SEQUENTIAL COMPACTNESS OF X IMPLIES A COMPLETENESS PROPERTY FOR C(X)

M. RAJAGOPALAN AND R. F. WHEELER

A locally convex Hausdorff topological vector space is said to be *quasi-complete* if closed *bounded* subsets of the space are complete, and *von Neumann* complete if closed *totally bounded* subsets are complete (equivalently, compact). Clearly quasi-completeness implies von Neumann completeness, and the converse holds in, for example, metrizable locally convex spaces. In this note we obtain a class of locally convex spaces for which the converse fails. Specifically, let X be a completely regular Hausdorff space, and let $C_e(X)$ denote the space of continuous real-valued functions on X, endowed with the compact-open topology. We prove

THEOREM 1. If X is sequentially compact, then $C_c(X)$ is von Neumann complete.

A space X is said to be a k_R -space if a real-valued function on X is necessarily continuous when its restrictions to compact subsets are continuous. Any k-space is a k_R -space, but the converse is not true. It is well-known (see [12]) that $C_c(X)$ is quasi-complete (or complete) if and only if X is a k_R -space. Thus if X is sequentially compact, but not a k_R -space, then $C_c(X)$ is von Neumann complete but not quasi-complete. We give a simple example of such an X. A second example shows that "sequentially compact" may not be replaced by "countably compact" in Theorem 1.

1. Some background. The first example of a von Neumann complete nonquasi-complete space seems to have been given by Ptak [**11**, pp. 64-67]: if X_0 is the space of countable ordinals, then the space of continuous real-valued functions with compact support on X_0 , endowed with the compact-open topology, has the desired properties. (The authors thank Robert Anderson for providing a translation of this material.) Almost twenty years later Dazord and Jourlin [**3**] made a systematic study of von Neumann complete locally convex spaces (calling them *p*-semi-reflexive spaces); see also Brauner [**1**]. Shortly thereafter Haydon [**7**] found a complicated example of a $C_c(X)$ space which is von Neumann complete but not quasi-complete.

Let \mathscr{T} , \mathscr{C} , and \mathscr{E} be the collections of subsets of C(X) which are, respectively, totally bounded in the compact-open topology, relatively compact in the compact-open topology, and pointwise bounded and equicontinuous. Then

Received May 27, 1975.

 $\mathscr{C} \subset \mathscr{C} \subset \mathscr{T}$. Von Neumann completeness of $C_c(X)$ is the condition $\mathscr{T} = \mathscr{C}$; those spaces X for which $\mathscr{T} = \mathscr{E}$ were called "infra- k_R -spaces" by Buchwalter [2]. Haydon [5, Corollary 3.2] proved the surprising result that $\mathscr{T} = \mathscr{C}$ if and only if $\mathscr{T} = \mathscr{E}$. Consequently, $C_c(X)$ is von Neumann complete but not quasi-complete precisely when X is infra- k_R but not k_R .

2. The proofs.

Proof of Theorem 1. Let X be sequentially compact. By Haydon's result (quoted above), it must be shown that $\mathscr{T} = \mathscr{C}$. Suppose $A \subset C(X)$ is totally bounded in the compact-open topology, but not equicontinuous at a point x_0 of X. Then there is a positive ϵ_0 such that for every neighborhood U of x_0 , there exist $f_U \in A$ and $x_U \in U$ such that $|f_U(x_U) - f_U(x_0)| \ge \epsilon_0$. By induction sequences (U_n) , (x_n) , and (f_n) can be constructed such that (1) U_n is a neighborhood of x_0 (let $U_1 = X$), $x_n \in U_n$, and $f_n \in A$; (2) $|f_n(x_n) - f_n(x_0)| \ge \epsilon_0$; and (3) if $x \in U_n$, $|f_i(x) - f_i(x_0)| < \epsilon_0/4$ for $1 \le i \le n - 1$.

