On Small Deformation of Sub-Spaces of a Flat Space

By A. G. Walker, Edinburgh University.

(Received 20th November, 1931. Read 4th December, 1931.)
The object of this paper is to introduce the differential operator, ∇, generalised for a Riemannian space V_{n} immersed in a flat space V_{i}, and then to discuss the general small deformation of V_{n}.
§ 1. Notation.
We shall use the notation of vector analysis in the flat space, and tensor calculus in the Riemannian space. Consider a Riemannian space V_{n} immersed in a flat space $V_{p}, p>n$. Let $\mathbf{r}=\left(z^{1}, z^{2}, \ldots z^{p}\right)$ be the position vector of a point of V_{p}, the fundamental form of V_{p} being

$$
\begin{equation*}
\phi=\sum_{a=1}^{\prime \prime} e_{a}\left(d z^{\alpha}\right)^{2}, \quad e_{\alpha}= \pm 1 \tag{1.1}
\end{equation*}
$$

The scalar product of two vectors a, b in V_{j} is defined to be

$$
\begin{equation*}
\mathbf{a} \cdot \mathbf{b}=\sum_{\alpha=1}^{p} e_{\alpha} a^{\alpha} b^{\alpha} \tag{1.2}
\end{equation*}
$$

The space V_{n} is given by equations of the form $z^{a}=z^{a}(x)$, where $x^{i}(i=1,2, \ldots, n)$ are the coordinates of V_{n}, and, substituting for the z 's, we have r as a function of x for points of V_{n}. From the form (1.1), which can now be written $\phi=(d \mathbf{r})^{2}$, we find that the fundamental tensor of V_{n} is given by

$$
\begin{equation*}
g_{i j}=\mathbf{r}_{i} \cdot \mathbf{r}_{j}, \quad \mathbf{r}_{i}=\frac{c \mathbf{r}}{\partial x^{i}} \tag{1.3}
\end{equation*}
$$

We may consider r as an invariant in V_{n}, and we can differentiate the vector covariantly with respect to g_{i}, obtaining vectors in V_{i} which have tensor forms in V_{n}.

By considering a small displacement in V_{n} of a point of V_{n}, we find that the n vectors r_{i} are tangent to V_{n}; they must also be independent in order that the coordinates x^{i} should be independent.

Hence a vector tangent to V_{n} may be written in the form

$$
\begin{equation*}
\mathrm{t}=\lambda^{i} \mathbf{r}_{i} \tag{1.4}
\end{equation*}
$$

where λ^{i} are the components of a contravariant vector in V_{n}. Thus a vector tangent to V_{n} can be defined either by a vector in V_{p}, or by a contravariant vector in V_{n}. It can easily be verified that these definitions define the same magnitude of such a vector and also the same angle between two such vectors. These results are important as showing some of the relations between the two methods of discussing a Riemannian space.

Differentiating (1.3) covariantly, we get $\mathbf{r}_{, i k} \cdot \mathbf{r}_{j}+\mathbf{r}_{i} \cdot \mathbf{r}_{, j k}=0$, where $\mathbf{r}_{, i j}$ is the second covariant derivative ${ }^{1}$ of \mathbf{r}. Permuting i, j, k, we at once find that

$$
\begin{equation*}
\mathbf{r}_{i} \cdot \mathbf{r}_{, j k}=0, \quad(i, j, k=1,2, \ldots, n) \tag{1.5}
\end{equation*}
$$

Hence $\mathbf{r}_{, j k}$ is orthogonal to every direction tangent to V_{n}, that is, is normal to V_{n}.

The normals to V_{n} are given by $\mathbf{N} \cdot \mathbf{r}_{i}=0,(i=1,2, \ldots, n)$. There are $p-n$ independent normals, and these can be chosen to be mutually orthogonal, such a set of unit normals being written $\mathbf{N}_{\boldsymbol{\sigma}}$, ($\sigma=1,2, \ldots, p-n$).

