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THE «DIMENSIONAL HILBERT TRANSFORM OF 
DISTRIBUTIONS, ITS INVERSION AND APPLICATIONS 

O. P. SINGH AND J. N. PANDEY 

1. Introduction. Pandey and Chaudhary [13] recently developed the theory 
of Hilbert transform of Schwartz distribution space {Du*)',p > 1 in one dimen
sion using Parse val's types of relations for one dimensional Hilbert transform 
[17] and noted that their theory coincides with the corresponding theory for 
the Hilbert transform developed by Schwartz [16] by using the technique of 
convolution in one dimension. 

The corresponding theory for the Hilbert transform in «-dimension is con
siderably harder and will be successfully accomplished in this paper. We also 
develop the «-dimensional theory of the Hilbert transform to D'(Rn) by using a 
method analogous to that used by Ehrenpreis [4] to extend the theory of Fourier 
transform to D'. Further we exploit the result proved in Theorem 10.1 to give the 
intrinsic definition of the space H(D(Rn)) and its topology. Some applications 
of our results to solve singular integral equations will be discussed. A related 
boundary value problem and its solutions will also be discussed. 

2. The «-dimensional Hilbert transform. If / e Lp(Rn),p > 1 then it is 
well known that its Hilbert transform (Hf)(x) defined by 

(2.1) (Hf)(x) = — lim max et -+ 0+ /", , ^ ^ 
z=l,2,3,...,/z 

exists a.e. and (Hf)(x) e LP(Rn). 
It is also known that there exists a constant Cp > 0 independent off satisfying 

(2.2) ||(///)(*)||P£C,||/||,. 

The existence of the integral in (2.1) and its boundedness property as stated 
in (2.2) was proved by Riesz and Titchmarsh [17] for n = 1, and for n > 1 
the results were proved by several authors such as Kokilashvile [9] and others. 
Riesz and Titchmarsh also obtained the following inversion formula 

(2.3) (H2f)(x) = -f{x) a.e. 

for the one dimensional Hilbert transform. 
In this paper we generalize the above inversion formula for n > 1 to the space 

Lp(Rn),p > 1 and then to Schwartz distribution spaces D,
LP(Rn) and D'(Rn). 
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240 O. P. SINGH AND J. N. PANDEY 

3. Schwartz testing functions space D(Rn). The space D(Rn),n ^ 1 is the 
Schwartz testing function space consisting of C°° functions defined on R" having 
compact support and the C°° functions defined on R with compact support will 
be denoted by D or D(R). The topology of D(Rn) is that defined by Schwartz 
[16]. Accordingly a sequence {ipm}™=l in D(R") converges to zero in D(Rn) if 
and only if 

(i) p\, if2, <£>3,... have their support contained in a compact set K 
(ii) p{^\x) —> 0 as m —• oo uniformly for each \k\ = 0, 1,2,... on arbitrary 

compact subset of R". 

The space X(R") is defined to be the collection of p G D(Rn) which are finite 
sums of the form 

(3.1) p(x) = ^ VmMtiVmMl) • • • VmMn) 

where <pm GD,V/'= 1, 2 , . . . , n. Then we have the following well-known result: 

LEMMA 3.1. The space X(Rn) is dense in the space LP(Rn),p > 1 with respect 

to the norm topology of Lp{Rn) [18, p. 71]. 

4. The inversion formula. Note that if (p G X(Rn) and p has the represen
tation (3.1) then 

n 

(4.D (Hp)u)=Y,n^™^ 
7 = 1 

where H,(pnlj) = (pm., the classical one dimensional Hilbert transform of <pm. 
defined by 

(Hjpnii)(Xi) = -P l ~ T = ^PmMi). 
7T JR (A", - tj) 

We are now ready to prove our Inversion Theorem. 

THEOREM 4.1. Let H be the operator of the classical Hilbert transform as 
defined by (2.1) in n-dimensions. Then V/ G Lp(Rn) 

(4.2) (H2f)(x) = (-\)"f(x) a.e. 