Now $(f_n(x_0))$ is a bounded sequence of real numbers, hence there is a real number L and a subsequence (f_{n_k}) such that $f_{n_k}(x_0) \to L$. Since X is sequentially compact, a subsequence of (x_{n_k}) converges to a point y_0 of X. Thus without loss of generality we may assume that $f_n(x_0) \to L$ and $x_n \to y_0$. Then $K = \{x_n\}_{n=1}^{\infty} \cup \{y_0\}$ is compact. Choose n_0 such that $|f_n(x_0) - L| < \epsilon_0/4$ for $n \ge n_0$. Then if $n_0 \le n_1 < n_2$,

$$\begin{aligned} \sup \left\{ \left| f_{n_1}(x) - f_{n_2}(x) \right| &: x \in K \right\} &\geq \left| f_{n_1}(x_{n_2}) - f_{n_2}(x_{n_2}) \right| \\ &= \left| f_{n_1}(x_{n_2}) - f_{n_1}(x_0) + f_{n_1}(x_0) - L + L - f_{n_2}(x_0) + f_{n_2}(x_0) - f_{n_2}(x_{n_2}) \right| \\ &\geq \left| f_{n_2}(x_0) - f_{n_2}(x_{n_2}) \right| - \left| f_{n_1}(x_{n_2}) - f_{n_1}(x_0) \right| - \left| f_{n_1}(x_0) - L \right| - \left| L - f_{n_2}(x_0) \right| \\ &> \epsilon_0 - 3\epsilon_0/4 = \epsilon_0/4. \end{aligned}$$

Thus A is not totally bounded in the compact-open topology, a contradiction. Hence A is equicontinuous.

This result remains true under the weaker assumption that every infinite subset of X has infinitely many points in common with some compact subset of X. See [10] for a discussion of this concept.

Example 1. A completely regular, T_2 , scattered, sequentially compact, non- k_R -space.

Let ω_1 and ω_2 be the least ordinals of cardinal \aleph_1 and \aleph_2 , respectively. Let X be the subspace $([1, \omega_1) \times [1, \omega_2)) \cup \{(\omega_1, \omega_2)\}$ of $[1, \omega_1] \times [1, \omega_2]$. Then X is completely regular, T_2 , and scattered. Since $[1, \omega_1)$ and $[1, \omega_2)$ are sequentially compact, so is X. Finally, we show that (ω_1, ω_2) is an isolated point of every compact subset A of X which contains it. If not, let (ω_1, ω_2) be a cluster point of $B = A \cap ([1, \omega_1) \times [1, \omega_2))$. Then given $\alpha \in [1, \omega_1)$, there exists $(x_{\alpha}, y_{\alpha}) \in B$ so that $x_{\alpha} > \alpha$. There is a $\lambda \in [1, \omega_2)$ so that $y_{\alpha} \leq \lambda$ for all $\alpha \in [1, \omega_1)$. Now $[1, \omega_1) \times [1, \lambda]$ is closed in X. Hence $F = A \cap ([1, \omega_1) \times [1, \lambda])$ is compact. Then $\pi_1(F)$ should be a compact subset of $[1, \omega_1)$ where $\pi_1: [1, \omega_1) \times [1, \lambda] \to [1, \omega_1)$ is the projection map. However, $\pi_1(F) \supset \{x_{\alpha} : \alpha \in [1, \omega_1)\}$ which is unbounded in $[1, \omega_1)$, a contradiction. Thus (ω_1, ω_2) is an isolated point of A. Now the function $f: X \to R$ which is 1 at (ω_1, ω_2) and 0 elsewhere is continuous on compact sets but not continuous. Hence X is not a k_R -space.

This example was suggested by ideas found in [8] and [9]. The final example, which is related to constructions of Novak [4, p. 245] and Haydon [6, Ex. 2.5], shows that Theorem 1 does not hold if "sequentially compact" is replaced by "countably compact."

Example 2. A completely regular, T_2 , countably compact space which is not an infra- k_R -space.