We can define tensors $\Omega_{\sigma \mid i j}, \quad \mu_{\sigma v \mid i}$ by the equations

$$
\begin{align*}
& \Omega_{\boldsymbol{\sigma} \mid i j}=\mathbf{N}_{\sigma \mid} \cdot \mathbf{r}_{, i j}=-\mathbf{N}_{\sigma \mid, i} \cdot \mathbf{r}_{j}=-\mathbf{N}_{\sigma \mid, j} \cdot \mathbf{r}_{i}, \\
& \mu_{\sigma \nu \mid i}=\mathbf{N}_{\sigma \mid} \cdot \mathbf{N}_{\nu \mid, i}=-\mathbf{N}_{\nu \mid} \cdot \mathbf{N}_{\sigma \mid, i} . \tag{1.6}
\end{align*}
$$

These tensors can easily be identified with the second fundamental tensors ${ }^{2}$.

From (1.5) and (1.6), it follows that $\mathbf{r}_{, i j}, \mathbf{N}_{\sigma \mid, i}$ can be written in the forms

$$
\begin{align*}
\mathbf{r}_{, i j} & =\sum_{\sigma=1}^{p-n} e_{\sigma} \Omega_{\sigma \mid i j} \mathbf{N}_{\sigma \mid} \tag{1.6}\\
\mathbf{N}_{\sigma \mid, i} & =-\Omega_{\sigma \mid i j} g^{i k} \mathbf{r}_{k}-\sum_{\nu=1}^{p-n} e_{\nu} \mu_{\sigma \nu \mid i} \mathbf{N}_{\nu \mid},
\end{align*}
$$

where $e_{\sigma}=\mathbf{N}_{\sigma \mid}{ }^{2}= \pm 1$.

[^0]
§ 2. Differential Operators.

Generalising the operator, ∇, we define

$$
\begin{equation*}
\nabla=\sum_{h=1}^{n} e_{h} \mathrm{t}_{\mathrm{h}}, \frac{\partial}{\partial s_{h}} \tag{2.1}
\end{equation*}
$$

where $\mathrm{t}_{h!},(h=1,2, \ldots, n)$ are the vectors of an orthogonal ennuple in $V_{h}, e_{h}=\mathbf{t}_{h_{1}}{ }^{2}= \pm \mathbf{1}$, and $\partial f / \partial s_{h}$ is the intrinsic derivative of f in the direction $\mathrm{t}_{h \mid}$. From (1.4), using the usual notation for orthogonal ennuples, we have $\mathbf{t}_{h \mid}=\lambda_{k \mid}{ }^{i} \mathbf{r}_{i}$, where $\lambda_{h \mid}{ }^{i}$ are the contravariant components of the vectors in V_{n}. With this notation, we have $\partial / \partial s_{h}=\left.\lambda_{h}\right|^{i} \partial / \partial x^{i} ;$ hence, using the equation

$$
\left.\sum_{h=1}^{n} e_{h} \lambda_{h}\right|^{i} \lambda_{h}{ }^{j}=g^{i j}
$$

(2.1) becomes

$$
\begin{equation*}
\nabla=g^{i j} \mathbf{r}_{i} \frac{\partial}{\partial x^{j}} \tag{2.2}
\end{equation*}
$$

It is evident that this operator is independent of the ennuple chosen in the definition.

Operating on a scalar function, f, we get a vector $\nabla f=g^{i j} f_{, j} \mathbf{r}^{i}$ called the gradient of f. This vector is tangent to V_{n}, and is in the direction of critical variation of f, the magnitude being the variation.

Operating with closed product on a vector R, we get a scalar, $\nabla \cdot \mathbf{R}=g^{i j} \mathbf{r}_{i} \cdot \mathbf{R}_{, j}$, called the divergence of \boldsymbol{R}. For $\mathrm{t}=\lambda^{i} \mathbf{r}_{i}$, we have, from (1.5),

$$
\operatorname{div} \mathrm{t}=\lambda_{, i}^{i}
$$

Operating with open product on a vector \boldsymbol{R}, we get a dyadic, $\nabla \mathbf{R}=g^{i j} \mathbf{r}_{i} \mathbf{R}_{, j}$.

It is easily shown that, if s, t are unit vectors tangent to V_{n} at points of V_{n}, the necessary and sufficient condition that the vectors \mathbf{s} should be parallel in V_{n} along the curves of congruence defined by \mathbf{t}, is that $\mathrm{t} \cdot \nabla \mathrm{s}$ should be normal to V_{n}. An equivalent condition is that $(\nabla \mathrm{s}) \cdot \boldsymbol{R}$ should be orthogonal to t for all vectors R. In particular, t defines a geodesic congruence if $\mathrm{t} \cdot \nabla \mathrm{t}$ is normal to V_{n}.

