 +
1

k− 1

) k−1
< ek.

This completes the proof.

Remark 2.20 It is well known that if f ∈ K(B) and if f (z) = z +
∑∞

k=2 Ak(z),
then the homogeneous polynomial Ak(z) satisfies the following bounds (cf. [Fi-Th],
[Go1], [Ha-Ko3], [Ko1], [Pf-Su3]):

‖Ak(w)‖ ≤ 1, ‖w‖ = 1, k ≥ 2.

However, if f ∈ S0
g(B) \ K(B), with g(ζ) = 1 + ζ , then the above bound need not

be satisfied. To see this, again consider the case n = 2 and C2 with the Euclidean
structure. Also let f (z) = (z1 +az2

2, z2) ′ for z = (z1, z2) ′ ∈ B. In [Ro-Su2, Example 9]
it is shown that if |a| ≤ 3

√
3/4, then f ∈ G, and hence f ∈ S0

g(B) with g(ζ) = 1 + ζ .
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However, if |a| > 1/2, then f 6∈ K(B) by [Ro-Su2, Example 7]. If |a| = 3
√

3/4 and
w = (0, 1) ′, then ∥∥∥ 1

2
D2 f (0)(w2)

∥∥∥ =
3
√

3

4
> 1.

Finally, we remark that another case of special interest in the study of the set S0
g(B)

is the case g(ζ) = (1 + cζ)/(1 − cζ), ζ ∈ U , where 0 < c < 1. Obviously, g is a
univalent function on U that satisfies the assumptions of Definition 1.1 and more-

over, the image of the unit disc is the disc centered at 1+c2

1−c2 and of radius 2c
1−c2 . Let

S0
c (B) denote the set S0

g(B) when g(ζ) = (1 + cζ)/(1 − cζ), c ∈ (0, 1). In the case of
one complex variable, a g-Loewner chain with g(ζ) = (1 + cζ)/(1 − cζ), is called a
c-chain [Bec1]. The interest of such a chain f (z, t) arises from the fact that its first
element f (z) = f (z, 0) can be extended to a quasiconformal homeomorphism of C
(see [Bec1]).

In the Euclidean case, Chuaqui [Chu] studied the following subset of S∗(B), called
the set of strongly starlike mappings. He proved that these mappings can be extended
quasiconformally to Cn. Also see [Ha-Ko4].

Definition 2.21 Let z ∈ Cn, ‖z‖ = 1 and f ∈ S∗(B). We say that f is strongly starlike
if the values of

q(ζ) =
1

ζ
lz
(

[D f (ζz)]−1 f (ζz)
)
, |ζ| < 1,

lie in a compact subset of the right half-plane, independent of z and lz ∈ T(z).
Next, let c ∈ (0, 1) and f be a normalized locally biholomorphic mapping on B

such that

(2.16)

∣∣∣∣ 1

‖z‖
lz
(

[D f (z)]−1 f (z)
)
− 1 + c2

1− c2

∣∣∣∣ < 2c

1− c2
, z ∈ B \ {0}, lz ∈ T(z).

Clearly if f satisfies the above assumption, then f is strongly starlike. Moreover,
since f (z, t) = et f (z) is a g-Loewner chain, with g(ζ) = (1+cζ)/(1−cζ), one deduces
that f ∈ S0

c (B). Also, it is obvious that if f is strongly starlike, then f satisfies (2.16)
for some c ∈ (0, 1) and thus, f ∈ S0

c (B).
From Theorems 2.2, 2.14 and Corollary 2.15 we obtain the following growth re-

sult and coefficient estimates for mappings in S0
c (B). In particular, if f satisfies the

assumptions of Example 1.7 and c ∈ (0, 1), then f ∈ S0
c (B), and therefore satisfies

the hypotheses of the result below.

Theorem 2.22 Let f ∈ S0
c (B) with c ∈ (0, 1). Then

‖z‖
(1 + c‖z‖)2

≤ ‖ f (z)‖ ≤ ‖z‖
(1− c‖z‖)2

, z ∈ B.

Moreover, ∣∣∣ 1

2
lw
(

D2 f (0)(w,w)
) ∣∣∣ ≤ 2c, ‖w‖ = 1, lw ∈ T(w),

and ∥∥∥ 1

2
D2 f (0)(w,w)

∥∥∥ ≤ 8c, ‖w‖ = 1.
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Babeş-Bolyai University
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