It suffices to exhibit an infinite, countably compact subset X of βN in which compact sets are finite, because $A = \{f \in C(X) : \sup |f(x)| \leq 1\}$ is then totally bounded in the compact-open topology, but not equicontinuous. Now βN has 2^c infinite compact subsets, each of cardinal 2^c. Well-order them as $(K_{\alpha})_{\alpha < \Gamma}$, where Γ is the least ordinal of cardinal 2^c. Also there are 2^c countably infinite subsets of βN : similarly, well-order them as $(C_{\alpha})_{\alpha < \Gamma}$.

Define a subset X of βN as follows: Choose a point p_1 of $\overline{C}_1 \setminus C_1$ (closure taken in βN). Let q_1 be a point of K_1 distinct from p_1 . Suppose $(p_{\alpha})_{\alpha < \beta}$, $(q_{\alpha})_{\alpha < \beta}$ have been chosen, where $\beta < \Gamma$. Now choose $p_{\beta} \in \overline{C}_{\beta} \setminus C_{\beta}$ such that $p_{\beta} \notin \{q_{\alpha}\}_{\alpha < \beta}$ (possible, since card $(\overline{C}_{\beta} \setminus C_{\beta}) = 2^{c}$ and card $\beta < 2^{c}$). Then choose $q_{\beta} \in K_{\beta}$ such that $q_{\beta} \notin \{p_{\alpha}\}_{\alpha \leq \beta}$. This completes the inductive procedure.

Let $X = \{p_{\alpha}\}_{\alpha < \Gamma}$. Then X is countably compact, indeed every sequence of distinct points in βN has a cluster point in X. But if K is an infinite compact subset of βN , then $K = K_{\beta}$ for some $\beta < \Gamma$, and $q_{\beta} \in K \setminus X$ ($q_{\beta} \neq p_{\alpha}$ for $\alpha \leq \beta$ by choice of q_{β} ; $q_{\beta} \neq p_{\alpha}$ for $\beta < \alpha$ by choice of p_{α}). Thus every compact subset of X is finite.

References

- K. Brauner, A class of topologically free locally convex spaces and related group Hopf algebras, Doctoral Dissertation, University of California, Berkeley, 1972.
- H. Buchwalter, Fonctions continues et mesures sur un espace completement regulier, Springer-Verlag Lecture Notes 331 (1973), 183-202.
- 3. J. Dazord and M. Jourlin, Sur les precompacts d'un espace localement convexe, C. R. Acad. Sci. Paris 274 (1972), 463-466, 550-553.
- 4. J. Dugundji, Topology (Allyn & Bacon, Boston, 1966).
- 5. R. Haydon, Compactness in $C_s(T)$ and applications, Publ. Dep. Math. Lyon 9 (1972), 105–113.
- 6. ——— On compactness in spaces of measures and measure-compact spaces, Proc. Lond. Math. Soc. 29 (1974), 1–16.
- 7. ——— Sur un probleme de H. Buchwalter, C. R. Acad. Sci. Paris 275 (1972), 1077-1080.
- V. Kannan and M. Rajagopalan, On scattered spaces, Proc. Amer. Math. Soc. 43 (1974), 402-408.
- 9. K. Malliha Devi, P. Meyer, and M. Rajagopalan, When does countable compactness imply sequential compactness?, Gen. Top. and its Applications, to appear.

M. RAJAGOPALAN AND R. F. WHEELER

- N. Noble, Countably compact and pseudocompact products, Czech. Math. J. 19 (94) (1969), 390-397.
- 11. V. Ptak, Compact subsets of convex topological linear spaces, Czech. Math. J. 4 (79) (1954), 51-74 (Russian. English summary).
- S. Warner, The topology of compact convergence on continuous function spaces, Duke Math. J. 25 (1958), 265-282.

Memphis State University, Memphis, Tennessee; Northern Illinois University, DeKalb, Illinois

210