If $\mathrm{t}_{h},(h=1,2, \ldots, n)$ are the vectors of an orthogonal ennuple in V_{n}, we find that the coefficients of rotation are given by

$$
\begin{equation*}
\gamma_{k k l}=\mathbf{t}_{l \mid} \cdot \nabla \mathbf{t}_{h \mid} \cdot \mathbf{t}_{k \mid} \tag{2.3}
\end{equation*}
$$

Hence, if we define normal coefficients of rotation by
we have

$$
I_{h k \sigma}=\mathbf{t}_{k \mid} \cdot \nabla \mathrm{t}_{h \mid} \cdot \mathbf{N}_{\sigma \mid}=\Omega_{\sigma \mid i j} \lambda_{h \mid}{ }^{i} \lambda_{k \mid}{ }^{j}
$$

$$
\begin{equation*}
\nabla \mathbf{t}_{k \mid}=\sum_{\theta, \phi} \dot{e_{\theta}} e_{\phi} \boldsymbol{\gamma}_{h \phi \theta} \mathbf{t}_{\theta \mid} \mathbf{t}_{\phi \mid}+\Sigma e_{\theta} e_{\sigma} I_{k e_{\sigma}} \mathbf{t}_{\theta \mid} \mathbf{N}_{\sigma \mid} \tag{2.4}
\end{equation*}
$$

where $e_{\theta}=\mathbf{t}_{\theta \mid}{ }^{2}= \pm \mathbf{1} ; e_{\sigma}=\mathbf{N}_{\sigma \mid}{ }^{2}= \pm \mathbf{l}$.
Prof. C. E. Weatherburn ${ }^{1}$ has introduced an operator $\bar{\nabla}$, similar to ∇, in the study of a surface V_{2}. This can be generalised by considering some normal \mathbf{N} of V_{n}, and defining

$$
\begin{equation*}
\bar{\nabla}=\sum_{h} e_{h} \kappa_{h} \mathbf{t}_{h \mid} \frac{\partial}{\partial s_{h}}, \tag{2.5}
\end{equation*}
$$

where the ennuple $t_{h \mid}$ is the principal ennuple for the normal \mathbf{N}, and κ_{h} are the corresponding principal curvatures. From the theory of principal directions, we have

$$
\left.\Sigma e_{h} \kappa_{h} \lambda_{h}\right|^{i} \lambda_{h}{ }^{j}=g^{i l} g^{j m} \Omega_{l m}=\Omega^{i j}
$$

where $\Omega_{i j}$ is the tensor associate to the normal \mathbf{N}.
Hence we have

$$
\begin{equation*}
\bar{\nabla}=\Omega^{i j} \mathbf{r}_{i} \frac{\partial}{\partial x^{j}} \tag{2.51}
\end{equation*}
$$

It can easily be verified that

$$
\begin{equation*}
\nabla=-(\nabla \mathbf{N}) \cdot \nabla \tag{2.52}
\end{equation*}
$$

A second order operator may be defined by $\nabla^{2}=\nabla \cdot \nabla$. For an invariant V, we have

$$
\begin{equation*}
\nabla^{2} V=g^{i j} V_{, i j} \tag{2.6}
\end{equation*}
$$

Thus ∇^{2} is the Beltrami operator Δ_{2}.
We see that

$$
\begin{equation*}
\nabla^{2} \mathbf{r}=g^{i j} \mathbf{r}_{, i j}=M \mathbf{N} \tag{2.7}
\end{equation*}
$$

where \mathbf{N} is the mean curvature normal ${ }^{2}$, and M is the mean curvature of V_{n}. This shows that the mean curvature normal, and the mean curvature are generalisations of the principal normal and curvature of a curve, for we have, for a curve, $\nabla=\mathrm{t} d / d s$ where t is the unit tangent,

[^1]and hence
\[

$$
\begin{equation*}
\nabla^{2} \mathbf{r}=\kappa \mathbf{n} \tag{2.71}
\end{equation*}
$$

\]

where n is the principle normal, and κ is the curvature.
Another second order operator is $\bar{\nabla} \cdot \nabla$. For an invariant V, we have

$$
\begin{equation*}
\nabla \cdot \nabla V=\Omega^{i j} V_{, i j} \tag{2.8}
\end{equation*}
$$

§3. The general small deformation.
We shall now examine the space V_{n}^{\prime} obtained by deforming V_{n} in V_{h}.

