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SEQUENTIAL COMPACTNESS OF X IMPLIES 
A COMPLETENESS PROPERTY FOR C(X) 

M. RAJAGOPALAN AND R. F. WHEELER 

A locally convex Hausdorff topological vector space is said to be quasi-
complete if closed bounded subsets of the space are complete, and von Neumann 
complete if closed totally bounded subsets are complete (equivalently, compact). 
Clearly quasi-completeness implies von Neumann completeness, and the con
verse holds in, for example, metrizable locally convex spaces. In this note we 
obtain a class of locally convex spaces for which the converse fails. Specifically, 
let X be a completely regular Hausdorff space, and let CC(X) denote the space 
of continuous real-valued functions on X, endowed with the compact-open 
topology. We prove 

THEOREM 1. If X is sequentially compact, then CC(X) is von Neumann com
plete. 

A space X is said to be a ^-space if a real-valued function on X is necessarily 
continuous when its restrictions to compact subsets are continuous. Any 
&-space is a ^-space, but the converse is not true. It is well-known (see [12]) 
that CC(X) is quasi-complete (or complete) if and only if X is a ^-space. 
Thus if X is sequentially compact, but not a ^-space, then CC(X) is von 
Neumann complete but not quasi-complete. We give a simple example of such 
an X. A second example shows that "sequentially compact" may not be 
replaced by "countably compact" in Theorem 1. 

1. Some background. The first example of a von Neumann complete non-
quasi-complete space seems to have been given by Ptak [11, pp. 64-67]: if X0 

is the space of countable ordinals, then the space of continuous real-valued 
functions with compact support on XQ, endowed with the compact-open 
topology, has the desired properties. (The authors thank Robert Anderson for 
providing a translation of this material.) Almost twenty years later Dazord 
and Jourlin [3] made a systematic study of von Neumann complete locally 
convex spaces (calling them £-semi-reflexive spaces); see also Brauner [1]. 
Shortly thereafter Haydon [7] found a complicated example of a CC(X) space 
which is von Neumann complete but not quasi-complete. 

Let &~, ^, and <o be the collections of subsets of C(X) which are, respec
tively, totally bounded in the compact-open topology, relatively compact in 
the compact-open topology, and pointwise bounded and equicontinuous. Then 
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S C ^ C ^ ~ . Von Neumann completeness of CC(X) is the condition 3f = & ; 
those spaces X for which 37~ — S were called "infra-fe^-spaces" by Buchwalter 
[2]. Haydon [5, Corollary 3.2] proved the surprising result t h a t 3T = ^ if 
and only if ST = S. Consequently, CC(X) is von Neumann complete bu t not 
quasi-complete precisely when X is i n f r a - ^ bu t not kR. 

2. The proofs. 

Proof of Theorem 1. Let X be sequentially compact . By Haydon ' s result 
(quoted above) , it must be shown tha t 3f~ = (^. Suppose A C C(X) is total ly 
bounded in the compact-open topology, b u t not equicontinuous a t a point x0 of 
X. Then there is a positive eo such t ha t for every neighborhood U of XQ, there 
exist fu 6 A and xv £ U such t h a t \fu(xu) — fu(%o)\ = *o- By induction 
sequences (Un), (xn), and (fn) can be constructed such t ha t (1) Un is a neighbor
hood of x0 (let Ui = X), xn Ç Un, and fn € A; (2) \fn{xn) - fn(xQ)\ ^ e0; 
and (3) if x £ Un, \fi(x) — fi(x0)\ < e0/4 for 1 ^ i ^ w — 1. 

