# SEQUENTIAL COMPACTNESS OF $X$ IMPLIES A COMPLETENESS PROPERTY FOR $C(X)$ 

M. RAJAGOPALAN AND R. F. WHEELER

A locally convex Hausdorff topological vector space is said to be quasicomplete if closed bounded subsets of the space are complete, and von Neumann complete if closed totally bounded subsets are complete (equivalently, compact). Clearly quasi-completeness implies von Neumann completeness, and the converse holds in, for example, metrizable locally convex spaces. In this note we obtain a class of locally convex spaces for which the converse fails. Specifically, let $X$ be a completely regular Hausdorff space, and let $C_{c}(X)$ denote the space of continuous real-valued functions on $X$, endowed with the compact-open topology. We prove

Theorem 1. If $X$ is sequentially compact, then $C_{c}(X)$ is von Neumann complete.

A space $X$ is said to be a $k_{R}$-space if a real-valued function on $X$ is necessarily continuous when its restrictions to compact subsets are continuous. Any $k$-space is a $k_{R}$-space, but the converse is not true. It is well-known (see [12]) that $C_{c}(X)$ is quasi-complete (or complete) if and only if $X$ is a $k_{R}$-space. Thus if $X$ is sequentially compact, but not a $k_{R}$-space, then $C_{c}(X)$ is von Neumann complete but not quasi-complete. We give a simple example of such an $X$. A second example shows that "sequentially compact" may not be replaced by "countably compact" in Theorem 1.

1. Some background. The first example of a von Neumann complete non-quasi-complete space seems to have been given by Ptak [11, pp. 64-67]: if $X_{0}$ is the space of countable ordinals, then the space of continuous real-valued functions with compact support on $X_{0}$, endowed with the compact-open topology, has the desired properties. (The authors thank Robert Anderson for providing a translation of this material.) Almost twenty years later Dazord and Jourlin [3] made a systematic study of von Neumann complete locally convex spaces (calling them $p$-semi-reflexive spaces); see also Brauner [1]. Shortly thereafter Haydon [7] found a complicated example of a $C_{c}(X)$ space which is von Neumann complete but not quasi-complete.

Let $\mathscr{T}, \mathscr{C}$, and $\mathscr{E}$ be the collections of subsets of $C(X)$ which are, respectively, totally bounded in the compact-open topology, relatively compact in the compact-open topology, and pointwise bounded and equicontinuous. Then

Received May 27, 1975.
$\mathscr{E} \subset \mathscr{C} \subset \mathscr{T}$. Von Neumann completeness of $C_{c}(X)$ is the condition $\mathscr{T}=\mathscr{C}$; those spaces $X$ for which $\mathscr{T}=\mathscr{E}$ were called "infra- $k_{R_{R}}$-spaces" by Buchwalter [2]. Haydon [5, Corollary 3.2] proved the surprising result that $\mathscr{T}=\mathscr{C}$ if and only if $\mathscr{T}=\mathscr{E}$. Consequently, $C_{c}(X)$ is von Neumann complete but not quasi-complete precisely when $X$ is infra- $k_{R}$ but not $k_{R}$.

## 2. The proofs.

Proof of Theorem 1. Let $X$ be sequentially compact. By Haydon's result (quoted above), it must be shown that $\mathscr{T}=\mathscr{E}$. Suppose $A \subset C(X)$ is totally bounded in the compact-open topology, but not equicontinuous at a point $x_{0}$ of $X$. Then there is a positive $\epsilon_{0}$ such that for every neighborhood $U$ of $x_{0}$, there exist $f_{U} \in A$ and $x_{U} \in U$ such that $\left|f_{U}\left(x_{U}\right)-f_{U}\left(x_{0}\right)\right| \geqq \epsilon_{0}$. By induction sequences $\left(U_{n}\right),\left(x_{n}\right)$, and $\left(f_{n}\right)$ can be constructed such that (1) $U_{n}$ is a neighborhood of $x_{0}$ (let $U_{1}=X$ ), $x_{n} \in U_{n}$, and $f_{n} \in A$; (2) $\left|f_{n}\left(x_{n}\right)-f_{n}\left(x_{0}\right)\right| \geqq \epsilon_{0}$; and (3) if $x \in U_{n},\left|f_{i}(x)-f_{i}\left(x_{0}\right)\right|<\epsilon_{0} / 4$ for $1 \leqq i \leqq n-1$.