Let ϵ be a constant of the order of magnitude of the greatest displacement of points of V_{n}, and let the deformation be such that ϵ^{2} may be neglected. Then the position vector of a point of V_{n}^{\prime} is given by

$$
\begin{equation*}
\mathbf{r}^{\prime}=\mathbf{r}+\epsilon \mathbb{S} \tag{3.1}
\end{equation*}
$$

where ϵS is the displacement vector of the point r, s being a finite function of position on V_{n}. Let dashes refer to V_{n}^{\prime}.

We have at once

$$
\begin{equation*}
\mathbf{r}_{i}^{\prime}=\mathbf{r}_{i}+\epsilon \mathbf{S}_{i} \tag{3.11}
\end{equation*}
$$

and hence,

$$
\begin{equation*}
g_{i j}^{\prime}=\mathbf{r}_{i}^{\prime} \cdot \mathbf{r}_{j}^{\prime}=g_{i j}+\epsilon c_{i j} \tag{3.12}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{i j}=\mathbf{r}_{i} \cdot \mathbf{s}_{j}+\mathbf{r}_{j} \cdot \mathbf{s}_{i} . \tag{3.13}
\end{equation*}
$$

From (3.12) and the identities $g_{i j}^{\prime} g^{\prime j k}=\delta_{i}^{k}$, we get
where

$$
\begin{align*}
g^{\prime i j} & =g^{i j}-\epsilon c^{i j} \tag{3.14}\\
c^{i j} & =g^{i l} g^{i m} c_{l m} .
\end{align*}
$$

From (3.12) we have

$$
\begin{align*}
g^{\prime} & =\left|g_{i j}^{\prime}\right|=g\left(1+\epsilon g^{i j} c_{i j}\right) \\
i . e . \quad \sqrt{g^{\prime}} & =\sqrt{g(1+\epsilon \nabla \cdot \mathbf{s}) .} \tag{3.15}
\end{align*}
$$

If $d V, a V^{\prime}$ are corresponding elements of volume of $V_{n}, V^{\prime}{ }_{n}$ respectively, the dilation is defined to be the ratio $\left(d V^{\prime}-d V\right) / d V$. Hence, from (3.15), the dilation is given by

$$
\begin{equation*}
\frac{d V^{\prime}-d V}{d V}=\epsilon \nabla \cdot \mathrm{s} \tag{3.16}
\end{equation*}
$$

i.e. the dilation is the divergence of the displacement vector.

Writing

$$
\begin{equation*}
2 C_{i j k}=\left(c_{i j, k}+c_{i k, j}-c_{j k, i}\right) ; \quad C_{j k}^{h}=g^{i h} C_{i j k}, \tag{3.2}
\end{equation*}
$$

we have

$$
\begin{equation*}
\Gamma_{j k}^{\prime h}=\Gamma_{j k}^{h}+\epsilon C_{j k}^{h} \tag{3.21}
\end{equation*}
$$

where $\Gamma_{j k}^{h}, \Gamma_{j k}^{\prime h}$ are the Christoffel symbols of the second kind. Hence the curvature tensor is given by

$$
\begin{equation*}
R_{i j k}^{\prime \prime}=R_{i j k}^{h}+\epsilon\left(C_{i k, j}^{h}-C_{i j, k}^{h}\right) \tag{3.22}
\end{equation*}
$$

and from (3.12), we have

$$
\begin{equation*}
R_{h i j k}^{\prime}=R_{h i j k}+\epsilon\left(c_{h l} R_{i j k}^{l}+C_{h i k, j}-C_{h i j, k}\right) \tag{3.23}
\end{equation*}
$$

From this equation and (3.14), we get

$$
\begin{equation*}
R^{\prime}=R-\epsilon\left(c^{i j} R_{i j}+c^{i j}, i j-g^{i j} c, i j\right) \tag{3.24}
\end{equation*}
$$

where $R_{i j}$ is the Ricci tensor, and $c=g^{i j} c_{i j}=2 \nabla \cdot \mathrm{~s}$.
Let \mathbf{N} be a unit normal of V_{n}, and let \mathbf{N}^{\prime} be a corresponding unit normal of $V^{\prime}{ }_{n}$. We have $\mathbf{N}^{\prime} \cdot \mathbf{r}_{i}^{\prime}=0 \quad(i=1,2, \ldots, n)$, and writing $\mathbf{N}^{\prime}=\mathbf{N}+\epsilon \overline{\mathbf{N}}$, we find

$$
\begin{equation*}
\overline{\mathbf{N}}=-(\nabla \mathrm{s}) \cdot \mathbf{N} \tag{3.3}
\end{equation*}
$$

where $\overline{\mathbf{N}}$ is taken to be tangent ${ }^{1}$ to V_{n}. Hence

$$
\begin{equation*}
\mathbf{N}^{\prime}=\mathbf{N}-\epsilon(\nabla \mathbf{s}) \cdot \mathbf{N} \tag{3.31}
\end{equation*}
$$