Proof Equations (4.1) and (2.3) imply that the inversion formula (4.2) is 
valid for the subspace X(RW) of Lp(Rn). To prove it on Lp{Rn) let us assume 
that/ e Lp(Rn) and {<fj}™\ is a sequence in X(Rn) tending t o / in Lp(Rn) as 
j —> oo. Such a sequence exists by Lemma 3.1. Then 

(4.3) \\H2f - (-D71I, = \\H2f - (-1)"/ - (H2pj - (-iyV;)||„ 

= \\H2(f-pJ)-(~\y(f-pJ)\\p. 
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Now H : Lp(Rn) —> Lp(Rn) is a bounded linear operator [9], therefore H2 is 
also a bounded linear operator from Lp(Rn) into itself. Therefore by (4.3) 

\\H2f - (-1)711,, ^ *P | | / - VyIU ~> ° a s i - oo-

Hence 

(4.4) H2f = (-l)nf 

in the Z/(RW) sense and so a.e. as well. 

5. The testing function space DLP(Rn). A complex valued function defined 
on Rn belongs to the space DLP(Rn),p > 1 if and only if 

(i) ip G C°°(R'7), 

(ii) ip{k)(t)eLp(R"), V|*| GN, 

where 

/ ) ( r ) = DV(0 

Dt.ip= -^-\ i = 1,2, . . . , / 7 . 

a n d 

/ = I 

The topology on the space D/^(R"). The topology over/)/ />(R") is generated 
by the separating collection of seminorms {7(*)}|£| G N where 

(5.1) 7(*)(y>)= (J yk)(!)\pdt\ [20]. 

Therefore, a sequence ĉ 7- converges to ip in DiP(Rn) as y —• oo if and only if 

7 ( i t M - ^ ) - * 0 asy->oo,V|*| G N. 

A sequence </?y is said to be a Cauchy sequence in DLP(RN) if and only if 
V|*| G N 

7(A)(̂ m - ^ ) —• 0 as m, w —* oo 
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independently of each other. 
The space DLP(Rn)(l < p < oo) is sequentially complete, locally convex 

Hausdorff topological vector space [20]. 

Note (1). If (p e DLP(Rn) then if{k\x) —> 0 as |x| —• oo for each |jfc| <G N [16]. 
(2) If (j>j is a sequence tending to zero in DLPÇR") as j —> oo then for each 

|*| GN 

<pf\x) —• 0 uniformly on R" as y —» oo. 

This result is well known [5, 16]. 

THEOREM 5.1. The operator H of n-dimensional Hilbert transform as defined 
by (2.1) is a homemorphism from DiP(Rn) onto itself 

Proof The result is well known for n = 1, see [13, 16] and we use this fact 
to prove the result for n > 1. For ip(t) in DLP(R"),/? > 1, let us define 

(5.2) (Hiif)(tut2,..., U-Uxh ti+u..., tn) 

= - P / dyt 

— <P(t\ihi • • • ? ̂ - l ? -*n^"+ l? • • • ? ' « ) • 

It is easy to see that if / G Lp(Rn) then 

(Hf)(x) = (H{H2 • ..Hi-xHiHM • ••//„/)(*) 

= {Hi{HxH2 • • -///-1///+1 • "Hn)f){x) 

(operators Hi,H2,Hi>1... are commutative). 
Therefore, for (/? G Z)z^(R"),/? > 1, we have 

where 

(H((f)(x) = Hi(ip(xux2l.. . , * / _ i , f / , .*/+ i , . . . ,*„) ) , 

^ ( • ^ 1 ^ 2 ? • • • ?-*/-!? ^ ' 7 - * / + b • • • >•*«) 

1 
(7T> « - 1 X ^ ( y b ^ , . . . , ^ - ! , ^ , ^ ! , . . . , ^ ) 

IlUy-») 
7 = 1 
M' 

x J j ! '-dyi-idyi+i --dyn 

By successive application of Theorem 5.1 for n = 1, it follows that 

<p(xi,x2,... ,*/_i, f|,*/+i,. . . ,*„)€ £MR")-
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When x\1X21... ,x7_i,x /+i,... ,xn are kept fixed then it follows that 

a a 
(5.3) — (H<p)(x) = /// — ^Ui,Jf2, • •. ,*/_i, f/,*/+i,... ,xn) 

= / / f - / / , / /2 , • . . , / / / - i / / / + i • • • / / * ^7 ¥>(*!,. • • ,**) 
dr, 

= / / ( ! ) , , = 1,2,...,,. 

By successive application of this result it can be shown that 

(5.4) Dk(H^)(x) = H(Dkp)(x). 

Therefore, using (2.2) we have 

\\Dk(Hip)(x)\\p = \\H(Dk^)(x)\\p £ Cp\\D
k<p\\p. 