Now $\left(f_{n}\left(x_{0}\right)\right)$ is a bounded sequence of real numbers, hence there is a real number $L$ and a subsequence $\left(f_{n_{k}}\right)$ such that $f_{n_{k}}\left(x_{0}\right) \rightarrow L$. Since $X$ is sequentially compact, a subsequence of $\left(x_{n_{k}}\right)$ converges to a point $y_{0}$ of $X$. Thus without loss of generality we may assume that $f_{n}\left(x_{0}\right) \rightarrow L$ and $x_{n} \rightarrow y_{0}$. Then $K=$ $\left\{x_{n}\right\}_{n=1}^{\infty} \cup\left\{y_{0}\right\}$ is compact. Choose $n_{0}$ such that $\left|f_{n}\left(x_{0}\right)-L\right|<\epsilon_{0} / 4$ for $n \geqq n_{0}$. Then if $n_{0} \leqq n_{1}<n_{2}$,

$$
\begin{aligned}
& \sup \left\{\left|f_{n_{1}}(x)-f_{n_{2}}(x)\right|: x \in K\right\} \geqq\left|f_{n_{1}}\left(x_{n_{2}}\right)-f_{n_{2}}\left(x_{n_{2}}\right)\right| \\
& =\left|f_{n_{1}}\left(x_{n_{2}}\right)-f_{n_{1}}\left(x_{0}\right)+f_{n_{1}}\left(x_{0}\right)-L+L-f_{n_{2}}\left(x_{0}\right)+f_{n_{2}}\left(x_{0}\right)-f_{n_{2}}\left(x_{n_{2}}\right)\right| \\
& \geqq\left|f_{n_{2}}\left(x_{0}\right)-f_{n_{2}}\left(x_{n_{2}}\right)\right|-\left|f_{n_{1}}\left(x_{n_{2}}\right)-f_{n_{1}}\left(x_{0}\right)\right|-\left|f_{n_{1}}\left(x_{0}\right)-L\right|-\left|L-f_{n_{2}}\left(x_{0}\right)\right| \\
& >\epsilon_{0}-3 \epsilon_{0} / 4=\epsilon_{0} / 4 .
\end{aligned}
$$

Thus $A$ is not totally bounded in the compact-open topology, a contradiction. Hence $A$ is equicontinuous.

This result remains true under the weaker assumption that every infinite subset of $X$ has infinitely many points in common with some compact subset of $X$. See [ $\mathbf{1 0}]$ for a discussion of this concept.

Example 1. A completely regular, $T_{2}$, scattered, sequentially compact, non- $k_{R}$-space.

Let $\omega_{1}$ and $\omega_{2}$ be the least ordinals of cardinal $\boldsymbol{\aleph}_{1}$ and $\boldsymbol{\aleph}_{2}$, respectively. Let $X$ be the subspace $\left(\left[1, \omega_{1}\right) \times\left[1, \omega_{2}\right)\right) \cup\left\{\left(\omega_{1}, \omega_{2}\right)\right\}$ of $\left[1, \omega_{1}\right] \times\left[1, \omega_{2}\right]$. Then $X$ is completely regular, $T_{2}$, and scattered. Since $\left[1, \omega_{1}\right)$ and $\left[1, \omega_{2}\right.$ ) are sequentially compact, so is $X$. Finally, we show that $\left(\omega_{1}, \omega_{2}\right)$ is an isolated point of every compact subset $A$ of $X$ which contains it. If not, let $\left(\omega_{1}, \omega_{2}\right)$ be a cluster point of $B=A \cap\left(\left[1, \omega_{1}\right) \times\left[1, \omega_{2}\right)\right)$. Then given $\alpha \in\left[1, \omega_{1}\right)$, there exists $\left(x_{\alpha}, y_{\alpha}\right) \in B$ so that $x_{\alpha}>\alpha$. There is a $\lambda \in\left[1, \omega_{2}\right)$ so that $y_{\alpha} \leqq \lambda$ for all $\alpha \in\left[1, \omega_{1}\right)$. Now $\left[1, \omega_{1}\right) \times[1, \lambda]$ is closed in $X$. Hence $F=A \cap\left(\left[1, \omega_{1}\right) \times\right.$ $[1, \lambda])$ is compact. Then $\pi_{1}(F)$ should be a compact subset of $\left[1, \omega_{1}\right)$ where
$\pi_{1}:\left[1, \omega_{1}\right) \times[1, \lambda] \rightarrow\left[1, \omega_{1}\right)$ is the projection map. However, $\pi_{1}(F) \supset$ $\left\{x_{\alpha}: \alpha \in\left[1, \omega_{1}\right)\right\}$ which is unbounded in $\left[1, \omega_{1}\right)$, a contradiction. Thus $\left(\omega_{1}, \omega_{2}\right)$ is an isolated point of $A$. Now the function $f: X \rightarrow R$ which is 1 at $\left(\omega_{1}, \omega_{2}\right)$ and 0 elsewhere is continuous on compact sets but not continuous. Hence $X$ is not a $k_{R}$-space.