If $\Omega_{i j}$ is the second fundamental tensor in V_{n} associate to the normal \mathbf{N}, and $\Omega^{\prime}{ }_{i j}$ the corresponding tensor for \mathbf{N}^{\prime}, we have

$$
\begin{equation*}
\Omega_{i j}^{\prime}=-\mathbf{N}_{, i}^{\prime} \cdot \mathbf{r}_{j ;}^{\prime}=\Omega_{i j}+\epsilon \mathbf{N} \cdot \mathbf{s}_{, i j} \tag{3.32}
\end{equation*}
$$

and hence, the mean curvature for the normal \mathbf{N}^{\prime} is given by

$$
\begin{equation*}
\Omega^{\prime}=g^{\prime i j} \Omega^{\prime}{ }_{i j}=\Omega+\epsilon\left(\mathbf{N} \cdot \nabla^{2} \mathbf{s}-2 \bar{\nabla} \cdot \mathbf{s}\right) \tag{3.33}
\end{equation*}
$$

where $\bar{\nabla}$ is the operator given by the normal N.
The linear element of V_{n}^{\prime} is given by

$$
\begin{equation*}
e d s^{\prime 2}=e d s^{2}+\epsilon c_{i j} d x^{i} d x^{j} ; \quad e d s^{2}=g_{i j} d x^{i} d x^{j} \tag{3.4}
\end{equation*}
$$

Hence, the extension for the direction $t=\lambda^{i} \mathbf{r}_{i}$ is given by

$$
\begin{equation*}
\epsilon E=\frac{d s^{\prime}-d s}{d s}=\frac{1}{2} e \in \lambda^{i} \lambda^{j} c_{i j}=e \epsilon \mathrm{t} \cdot \nabla \mathbf{s} \cdot \mathbf{t} \tag{3.41}
\end{equation*}
$$

where $e=\mathrm{t}^{2}= \pm 1$.

[^2]If $\epsilon E_{h}(h=1,2, \ldots, n)$ are the extensions for the directions of an orthogonal ennuple, we have $E_{h}=e_{h} \lambda_{h}{ }^{i} \lambda_{h \mid}{ }^{j} \mathrm{r}_{i} \cdot \mathrm{~s}_{j}$, and hence

$$
\begin{equation*}
\sum_{h} E_{h}=\nabla \cdot \mathbf{s} \tag{3.42}
\end{equation*}
$$

Thus the sum of the extensions for n mutually orthogonal directions is independent of these directions and is equal to the dilation.

From (3.41), we see that the extension has critical values for the principal directions ${ }^{1}$ determined by the tensor $c_{i j}$, and if ρ_{h} are the corresponding invariants, then $2 E_{h}=\rho_{h}$.

Writing

$$
\begin{align*}
& E_{h k}=\lambda_{k \mid}{ }^{i} \lambda_{k \mid}{ }^{j} \mathbf{r}^{i} \cdot \mathbf{s}_{j}=\mathbf{t}_{k \mid} \cdot \nabla \mathbf{s} \cdot \mathbf{t}_{h \mid}, \tag{3.43}\\
& \bar{E}_{h \sigma}=\lambda_{h \mid}{ }^{i} \mathbf{S}_{i} \cdot \mathbf{N}_{\sigma \mid}=\mathbf{t}_{h \mid} \cdot \nabla \mathbf{s} \cdot \mathbf{N}_{\sigma \mid},
\end{align*}
$$

where $t_{i \mid}$ are the vectors of any orthogonal ennuple, we have $E_{h h}=e_{h} E_{h}$, and

$$
\begin{equation*}
\nabla \mathbf{s}=\sum_{\theta, \phi} e_{\theta} e_{\phi} E_{\phi \theta} \mathbf{t}_{\theta \mid} \mathbf{t}_{\phi \mid}+\sum_{\theta, \sigma} e_{\theta} e_{\sigma} \bar{E}_{\theta \sigma} \mathbf{t}_{\theta \mid} \mathbf{N}_{\sigma \mid} \tag{3.44}
\end{equation*}
$$