Hence, 

(5.5) if G DLP(Rn) =» Htp G Dz,,(Rw). 

In view of the inversion formula (4.2), we have 

(5.6) H<p = 0=ï<p = 0 

i.e., H is one to one. 
The fact that H is onto follows by the same inversion formula. For if <p G 

DLP(Rn)9 we have 

(5.7) H[(Hip)(-m = <p, 

and note that (-l)nH(p G DLP(Rn). Therefore H~l exists, and using (4.2) we 
have 

(5.8) H~l = ( - 1 / 7 / . 

Since H is linear and continuous, in view of (5.8) H~l is also linear and con
tinuous; thus proving the theorem. 

6. The «-dimensional distributional Hilbert transform. For p > 1, assume 

that / G Z/(R") and g G L^R") where - + - = 1. Then it is easy to show 
p q 

that 

(6.1) f (Hf)(x)g(x)dx = f f(x)(-\T(Hg)(x)dx. 
JR" JR» 
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244 O. P. SINGH AND J. N. PANDEY 

In the adjoint notation (6.1) can be written as 

(6.2) {Hf,g) = (f,(-l)nHg). 

We are motivated by the equation (6.2) to define the Hilbert transform of dis
tributions in «-dimension. 

In conformity with the notation used by Laurent Schwartz we will denote 
Df

LP(Rn),p > 1 or some time abbreviated as D'LP as the dual space of DLq(R
n) 

where 

1 1 
- + -
p q 

l . 

Definition. F o r / G D'LP(Rn), we define the «-dimensional Hilbert transform 
Hf off as an element of D'LP(Rn) satisfying 

(6.3) (Hf, ip) = </, {-\)nH<p), V</> e DLq(R
n). 

Hip in (6.3) stands for the classical «-dimensional Hilbert transform of (p. 

It can be easily shown that the functional Hf defined by (6.3) is linear and 
continuous on D^(R") . 

Example 1. Find H6 where 8 G D'LP(Rn). 
From the definition (6.3), we have 

(H5,ip) = (8,{-l)nH<p) 

= ( M - D " V / : : 
\ 7Tn JR» (*1 - t 

\y^p r ip(t)dt 
I*)" jRntlt2'",tn 

(f(t)dt 

(-Dn 

•p.v. 
1 

t\t2"-tn 

Therefore 

(6.4) H8 
1 

•p.v. 
hh-

-p.v. 

\)'"(Xn -tn) 

VipeDLq(R
n). 

Example 2. Find 

H (p.v 

Operating both sides of (6.4) by H we get 

H26= —H (p.v. I -
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Hence 

Hip.v. (-*)"«. 

Since the operators //1 ?//2 7 . . .Hn as defined in Section 5 are commutative, we 
can see that 

( 1 >\ ( 1 p.v. I 1 =p.v. I 
\t\h " ' tn J V fi\ t'n ' ' ' K 

where i\, z'2, z'3,..., in is a permutation of 1,2,..., n. 

7. Calculus on D'LP(Rn). Le t / G /^(R*). Then the distributional differen
tiation on Df

LP(Rn) is defined as follows 

(7.1) (Dkf,<p) = (/,(-l)l*lDV>,ty> e ^ ( R " U = - ^ - , p > 1. 
/ ? - 1 

Now we prove the following 

THEOREM 7.1. Let f G D[P(RW) J/HTI 

£>*/// = HDkf. 

Proof. 

(DkHf^) = (Hf,(-l)MDk<p),V<peDL,(Rn) 

= ( / , ( - l ) " / / ( - l )WDV) 

= (DY,(-ir^) 
= (//DY,^>. 

Hence the Theorem 7.1 is established. 

Example 3. Solve in D£„(RW) the operator equation 

(7.2) y=Hy + / , 

where/ GD[P(Rn) ,«> 1. 

Solution. Operating both sides of (7.2) by H and applying the inversion 
Theorem 4.1 and using (7.3) we get 

(7.3) y[l - ( - l ) " ] = / + / / / . 
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Case (i): n is odd 

Hf+f 
(7.4) (7.3) => y = -+-J- . 

Case (ii): n is even 

(7.5) (7.3) =»/ / / = - / . 

Therefore solution to (7.2) does not exist if 

(7.6) Hf^-f. 

