A NOTE ON DERIVATIONS OF GROUP RINGS

MIGUEL FERRERO, ANTONIO GIAMBRUNO AND CÉSAR POLCINO MILIES

ABSTRACT. Let RG denote the group ring of a group G over a semiprime ring R. We prove that, if the center of G is of finite index and some natural restrictions hold, then every R-derivation of RG is inner. We also give an example of a group G which is both locally finite and nilpotent and such that, for every field F, there exists an F-derivation of FG which is not inner.

1. Introduction. Let RG denote the group ring of a group G over a ring with unity R. In this paper, we shall study R-derivations of RG *i.e.*, derivations $d: RG \rightarrow RG$ such that d(R) = 0, in case where R is a semiprime ring and G is a torsion group.

A ring R is said to be of *characteristic* 0 if R has no non-zero torsion elements. Otherwise, there exists a set \mathcal{P} of prime integers such that, for every prime $p \in \mathcal{P}$ there exists a non-zero ideal I of R verifying pI = 0. Any of the primes $p \in \mathcal{P}$ is called a *characteristic* of R.

We recall that a derivation d of a ring S is said to be *inner* if there exists an element $s \in S$ such that d(x) = sx - xs for every element $x \in S$. Our main result in this paper is the following.

THEOREM 1.1. Let R be a semiprime ring and G a torsion group such that $[G : Z(G)] < \infty$, where Z(G) denotes the center of G. Suppose that either char R = 0 or for every characteristic p of R, $p \nmid o(g)$, for all $g \in G$. Then every R-derivation of RG is inner.

We remark that the same conclusion does not hold in general. In fact, we shall give an example of a locally finite nilpotent group G such that, for any field F, there exists an F-derivation of FG which is not inner.

We also note that if d is any derivation of the group ring RG such that $d(R) \subset R$, then d can be written as $d = d_1 + d_2$, where d_1 is a derivation of R (with $d_1(G) = 0$) and d_2 is an R-derivation of RG. Thus, results about R-derivations of RG can be extended to derivations d such that $d(R) \subset R$. We recall that derivations that are not inner also appear in group rings of torsion free groups [2].

This research was partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) of Brazil and the CNR and MURST of Italy.

Received by the editors July 20, 1994.

AMS subject classification: Primary: 16W25, 16S34; secondary: 16N60.

[©] Canadian Mathematical Society 1995.

2. The results. We first observe that if Z = Z(R) is the center of R, then d induces a Z-derivation of ZG. In fact, given $r \in R$ and $g \in G$, we have that $rg = gr \operatorname{so} rd(g) = d(g)r$ meaning that $d(g) \in ZG$. We shall denote by d_Z the restriction of d to ZG.

Now, let T be another ring such that $R \subset T$ and $Z(R) \subset Z(T)$. Then, identifying TG with $T \otimes_Z ZG$, d can be extended in a natural way to a T-derivation d_T of TG by defining $d_T = 1 \otimes d$: $T \otimes_Z ZG \rightarrow T \otimes_Z ZG$.

PROPOSITION 2.1. Let $R \subset T$ be rings with the same unit, such that $Z(R) \subset Z(T)$ and let d be an R-derivation of a group ring RG. Then d is inner if and only if d_T is inner.

PROOF. Assume first that d is an inner derivation induced by an element $\alpha \in RG$. For every element $r \in R$ we have that $0 = d(r) = \alpha r - r\alpha$ so it follows that $\alpha \in ZG$. Thus, given $t \in T$ and $g \in G$, we have that $d_T(tg) = t(\alpha g - g\alpha) = \alpha(tg) - (tg)\alpha$ and d_T is also inner.

Conversely, assume now that d_T is inner induced by an element $\alpha \in TG$. As before, we obtain that $\alpha \in Z(T)G$.

Write $\alpha = \sum_{g \in G} \alpha_g g$, with $\alpha_g \in Z(T)$, for all $g \in G$. Given an arbitrary element $h \in G$, we compute:

$$d(h)h^{-1} = d_T(h)h^{-1} = (\alpha h - h\alpha)h^{-1} = \sum_{g \in G} \alpha_g(gh - hg)h^{-1},$$

i.e.

$$d(h)h^{-1}=\sum_{g\in G}\alpha_g(g-hgh^{-1})=\sum_{g\in G}(\alpha_g-\alpha_{h^{-1}gh})g.$$

Since $d(h)h^{-1} \in RG$, it follows that $\alpha_g - \alpha_{h^{-1}gh} = r_{gh} \in R$, for all $g, h \in G$. Set $\operatorname{supp}(\alpha) = \{g \in G \mid \alpha_g \neq 0\}$; then, the relation above says that if $g \in \operatorname{supp}(\alpha)$ and $\alpha_g \notin R$, we have that $\alpha_{h^{-1}gh} \neq 0$, for all $h \in G$. Hence, g has finitely many conjugates and thus $g \in \Phi$, the FC-subgroup of G.

Now, write $\alpha = \beta + \gamma$, where $\beta = \sum_{g \notin \Phi} \alpha_g g$ and $\gamma = \sum_{g \in \Phi} \alpha_g g$. As shown above, if $g \notin \Phi$ then $\alpha_g \in R$ so $\beta \in RG$. Moreover, if Γ is a set of representatives of the conjugacy classes of G contained in Φ , we can write:

$$\gamma = \sum_{g \in \Phi} \alpha_g g = \sum_{g \in \Gamma} (\alpha_g g + \alpha_{x^{-1}gx} x^{-1} gx + \cdots)$$

=
$$\sum_{g \in \Gamma} (\alpha_g g + (\alpha_g - r_{gx}) x^{-1} gx + \cdots)$$

=
$$\sum_{g \in \Gamma} \alpha_g (g + x^{-1} gx + \cdots) - \sum_{g \in \Gamma} (r_{gx} x^{-1} gx + \cdots)$$

=
$$\sum_{g \in \Gamma} \alpha_g K_g + \delta,$$

where K_g is the class sum of the conjugacy class of $g \in \Phi$ and $\delta \in RG$.