From (3.11), it is easily shown that a direction t tangent to V_{n} becomes the direction t^{\prime} tangent to V_{n}^{\prime} where

$$
\begin{equation*}
\mathrm{t}^{\prime}=\mathrm{t}+\epsilon(\mathrm{t} \cdot \nabla \mathrm{~s}-E \mathrm{t}) \tag{3.5}
\end{equation*}
$$

ϵE being the extension in the direction t.
Hence, for two directions $t_{1 \mid}, t_{2 \mid}$ making an angle ω, the angle between the new directions is $\omega+\epsilon \theta$ where

$$
\begin{equation*}
\theta \sin \omega=\lambda_{1 \mid}{ }^{i} \lambda_{2}{ }^{j} c_{i j}-\left(E_{1}+E_{2}\right) \cos \omega \tag{3.51}
\end{equation*}
$$

In particular, if $\omega=\pi / 2$, we have

$$
\begin{equation*}
\theta=\lambda_{1 \mid}{ }^{i} \lambda_{2 \mid}{ }^{j} c_{i j}=\mathbf{t}_{1 \mid} \cdot(\nabla \mathbf{s}+\mathbf{s} \nabla) \cdot \mathbf{t}_{2 \mid} \tag{3.52}
\end{equation*}
$$

where $s \nabla$ is the dyadic conjugate to $\nabla \mathrm{s}$, and hence, two orthogonal directions remain orthogonal if they satisfy

$$
\begin{equation*}
\lambda_{1 \mid}{ }^{i} \lambda_{2 \mid}{ }^{j} c_{i j}=0 \tag{3.53}
\end{equation*}
$$

From this condition, we see that if two directions are orthogonal, and if one of them is a principal direction of $c_{i j}$, the directions remain orthogonal.

Also the only orthogonal ennuple remaining orthogonal is the principal ennuple of $c_{i j}$.

[^3]If the principal ennuple of $c_{i i}$ is also the principal ennuple given by a normal \mathbf{N}, it becomes the principal ennuple in V_{n}^{\prime} of the normal \mathbf{N}^{\prime} if

$$
\begin{equation*}
\left(\Omega_{i j}^{\prime}-\kappa_{h}^{\prime} g_{i j}^{\prime}\right) \lambda_{h}{ }^{i}=0 \tag{3.54}
\end{equation*}
$$

Writing $\kappa^{\prime}{ }_{h}=\kappa_{h}+\epsilon \bar{\kappa}_{h}$, and substituting from (3.12), (3.32), these conditions become

$$
\begin{equation*}
\left.\left\{\left(2 \kappa_{k} E_{h}+\bar{\kappa}_{h}\right) g_{i j}-k_{i j}\right\} \lambda_{h}\right|^{i}=0 \tag{3.55}
\end{equation*}
$$

where $k_{i j}=\mathbf{N} \cdot \mathbf{s}, i$. Hence the ennuple must also be the principal ennuple of the tensor k_{i}, and if ρ_{k} are the principal invariants for this tensor, the principal curvatures for the normal \mathbf{N}^{\prime} are $\kappa_{h}+\epsilon \kappa_{h}$ where

$$
\begin{equation*}
\bar{\kappa}_{h}=\rho_{h}-2 \kappa_{h} E_{h} . \tag{3.56}
\end{equation*}
$$

Let us now find the conditions that a geodesic congruence λ^{i} in V_{n} becomes geodesic in $V_{n}{ }^{\prime}$. We have

$$
\begin{equation*}
\lambda^{i} \mathbf{r}_{i} \rightarrow \lambda^{\prime i} \mathbf{r}_{i}^{\prime}, \quad \lambda^{\prime i}=(1-\epsilon E) \lambda^{i}, \quad E=e \lambda^{i} \lambda^{j} c_{i j} \tag{3.6}
\end{equation*}
$$