If Hf = —f is satisfied then there exists infinitely many solutions and in this 
case 

y — - is a solution to (7.2). 

If g;'s are such that they satisfy 

(7.7) Hy=y 

then 

i=\ 

where C,-'s are arbitrary constants, satisfies (7.2). 
The fact that there exists non-zero solutions to Hy = y (n even) follows 

easily; for 

y = ^\iy\)^2iyi)'"'pn{yn) 

+ (//, ^i)Cyi)(//2(^2)Cy2) • • • (H„<pn)(yn), 

where (̂ , GD, satisfies Hy = y when n is even, and 

j = (Hnp\)(y\) - • (Hnip„)(y„) - if\(y\)-- <p„(yn) 

satisfies 

/fy = - v . 

There do exist non-zero _y's not satisfying 

Hy = -y, 
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when n is even. 
As an example if we choose 

n n 

y = Y[(Hnpi)(yi) + Yl ifiiyi) 

where p\ G D such that y ^ 0, then it does not satisfy Hy = —y, when n is 
even. It is still an open problem to determine the whole class of solutions to 

y=Hy+f 

when Hf = —f is satisfied for n even. 

8. The testing function space H(D{Rn)). A complex valued C°° function 
if defined on Rn belongs to the space H(D(Rn)) if and only if ip(x) is the n-
dimensional Hilbert transform of some if;(t) in D(R"). Hence (p G H(D(R")) & 
there exists V>(0 in D(Rn) such that 

i r é(t) 
(8.1) <p(x)=—P / m±dt = Hil), 

where the integral is being taken in the Cauchy principal value sense and (v — t) 
in (8.1) is interpreted as 

n 

The topology of H(D(Rn)) is the same as that transported from the space D(Rn) 
to H(D(Rn)) by means of the Hilbert transform H. Therefore a sequence ipn in 
H(D(R")) converges to zero in H(D(Rn)) if and only if its associated sequence 
\jjn converges to zero in D(Rn), where H\j)n — (f„,Vn G N. 

THEOREM 8.1. Let H(D(Rn)) and DLP(Rn) be the spaces defined as before. 
Then 

(i) H(D(R")) C DLP{Rn) and H(D(Rn)) is dense in DLP(R"). 
(ii) Convergence of a sequence in H(D(Rn)) implies its convergence in 

DLn(R"). 
Hence the restriction of any f G D'LP{Rn) to H(D(R")) is in Hf(D(R")). 

Therefore 

// '(D(R"))DD[,(R"). 

Proof (i) Since D(Rn) is dense in DLP(Rn) and 

H:DLP(Rn)^DLP(Rn) 
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is homemorphism, we conclude that H(D(Rn)) is dense in Dtn(Rn). [See also 
14.] 

(ii) Let <fj —• 0 in H(D(Rn)). Then there exists a sequence iftj —> 0 in D(Rn) 
as y —-» oo such that Hifij = (fj. Now using equation (2.2) and (5.4), we have 

yf\^CPUf\^0 as y-*oo. 

Remark. In view of the Inversion Theorem 4.1, 

H :H(D(Rn))-+D(Rn) 

is linear and continuous. 

9. The «-dimensional generalized Hilbert transform. The generalized 
Hilbert transform Hf of / G £>'(R") is defined to be an ultradistribution 
Hf G H'(D(Rn)) such that 

(9.1) < f / / » = ( / , ( - iy7ty>, Vy> €//(D(Rn)) 

where //</? is the classical Hilbert transform defined by (8.1). If g G H'(D(Rn)), 
its Hilbert transform Hg is defined to be a Schwartz distribution by the relation 

(9.2) (//$, y>) - (g, (-l)n//^>, Vy> G D(R"). 

Let £ = / / / , for some/ G D'(R"). Then 

(9.3) (H2f,ip) = (Hf,(-l)nH<p) 

= (/,(-DV) 
=^/ / 2 = ( - iy7onD'(R") . 

Definition 9.1. The derivative Dkg of an ultra distribution g G H\D(Rn)) is 
defined as follows: 

(9.4) ( D ^ ^ ) = fe,(-l)IV^ 

for every <p G H(D(Rn)). 

THEOREM 9.2. Let f G D'(R"), r/œn 

(9.5) (Hf){k) = H(f{k)). 
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Proof. 