This example was suggested by ideas found in [8] and [9]. The final example, which is related to constructions of Novak [4, p. 245] and Haydon [6, Ex. 2.5], shows that Theorem 1 does not hold if "sequentially compact" is replaced by "countably compact."

Example 2. A completely regular, $T_{2}$, countably compact space which is not an infra- $k_{R}$-space.

It suffices to exhibit an infinite, countably compact subset $X$ of $\beta N$ in which compact sets are finite, because $A=\{f \in C(X): \sup |f(x)| \leqq 1\}$ is then totally bounded in the compact-open topology, but not equicontinuous. Now $\beta N$ has $2^{\text {c }}$ infinite compact subsets, each of cardinal $2^{\text {c }}$. Well-order them as $\left(K_{\alpha}\right)_{\alpha<\Gamma}$, where $\Gamma$ is the least ordinal of cardinal $2^{c}$. Also there are $2^{c}$ countably infinite subsets of $\beta N$ : similarly, well-order them as $\left(C_{\alpha}\right)_{\alpha<\mathrm{r}}$.

Define a subset $X$ of $\beta N$ as follows: Choose a point $p_{1}$ of $\bar{C}_{1} \backslash C_{1}$ (closure taken in $\beta N$ ). Let $q_{1}$ be a point of $K_{1}$ distinct from $p_{1}$. Suppose $\left(p_{\alpha}\right)_{\alpha<\beta},\left(q_{\alpha}\right)_{\alpha<\beta}$ have been chosen, where $\beta<\Gamma$. Now choose $p_{\beta} \in \bar{C}_{\beta} \backslash C_{\beta}$ such that $p_{\beta} \notin$ $\left\{q_{\alpha}\right\}_{\alpha<\beta}$ (possible, since card $\left(\bar{C}_{\beta} \backslash C_{\beta}\right)=2^{c}$ and card $\beta<2^{c}$ ). Then choose $q_{\beta} \in K_{\beta}$ such that $q_{\beta} \notin\left\{p_{\alpha}\right\}_{\alpha \leq \beta}$. This completes the inductive procedure.

Let $X=\left\{p_{\alpha}\right\}_{\alpha<\Gamma}$. Then $X$ is countably compact, indeed every sequence of distinct points in $\beta N$ has a cluster point in $X$. But if $K$ is an infinite compact subset of $\beta N$, then $K=K_{\beta}$ for some $\beta<\Gamma$, and $q_{\beta} \in K \backslash X\left(q_{\beta} \neq p_{\alpha}\right.$ for $\alpha \leqq \beta$ by choice of $q_{\beta} ; q_{\beta} \neq p_{\alpha}$ for $\beta<\alpha$ by choice of $p_{\alpha}$ ). Thus every compact subset of $X$ is finite.

## References

1. K. Brauner, A class of topologically free locally convex spaces and related group Hopf algebras, Doctoral Dissertation, University of California, Berkeley, 1972.
2. H. Buchwalter, Fonctions continues et mesures sur un espace completement regulier, SpringerVerlag Lecture Notes 331 (1973), 183-202.
3. J. Dazord and M. Jourlin, Sur les precompacts d'un espace localement convexe, C. R. Acad. Sci. Paris 274 (1972), 463-466, 550-553.
4. J. Dugundji, Topology (Allyn \& Bacon, Boston, 1966).
5. R. Haydon, Compactness in $C_{s}(T)$ and applications, Publ. Dep. Math. Lyon 9 (1972), 105-113.
6. -On compactness in spaces of measures and measure-compact spaces, Proc. Lond. Math. Soc. 29 (1974), 1-16.
7. -_ Sur un probleme de H. Buchwalter, C. R. Acad. Sci. Paris 275 (1972), 1077-1080.
8. V. Kannan and M. Rajagopalan, On scattered spaces, Proc. Amer. Math. Soc. 43 (1974), 402-408.
9. K. Malliha Devi, P. Meyer, and M. Rajagopalan, When does countable compactness imply sequential compactness?, Gen. Top. and its Applications, to appear.
10. N. Noble, Countably compact and pseudocompact products, Czech. Math. J. 19 (94) (1969), 390-397.
11. V. Ptak, Compact subsets of convex topological linear spaces, Czech. Math. J. 4 (79) (1954), 51-74 (Russian. English summary).
12. S. Warner, The topology of compact convergence on continuous function spaces, Duke Math. J. 25 (1958), 265-282.

Memphis State University, Memphis, Tennessee;
Northern Illinois University, DeKalb, Illinois