Differentiating covariantly with respect to $g^{\prime}{ }_{i j}$, and substituting $\lambda_{, j}^{i} \lambda^{j}=0$ in V_{n}, we find

$$
\begin{equation*}
\lambda^{\prime i}{ }_{, i} \lambda^{\prime j}=\epsilon \lambda^{j} \lambda^{k}\left(C_{j k}^{i}-2 e \lambda^{i} \lambda^{l} C_{l j k}\right) \tag{3.61}
\end{equation*}
$$

Hence the congruence remains geodesic if

$$
\begin{equation*}
\lambda^{i} \lambda^{k}\left(C_{j \vec{k}}^{i}-2 e \lambda^{i} \lambda^{l} C_{l j k}\right)=0 \tag{3.62}
\end{equation*}
$$

Multiplying by λ_{i} and summing, we get

$$
\begin{equation*}
\lambda^{l} \lambda^{i} \lambda^{k} C_{l j k}=0 \tag{3.63}
\end{equation*}
$$

Substituting in (3.62), we have the necessary and sufficient conditions that the geodesic congruence λ^{i} should remain geodesic are

$$
\begin{equation*}
\lambda^{j} \lambda^{k} C_{j k}^{j}=0, \quad(i=1,2, \ldots, n) \tag{3.64}
\end{equation*}
$$

We at once see that the necessary and sufficient conditions that all geodesics of V_{n} should become geodesics of $V_{n}{ }^{\prime}$ are

$$
\begin{equation*}
\boldsymbol{c}_{i j, k}=0 \quad(i, j, k=1,2, \ldots, n) \tag{3.65}
\end{equation*}
$$

A more general theorem is as follows.
If the vectors μ^{i} are parallel along the curves of the congruence λ^{i} in V_{n}, the corresponding vectors are parallel along the corresponding curves in $V_{n}{ }^{\prime}$ if

$$
\begin{equation*}
\lambda^{j} \mu^{k} C_{j k}^{i}=0 . \tag{3.66}
\end{equation*}
$$

The differential equations (3.65) have been studied by Eisenhart ${ }^{1}$ and Levy ${ }^{2}$. A particular result is that when V_{n} has constant Riemannian curvature, the tensor $c_{i j}$ must be a constant multiple of the fundamental tensor $g_{i j}$. In this case $V_{n}, V_{n}{ }^{\prime}$ are conformal, and the extension is constant in all directions and at all points of V_{n}, being $\epsilon \rho$ where $c_{i j}=\rho g_{i j}$.

§4. Some particular types of deformation.

An inextensible deformation is such that all lengths remain unaltered. For this, we must have $g_{i j}^{\prime}=g_{i j}$. Hence, the necessary and sufficient conditions for an inextensible deformation are

$$
\begin{equation*}
c_{i j}=0 \quad(i, j=1,2, \ldots, n) . \tag{4.1}
\end{equation*}
$$

In this case, we have $\nabla \cdot s=0, \bar{\nabla} \cdot s=0$, and (3.33) reduces to

$$
\begin{equation*}
\Omega^{\prime}=\Omega+\epsilon \mathbf{N} \cdot \nabla^{\prime} \mathbf{s} . \tag{4.11}
\end{equation*}
$$

From the definition, the curvature tensors remain unaltered.
A normal deformation, is such that all points of V_{n} are displaced in directions normal to V_{n}. If \mathbf{N} is the normal direction of displacement of the point r, the deformation is given by

$$
\begin{equation*}
\mathbf{s}=s \mathbf{N} \tag{4.2}
\end{equation*}
$$

where s is a function of position of V_{n}.
If $\Omega_{i j}$ is the tensor associate to \mathbf{N}, and Ω the corresponding mean curvature, we have
and

$$
\begin{align*}
c_{i j} & =-2 s \Omega_{i ;}, \tag{4.21}\\
\nabla \cdot \mathrm{s} & =-s \Omega . \tag{4.22}
\end{align*}
$$

The normal to $V_{n}{ }^{\prime}$ corresponding to \mathbf{N} is now

$$
\begin{equation*}
\mathbf{N}^{\prime}=\mathbf{N}-\epsilon \Gamma s . \tag{4.23}
\end{equation*}
$$

If $p=n+1, \quad(3.24),(3.32)$, and (3.33) reduce to

$$
\begin{align*}
& R^{\prime}=R+2 \epsilon\left(s \Omega^{i j} R_{i j}+\bar{\nabla} \cdot \nabla s-\Omega \nabla^{2} s\right), \tag{4.24}\\
& \Omega_{i j}^{\prime}=\Omega_{i j}+\epsilon\left\{s_{i j}-s\left(\Omega \Omega_{i j}+e R_{i j}\right)\right\}, \tag{4.25}\\
& \Omega^{\prime}=\Omega+\epsilon\left\{\nabla^{2} s+s\left(\Omega^{2}+e R\right)\right\}, \tag{4.26}
\end{align*}
$$

where $e=\mathbf{N}^{2}= \pm 1$.