(DkHf, <p) = (///, (-l)l*lDV), V^ € H(D(R")) 

= (/,(-I)W+"//DV) 

= (f,{-\)n+nDkH<f>) (from (5.4)) 

= {Dkf,(-\)nH<p) 

= (HDkf,p). 

Example. Solve in D'(R") 

OX\ OX\ 

We rewrite the equation in the form 

/ - [y + / / / ] = «(*) = S(*i) *S(JC2) * • • • *«(*„). 

Then 

y+Hf = h(x{) * <5(x2) * • • • * £(*„) 

+ C(x 2 ,x 3 , . . . , ^ ) . 

10. An intrinsic definition of the space H(D(Rn)) and its topology. In 
this section we will give an intrinsic definition of the space H(D(Rn)) and its 
topology. We also now give some lemmas to be used in the sequel. 

LEMMA 10.1. Let {(fu}^L\ be a sequence of functions tending to zero in 
Dip(Rn) as v —• oo i.e., 

7(*)(yv) —» 0 as v —• oo V\k\ G N, 

then for each \k\ = 0,1,2, . . . 

( ^ —-> 0 «5 i/ —> oo uniformly Vi G R". 

Proof. The lemma is well known [5, 16], but a very simple proof can be 
given as follows: 

(10.1) <p*\x) = (5(0, <p{k\x - 0), Vv? G DL,(R"). 

In view of the boundedness property of generalized functions [20] there exists 
a constant c > 0 and an r — (r\, r2 , . . . , rw) and |r| = r\ + r2 + • • • + rn such that 

\^k\x)\ ^ C7fr,(^
a'}(x - 0) [20, p. 8-19] 

û civ^
{k\t)) 
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where 

7 | o i=7 | 0 | and if,., = max 7 0 > 

Therefore 

\<plk)(x)\ è Cl\r^v
k\t)) - » 0 as v -+ oo 

independently of A. This completes the proof of the lemma. 

LEMMA 10.2. Let <p(t) G D(R") then as y —• 0+ i.e., >v 

3 , . . . « 

(i) 

(10.2) 

(ii) 

(10.3) 

</>(?) 
y\ V2 

}'n 

(f, -x\)2+y2 (t2-x2)
2+yl 

dt^Lp(x)inDLP(R"),p> 1. 
(t„-x„)2+y2 

Ui-Xi) 

JR" T -

. ( ? , - . Y , ) 2 + V,2 * 

dtinDLP(R"),p > 1. 

n^---r'-) 
(iii) 

1 /" "' 

;l0-4) ^ . i ^ n 
A? 

><n {t,-x,)2+y} 

(tj-Xj) 

(ti-Xi)2+yf\ 

dt 
i=m+\ 

—• (//w • • • H3H2Hi ip){x\, A-2, . . . , x w , x w + i , 

inDLP(Rn), /w= l ,2 , . . . ,Ai , (p > 1). 

-,xn) 

(iv) 

i r w 

n 
/=w+l 

7 = 1 L 

J/, 
a / / - . r / / )

2 +>f 

(r,, ~ J T / I . ) 2 + ^ 

( / / / „ / / / „ , _ , • • . / / / 1 ^ ) ( - - . j c / l . . . j c / 2 . . . j c / < f , - - . ) 

inDLP(Rn),p > 1, /w= 1,2,3,.. . , n. 
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Proof, (i) For the proof see [7, p. 400]. 
(ii) Denoting the L.H.S. expression in (10.3) by nnF{x), we see that 

F{k\x) = — 
K" 7R« f_| (ti-Xi)2+yf 

By successive application of Fubini's Theorem and [17, Theorem 101, p. 132], 
it follows that 

||F«(x)||P ^ C"p\\<p«\x)\\p, 

where Cp is a constant independent of (p and .y,-, y2,..., >v 
Since the space X(RW) is dense in Dw(Rn), p > 1, it is easy to show that 

(10.6) \\F(k\x) -H^k\x)\\p ^ 0 as yx, y2l..., yn — 0. 

A much more general result is proved in [15, Theorem 3.2]. 
(iii) follows as a result of (i) and (ii) and (iv) is only an elementary variation 

of (iii) and can be proved similarly. 