Hence, $\alpha = \beta + \delta + \sum_{g \in \Gamma} \alpha_g K_g$, where $\beta, \delta \in RG$. Since class sums lie in the center of RG and $\alpha_g \in Z(T)$, it follows that $\sum_{g \in \Gamma} \alpha_g K_g \in Z(TG)$. Thus, the inner derivation

induced by α coincides with the one induced by $\beta + \delta \in RG$ and consequently, d is inner in RG.

We are now ready to prove our main result.

436

PROOF OF THE THEOREM. First, assume that G is a finite group and that $p \not| |G|$, for every characteristic p of R. Because of the proposition above, it is enough to prove the result when R is a commutative semiprime ring. We claim that we also may assume that R is Noetherian. In fact, let R' be the subring generated by the finitely many elements of R which occur as coefficients of elements in d(G). Then d restricts to a derivation of R'G and R' is semiprime and Noetherian and it follows again from our proposition that it suffices to prove that d is inner in R'G.

Let P_1, P_2, \ldots, P_n be the finitely many minimal prime ideals of R and let F_i be an algebraically closed field containing R/P_i , $1 \le i \le n$. Since R is semiprime, we have that $\bigcap_{i=1}^{n} P_i = 0$; hence, R can be imbedded in $T = \bigoplus_{i=1}^{n} F_i$. Thus, by the proposition, it is enough to prove that d_T is inner in TG.

Note that if the characteristic of F_i is a prime integer p_i , then $p_i \in P_i$ so $p_i(\bigcap_{j \neq i} P_j) = 0$ and thus p_i is a characteristic of R; therefore, $p_i \not\mid |G|, 1 \leq i \leq n$. Hence, Maschke's Theorem shows that TG is a direct sum of full matrix rings over fields, say $TG = I_1 \oplus \cdots \oplus I_k$, where each I_j is generated, as an ideal, by a central idempotent. Since it is easily seen that $d_T(e) = 0$ for every central idempotent $e \in TG$, it follows that $d_T(I_j) \subset I_j$ and thus d_T gives, by restriction, a derivation of each component, which is inner, induced by an element $a_j \in I_j$ [1, p. 100]. Consequently d_T is the inner derivation of TG induced by $a = a_1 + \cdots + a_k$.

Now we consider the general case. We first notice that d(Z(G)) = 0. In fact, given $z \in Z(G)$ with o(z) = m, we have that $0 = d(z^m) = mz^{m-1}d(z)$ and the assumption implies that d(z) = 0.

Now, let $X = \{g_1, \dots, g_n\}$ be a transversal of Z(G) in G. For every index $i, 1 \le i \le n$, we write:

$$d(g_i) = \sum_{i,j,k} \alpha_{ijk} z_{ijk} g_k, \quad z_{ijk} \in Z(G), \ \alpha_{ijk} \in R.$$

Also, for i, j = 1, ..., n let $g_i g_j = c_{ij} g_k, c_{ij} \in Z(G)$. Denote by H the subgroup of G generated by all the elements z_{ijk}, c_{ij}, g_l . Since Z(G) is abelian and G is torsion, it follows that H is finite. Also, the restriction $d|_{RH}$ is an R-derivation of RH. By the first part, there exists an element $\alpha \in RH$ such that $d|_{RH}$ is the inner derivation induced by α .

Now, given an element $g \in G$, write $g = zg_i$, with $z \in Z(G)$, $1 \le i \le n$. Then:

$$d(g) = zd(g_i) = z(\alpha g_i - g_i\alpha) = \alpha(zg_i) - (zg_i)\alpha = \alpha g - g\alpha$$

Consequently, d is inner in RG, induced by α .

3. An example. Let *H* be a finite, non-abelian *p*-group and let $G = \prod_i H_i$ be the direct sum of infinitely many copies of *H*. Then *G* is a locally finite nilpotent group and it can be written in the form $G = \bigcup_n G_n$, where $G_n = \prod_{i=1}^n H_i$. Consider any field *F* and the group algebra *FG*. Let x_i be any non-central element of H_i and define $d: FG \to FG$ by $d(\alpha) = \sum_{i=1}^{\infty} [x_i, \alpha]$, where $[x_i, \alpha] = x_i \alpha - \alpha x_i$. Notice that, if $\alpha \in FG_n$, then all summands after the *n*-th are zero and hence $d(\alpha) \in FG_n$. Indeed, *d* restricted to *FG_n* is just the inner derivation induced by $x_1 + \cdots + x_n$. Thus *d* is a derivation of *FG*. Furthermore, it is not an inner derivation since $d(H_i) \neq 0$ for all indices *i*.

REFERENCES

- 1. I. N. Herstein, Non Commutative Rings, Carus Math. Monographs 15, 1968.
- M. K. Smith, Derivations of Group Algebras of Finitely Generated Torsion-Free Nilpotent Groups, Houston J. Math. 4(1978), 277–288.

Instituto de Matemática Universidade Federal do Rio Grande do Sul 91509-900 Porto Alegre Brazil

Dipartimento di Matematica Universitá di Palermo Via Archirafi 34 90123 Palermo Italy

Instituto de Matemática e Estatística Universidade de São Paulo Caixa postal 20.570 01452-990 São Paulo Brazil