[^4]The only orthogonal ennuple remaining orthogonal for a normal deformation is now the principal ennuple of the normal N, and substituting for $k_{i j}$ in (3.55), we find that this becomes the principal ennuple of \mathbf{N}^{\prime} if it is also the ennuple given by the tensor $\mathcal{s}, i j-\sum_{\sigma} e_{\sigma} \mu_{\sigma \mid i} \mu_{\sigma \mid j}$ where $\mu_{\boldsymbol{\sigma} \mid i}=\mathbf{N} \cdot \mathbf{N}_{\boldsymbol{\sigma} \mid i}, \mathbf{N}_{\boldsymbol{\sigma} \mid}(\sigma=1,2, \ldots, p-n-1)$ being orthogonal to \mathbf{N}, and $e_{\sigma}=\mathbf{N}_{\boldsymbol{\sigma}}{ }^{2}= \pm \mathbf{1}$. Also, if ρ_{h} are the invariants of this tensor, the principal curvatures κ_{h} of \mathbf{N} become $\kappa_{h}+\epsilon \bar{\kappa}_{h}$ where

$$
\begin{equation*}
\bar{\kappa}_{h}=\rho_{h}+s \kappa_{h}^{2} . \tag{4.27}
\end{equation*}
$$

A tangent deformation is such that all points of V_{n} are displaced in directions tangent to V_{n}. Writing

$$
\begin{equation*}
\mathbf{s}=\lambda^{i} \mathbf{r}_{i} \tag{4.3}
\end{equation*}
$$

we have

$$
\begin{equation*}
\mathbf{r}^{\prime}=\mathbf{r}+\epsilon \lambda^{i} \mathbf{r}_{i}=\mathbf{r}\left(x^{i}+\epsilon \lambda^{i}\right) \tag{4.31}
\end{equation*}
$$

to the first order of approximation.
Hence this tangent deformation is equivalent to a point transformation of V_{n}, given by

$$
\begin{equation*}
x^{\prime i}-x^{i}=\epsilon \lambda^{i} . \tag{4.32}
\end{equation*}
$$

Tangent deformations have been discussed intrinsically from this point of view by McConnell. ${ }^{1}$

In concluding, we may remark that, writing δt for ϵ, and considering s also as a function of the parameter t, the spaces $V_{n}, V_{n}{ }^{\prime}$ may be considered as members of a family of such spaces in V_{p}, i.e. hypersurfaces of a V_{n+1}. Many of the above results may then be interpreted as giving the variation with respect to t of the tensors, etc., connected with V_{n}.

[^5]
[^0]: ${ }^{1}$ This is the usual notation for covariant derivatives. With this notation, we could write $\mathbf{r}_{, i}$ for \mathbf{r}_{i}.
 ${ }^{2}$ Eisenh $_{\text {art }}$, Riemannian Geometry, §47. The notation used by Eisenhart will be used throughout the paper.

[^1]: ${ }^{1}$ Quart. Journ. of Maths., 50 (1927), 277.
 ${ }^{2}$ Cf. Eisenhart, loc. cit., p. 169.

[^2]: ${ }^{1}$ We need not take $\overline{\mathbf{N}}$ tangent to V_{n}, but we do so to define the particular normal \mathbf{N}^{\prime}. All we actually know is that $\overline{\mathbf{N}}$ is orthogonal to \mathbf{N}, and satisfies $\overline{\mathbf{N}} \cdot \mathbf{r}_{i}+\mathbf{N} \cdot \mathbf{s}_{i}=0$.

[^3]: ${ }^{1}$ An account of the principal directions of a tensor is given by Eisenhart, loc. cit. § 33 .

[^4]: ${ }^{1}$ Trans. of the Amer. Math. Soc., 25 (1923), 297.
 ${ }^{2}$ Annals of Math., 27 (1926), 91.

[^5]: ${ }^{1}$ Annali di Mat., 6 (1928-1929), 207.