LEMMA 10.3. Let Zj G C for j — 1,2,3,.. . , n where z-} = x} + iy} and 
Xj,yj G R. For (p(t) G D(Rn), define a function F as a mapping from Cn to C 
by 

(10.7) F(z) h 
Vit) 

•dt, 

Hi* - zt) 

if yi 7̂  0 V/ = 1, 2 , . . . , n; and 

(10.8) F(z{, z2 , . . . , z/_i,*,-, Z/+1,..., z„) 
1 

= -[F(zi,...,Z|_i,x ;- ,z,+1,...,z„) 

+ F(ZI , . . . ,Z /_ I , J : I ~,Z I - + I , . . . ,Z W ) ] , 

//jz = 0, for some /, 1 ^ / ^ «. 
7Vi£W lim>,_+o+ F(z) converges uniformly to 

Y/(in)n-lHJlHj2...HJlp, VxGR*. 

Proof Since zy = jty + / j 7 , V/ = 1,2,..., n; 

F(z) L^i 
(tj-Xj) + iyj 

(tj-Xj?+yj 
dt, 
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as y —-> 0+, (in view of Lemma 2 (ii)), 

F(z) 

n-l 

n 

<PU) 
(tj,„-*J 

•J\(tj„-XjJ2 + yL n 
in~ly? 

m=\ (tfm-xfJ
2+yl 

dt 

and the result follows in view of Lemma 2 (iv). Now we come to our central 
problem of defining the space H(D(Rn)) intrinsically and we need the following 

Definition 10.1. A holomorphic function i/;(z) defined on the complex w-space 
Cn belongs to the space *F if and only if the following properties hold: 

(Pi): ip(z) is holomorphic outside the intervals <?, ^ xt ^ /?,, / = 1, 2, 3 , . . . , n 
(the interval depending upon ip(z)). 

(P2): ^ } ( z ) = O 
1 

-1 K2 

as |z,-| —• oo, V/, for each fixed & satisfying |£| = 0, 1,2, 3, 
(P3): (a) For each fixed \k\ — 0, 1, 2, 3 , . . . , ip{k)(z) converges uniformly VJC G 

Rw as y -> 0+. 
(b) For each fixed |&| = 0, 1, 2 , . . . , 4){k)(z) converges uniformly VJC G Rn as 

y — 0 " . 

(P4): Î/;(ZI, z 2 , . . . , z/_i, */, z /+i , . . . , zw) 

= ~ [ # 1 ^ 2 , • . . ,Z /_ i , J f / " ,Z /+ i , . . . ,ZW) 

+ T/;(ZI , z 2 , . . . , z/_i, A~ , z/+i , . . . , z„)], i = 1, 2, 3 , . . . , n\ 

where 

i/;(zi,z2 , . . . ,z/_i,.v / , z / + 1 , . . . , z „ ) . 

= lim -0 (z i , z 2 , . . . , z / , . . . , z w ) . 
v,—>0 f 

THEOREM 10.1. A necessary and sufficient condition that a function ip(z) de
fined on the complex n-space Cn belongs to the space *F is that there exists a 
if(t) G D(Rn) satisfying 

(10.9) VKz) 

(10.10) 

JK T -

¥(0 

]><-*> 
•dt, I m z ^ 0 , V / = 1 , 2 , 3 , . . . , w, 

7=1 

P\ L ('1 
y>(0 

^ , 
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when Im z, = 0 for some /, 1 è i S n. 

Proof. Necessity: If i/;(z) G *F then in view of the properties (Pi), ip(z) as a 
function of x G Rn is a member of DLP(Rn) for a fixed y 7̂  0 (i.e., for each 
component of y G Rn non-zero). Now from (Pi) and (P2) it follows that if 
{ym}™=i is an arbitrary sequence in R" such that \\ym\\ —• 0 as m —> 00 then 

U{k\x + iym) - ^{k\x + Ô7)||„ — 0 

as /, A?7 —• 00 independently of each other. Therefore {T/;(JC + iym)}™=\ is a 
Cauchy sequence in DiP(Rn)^p > 1. Since DLP(Rn) is sequentially complete 
there exists a function i/̂ +C*") in DLP(Rn) such that 

lim I/J(X + /yw) = 0 + ( A ) in DLP(R"),/? > 1. 
m—KX) 

Since {ym} is an arbitrary sequence in R" tending absolutely to zero it follows 
that 

(10.11) lim %l)(x + iy) = V>+tv) in DLP(R"). 
y—>Q+ 

Similar arguments show the existence of a function -0_(.v) in DLP(R") satisfying 

(10.12) lim \j)(x + / » = i/j-(x) in DLP(Rn),p > 1 
v—+0 

and hence is the uniform limit (from Lemma 10.1) with respect to every x G R". 
In quite a similar way it can be shown that 