Now (/w(^o)) is a bounded sequence of real numbers , hence there is a real 
number L and a subsequence (fnk) such t h a t / ^ (x0) —» L. Since X is sequentially 
compact , a subsequence of (xWA;) converges to a point yo of X. T h u s wi thout 
loss of generality we may assume tha t fn(x0) —> L and x„ —> yo- Then i£ = 
{xw}^=i U {yo} is compact . Choose no such t h a t \fn(xo) — L\ < eo/4 for 
n ^ wo. Then if no ^ ni < n2, 

SUP ( | / n i ( x ) -fn2(x)\ '. X £ K} ^ \fni(Xn2) ~ fn2{
Xn2)\ 

= l/Wl (*n2) - /Wl (*o) + fn, (*o) - L + L - fn2 (Xo) + fn2 (x0) - fn2 (*n2 ) | 

^ \fn2M -fn2(Xn2)\ ~|/W lfe2) -fr^Ml ~ 1/^ (*o) ~ L\ - \L - fn<1 (x0) \ 

> eo - 3e0 /4 = e0 /4. 

T h u s A is not total ly bounded in the compact-open topology, a contradict ion. 
Hence A is equicontinuous. 

This result remains t rue under the weaker assumption t h a t every infinite 
subset of X has infinitely many points in common with some compact subset 
of X. See [10] for a discussion of this concept. 

Example 1. A completely regular, T2, scat tered, sequentially compact , 
non-&fl-space. 

Let coi and co2 be the least ordinals of cardinal Xi and X2, respectively. 
Let X be the subspace ([1, coi) X [1, o>2)) W {(coi, co2)} of [1, wi] X [1, w2]. 
Then X is completely regular, r 2 , and scat tered. Since [1, coi) and [1, co2) are 
sequentially compact , so is X. Finally, we show tha t (coi, w2) is an isolated 
point of every compact subset A of X which contains it. If not, let (coi, co2) be 
a cluster point of B = A C\ ([1, coi) X [1, ^2)) . Then given a £ [1, wi), there 
exists (xaj y a) £ B so t ha t xa > a. There is a X G [1, 00 2) so t ha t ya ^ X for all 
a G [1, coi). Now [1, wi) X [1, X] is closed in X. Hence F = A C\ ([1, a>i) X 
[1, X]) is compact . Then TTI(F) should be a compact subset of [1, a>i) where 
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7Ti : [1, wi) X [1, X] —> [1, coi) is the projection map. However, TTI(F) D 

{xa : a G [1, wi)} which is unbounded in [1, coi), a contradiction. T h u s (coi, co2) 
is an isolated point of ^4. Now the func t ion / : X -^ R which is 1 a t (coi, w2) and 
0 elsewhere is continuous on compact sets bu t not continuous. Hence X is 
not a fefi-space. 

This example was suggested by ideas found in [8] and [9]. The final example, 
which is related to constructions of Novak [4, p. 245] and Haydon [6, Ex. 2.5], 
shows tha t Theorem 1 does not hold if * 'sequentially compact" is replaced by 
"countably compact ." 

Example 2. A completely regular, T2, countably compact space which is not 
an infra-^ij-space. 

I t suffices to exhibit an infinite, countably compact subset X of @N in 
which compact sets are finite, because A = {/ £ C(X) : s u p | / ( x ) | ^ 1} is 
then totally bounded in the compact-open topology, bu t not equicontinuous. 
Now /3N has 2 infinite compact subsets, each of cardinal 2C. Well-order them 
as (Ka)a<r, where T is the least ordinal of cardinal 2C. Also there are 2C 

countably infinite subsets of /3N: similarly, well-order them as (Ca)a<r-
Define a subset X of fiN as follows: Choose a point pi of Ci\Ci (closure 

taken in /3N). Let qi be a point of Ki distinct from pi. Suppose (£«)«<#, (qa)a<(3 
have been chosen, where fi < T. Now choose pp £ Cp\Cp such t ha t pp Ç? 
{ça}a<fi (possible, since card (Cp\Cp) = 2C and card /3 < 2C). Then choose 
qp G K/3 such tha t qp (2 {pa}a^' This completes the inductive procedure. 

Let X = {pa\a<T- Then X is countably compact, indeed every sequence of 
distinct points in /3N has a cluster point in X. But if K is an infinite compact 
subset of PN, then K = Kp for some j3 < T, and qp G K\X (qp 9^ pa for 
a ^ fi by choice of qp; qp 9e pa for /3 < a by choice of pa). Thus every compact 
subset of X is finite. 
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