^(Zi , Z2, . . . , Z / _ , , ^ , Z / + 1 , . . . , Zn) G DLP(R") 

for each fixed z / E C , l S j S « and j ^ i. Therefore 

( 10.13) i/j(z 1, z 2 , . . •, z/_ 1, .\7, z/+i, . . . , zw) 

= - [t/;(zi, z2, • . . , A- /" , . . . , zn) + t/;(zi, z 2 , . . . , A~ , . . . , zw)] 

belongs to DLP(R"),p > 1 for fixed y i , y 2 , . . . , j/-i,>7+i, • • • ?>'« 7̂  0, where 
y7 = Im zy, 1 ^ j ^ ft, y 7̂  /. Since i/;(z) is analytic outside the interval [a/, /?,] on 
the X/-axis, hence 

%l)(z\, z 2 , . . . , jf/",..., zw) - i/;(zi, z 2 , . . . , A~ , . . . , z„) = 0 

outside [a-nbi\ on the X, real line, V/ = 1 ,2 , . . . ,n . Using Cauchy's integral 
theorem it can be shown that 

1 f°° 1 
(10.14) — / [^(zi ,z 2 , . . . ,z /_i , (r / + /e /),z /+i, . . . ,z,?)Wr / 

2TT/ J_00 fy - zy 
= l/7(zi, Z2, . . . , Z;_i, Zy + /ey, . . . , Z„), Im Zy > 0 

= 0 Im zy < 0. 
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Letting e7 —> 0+ in (10.14), we have 

(10.15) 
1 f°° 1 

2TH J_OQ tj - z/ J J J 

= V(zi, z 2 , . . . , zn . . . , z„), Im z, > 0 

= 0, Im Zj < 0. 

Similarly we can show that 

(10.16) - ^ 
Z717 

, 0 0 ! 

/ __ V>(Zl 7
 z 2, • • • , Z/-1, */ , Zj+\, • • • , Z/i)dfy 

= ~ ^ ( z i , z 2 , . . . , z„ . . . , zw), Im zy < 0 

= 0, Im z,- > 0. 

Therefore, combining (10.15) and (10.16) we get 

1 f°° 1 
( 1 0 . 1 7 ) . — / [ ^ ( z i , z 2 , . . . , z / _ 1 , r + , z / + 1 , . . . , z j 

2TT/ J_00 tj - Zj 
— i/;(zi, z 2 , . . . , Zj-\, r7~, zy+i,.. . , zn)]^r,-

= T / ; ( Z I , Z 2 , . . . , Z W ) , I m z y ^ O ; 1 ^ y ^ w. 

In view of Lemmas 2 and 3 and (P4) it follows that 

(10.18) -0(217 z 2 , • • • , Zj-\ 7 A), Z /+1, . . . , Zn) 

1 r°° 1 
= 2^pi_co^^; [ t / , (z ,'Z2,•••'Z/"" / /+ , 

Zj+\, . . . , Zw) — -0(Zi, Z2, . . . , Zj- 1, fy , Zj+\, . . . , Zn)]dtj 

(10.19) = p . v . rKuZ2,...,Zjri,tj,zj+u...,zn)d^ 

where 

(10.20) - 2 7 n 0 ( z i , z 2 , . . . , r y , . . . , z „ ) 

= V ^ l , Z2, . . . , f|, . . . , Z„) - V>(zl7 • • • , tj, . . . , Zn). 

Clearly # ( z j , . . . , ry-,..., z„) — 0 when tj 0 [a7, fy]. Exploiting the Lemmas 2, 3 
and (P4) once again it can be proved that 

(10.21) -0(Zi ,Z 2 , . . . ,Z / -_i , JÇ / - ,Z / + 1 , . . . ,Z/_ 1 , JC/ ,Z/ + i , . . . ,Z w ) 

/
oo /»oo r 

00 J—oo L 

1 1 ,rj(zi,Z2,...,Zi-\,tj,Zj+\,...,zi-\,ti,zi+\,...,zn)\ 

{Xj - tj)(Xi - ti) 
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for a suitable rj(z\, z 2 , . . . , ( / , . . . , f/,..., zn) vanishing whenever tj £ [a7-, bj] and 
U $ [ai,b[]. Carrying similar arguments one can show that there exists ip(t) G 
D(Rn) with support contained in at ^ t[ ̂  bt Mi — 1,2,..., n; such that 

(10.22) xl>(xux2,...,xn)=p.v. [ — ^ du P-v- / — 

Now using (10.17) and repeating the technique of contour integration etc. (as 
used in deducing (10.17)) it can be shown that there exists <p(t) G D(R") satis
fying 

(10.23) xp(z) h 
JR" T -

W^-h) 
7 = 1 

when 

I m z ^ O V / , 1 ^jS-n. 

It can easily be seen during the course of derivation that (p's used in (10.21) 
and (10.22) are the same. This completes the proof of necessity. 

Sufficiency. Assume that (p(t) G D(Rn) and define a function t/;(z) and a 
mapping from Cn to C by the relation 

(10.24) V(z)= / -=-^—dt, 

when 

Im ZJ ^ 0 V/, l^j^n; 

(10.25) = /?.v. / 7 ^ ; -dt 
JR» '* R« (t\ - z i ) . . . (/,-_! - Z/-i)(f/ - Xj)... (tn - zn) 

when Im z, = 0 for some y, 1 û j Û n. 
The support of c/?(0 is contained in a, ^ ^ ^ /?/, / = 1, 2 , . . . , /t. Using (10.23) 

and (10.24) now it follows quite easily that (P0, (P2), (P3) and (P4) follow. This 
completes the proof of Theorem 10.1. 

Theorem 10.1 demonstrates one to one correspondence between the space P̂ 
and H(D(Rn)). We, therefore, can define the space H(D(Rn)) in a genuinely 
intrinsic way as follows: 

A C 0 0 function I/;(JC) defined on R" is said to belong to the space H(D(Rn)) 
if and only if there exists a holomorphic function ijj(z) defined on Cn satisfying 
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(Pi), (P2), (P3) and (P4). In other words $(x) E H(D(Rn)) if and only if VOO 
can be extended uniquely as a holomorphic function satisfying (Pi), (P2), (P3) 
and (P4). 

The convergence of a sequence {V>m(*)}£JLi t 0 z e r o in the space H(D(Rn)) 
can be defined in an intrinsic way as follows: 

A sequence {^mj^Li m H(D(Rn)) converges to zero in H(D(Rn)) if and only 
if 

(i) the associated functions ijjm(z) in accordance with Theorem 10.1 are ana
lytic outside a closed n-hox YYj=ilaj^bj] °f Rw o r e l s e V'mC*) is analytic outside 
a fixed closed «-box Yl^ilcipbj]. 

(ii) ipm(x) —» 0 in D^>(R") as w —+ 00. 
Clearly if {<Pm(x)}™=\ is a sequence in D(R") tending to zero in D(R") as 

m—^oo and 

(10.26) $m(x)=p.v. I n ^
m{t) dt W=p.v. / — 

JR' T-T 

./=! 

V'm(z) - / „ ̂ ^ dt, Im z, ^ 0 Vz = 1,2,..., n, 

7=1 

then ipm{z) is analytic outside the closed intervals a} ^ xj ^ /^y = 1,2,...,/?; 
and 

7 = 1 

Therefore 

| |D^„,U)||P g C j ^ ' H , - 0 as W - , <x>. 

Hence, (i) and (ii) are satisifed. 
If however, (i) and (ii) are assumed then there exists closed intervals a} ^ 

// ^ bj containing the supports of all 

H«J-XJ) 
y=i 

Therefore 

H^Wlly, ^ ^ J V t f ' l l , - 0 as m -> 00 
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i.e., ipm(x) —> 0 in DLP(Rn) as m —-> oo. Therefore, by Lemma 10.1, ipm(x) —> 0 
uniformly Vx G R" as m —> oo. By (i) all ^w(x) have supports contained in a 
fixed n-box nLifr*/? bj\. Therefore if ijjm(x) —> 0 in H(D(Rn)) asm—^oo then 
the associated sequence {^m}^Li tends to zero in D(Rn) as m —> oo. Thus we 
have proved that 

<pm —• 0 in D(R") as /w —> oo *» V/w —• 0 in H(D(Rn)) as m —̂  oo. 

Thus the conditions (i) and (ii) together describe intrinsically the convergence 
of a sequence {^m}^=1 to zero in H(D(Rn)) as m —> oo. 
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