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The object of this paper is to introduce the differential operator,
V, generalised for a Riemannian space Vn immersed in a flat space
Vp, and then to discuss the general small deformation of Vn.

§ 1. Notation.

We shall use the notation of vector analysis in the flat space,
and tensor calculus in the Riemannian space. Consider a Riemannian
space Vn immersed in a flat space Vp, p > n. Let r = (zl, z2, . . . . zp)
be the position vector of a point of Vv, the fundamental form of
Vp being

<f> = S ea(dz-)s, e a = ± 1 . (1.1)
a=l

The scalar product of two vectors a, b in Vp is defined to be

a b = 2 eaa
a6". (1.2)

a = l

The space \\ is given by equations of the form za = za(x), where
xi (i = 1, 2, . . . . , n) are the coordinates of Vn, and, substituting for
the z's, we have r as a function of x for points of Vn. From the
form (1.1), which can now be written <f> = (dr)2, we find that the
fundamental tensor of Vn is given by

Sri; = r r r , , r« = ^ - (1-3)

We may consider r as an invariant in Vn, and we can differentiate
the vector covariantly with respect to gih obtaining vectors in
Vp which have tensor forms in V,,.

By considering a small displacement in Vn of a point of Vn, we
find that the n vectors Tj are tangent to Vn; they must also be
independent in order that the coordinates x{ should be independent.
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78 A. G. WALKER

Hence a vector tangent to Vn may be written in the form

t = Airl (1.4)

where A' are the components of a contravariant vector in Vn. Thus
a vector tangent to Vn can be defined either by a vector in Vp, or by a
contravariant vector in Vn. It can easily be verified that these
definitions define the same magnitude of such a vector and also the
same angle between two such vectors. These results are important as
showing some of the relations between the two.methods of discussing
a Riemannian space.

Differentiating (1.3) covariantly, we get r ft.-r; + iv r , ^ = 0,
where r ^ is the second covariant derivative1 of r. Permuting i,j, k,
we at once find that

r i - r ; J ; = 0 , {i,j,k= 1,2, , n ) . (1.5)

Hence rijk is orthogonal to every direction tangent to Vn, that is, is
normal to Vn.

The normals to Vn are given by N ^ r ^ O , (i = 1, 2, . . . . , n).
There are p — n independent normals, and these can be chosen to be
mutually orthogonal, such a set of unit normals being written N^ | ,
(o-= 1, 2, , p — n).

We can define tensors Qa | y, fin 11 by the equations

Q.a I n = N , | • r ij = - N , |, 4 • r,- = - N , | , r r4,

/*<n,|i = N < r , - N H i i = - N ^ - N ^ I . J . (1.6)

These tensors can easily be identified with the second fundamental
tensors2.

From (1.5) and (1.6), it follows tha t r,,;;, N a ( j i can be written in
the forms

(1.6)

p-n

N,,, (i = — Off i v g>k rk— S e, /û , | i N,,, ,

where e, = NC T,2= ± 1.

1 This is the usual notation for covariant derivatives. With this notation, we could
write r,; for rj.

2 Eisenhart, Riemannian Geometry, § 47. The notation used by Eisenhart will be
used throughout the paper.
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§ 2. Differential Operators.

Generalising the operator, V, we define

V = S e A t » , ^ - (2.1)

where th |, (h = 1, 2, . . . . , n) are the vectors of an orthogonal ennuple
in Vn, eh — th |2 = i 1) and ̂ f ISsh is the intrinsic derivative of / in the
direction tA!. From (1.4), using the usual notation for orthogonal
ennuples, we have thj = Ah | * ri; where Ah | * are the contravariant
components of the vectors in Vn. With this notation, we have
81 csh = AA | ' 818x{; hence, using the equation

(2.1) becomes

V=^r,A. (2.2)

It is evident that this operator is independent of the ennuple chosen
in the definition.

Operating on a scalar function,/, we get a vector V/ = gf''/Jr
!

called the gradient of / . This vector is tangent to Vn, and is in the
direction of critical variation of / , the magnitude being the variation.

Operating with closed product on a vector R, we get a scalar,
V • R = gijTi • Rj, called the divergence of R. For t = A'r,, we have,
from (1.5),

div t = A* •.

Operating with open product on a vector R, we get a dyadic,

VR = ^ r ; R , .

It is easily shown that, if s, t are unit vectors tangent to Vn at
points of Vn, the necessary and sufficient condition that the vectors s should
be parallel in Vn along the curves of congruence defined by t, is that
t Vs should be normal to Vn. An equivalent condition is t h a t (Vs )R
should be orthogonal to t for all vectors R. In particular, t defines a
geodesic congruence if t • V t is normal to Vn.

If th | (h = 1, 2, . . . . . n) are the vectors of an orthogonal ennuple
in Vr,, we find that the coefficients of rotation are given by

y»H = t , r V t * r t t | . (2.3)
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Hence, if we define normal coefficients of rotation by

J-Kka = t* j • V tA | ' N ^ | = Q a | ij A/, | ' Aj I •*,
we have

V t7l | = S e 9 e^ yHe te\h\ + 2 e , c r 7Mff te\
 N<r |

where ee = t,, 2 = ± 1; eff = N ( r |
2 = ± 1.

Prof. C. E. Weatherburn1 has introduced an operator V, similar
to V, in the study of a surface F2. This can be generalised by con-
sidering some normal N of VH, and defining

V = S c * ^ t » , i - , (2.5)
h 8sh

where the ennuple th | is the principal ennuple for the normal N, and
Kh are the corresponding principal curvatures. From the theory of
principal directions, we have

S eh Kh A A , ' Xh | J = gil gi» Q.lm = Qv ,

where Qiy is the tensor associate to the normal N.
Hence we have

(2.51)

It can easily be verified that

V = - (VN)-V. (2.52)

A second order operator may be defined by V2 = V • V. For an
invariant F, we have

V 2 F = ^ F ; , . (2.6)

Thus V2 is the Beltrami operator A2.

We see that
V'T = g*lTtii=MH, (2.7)

where N is the mean curvature normal2, and M is the mean curvature
of Vn. This shows that the mean curvature normal, and the mean
curvature are generalisations of the principal normal and curvature of a
curve, for we have, for a curve, V = t d j ds where t is the unit tangent,

3 Quart. Journ. of Maths., 50 (1927), 277.
2 Cf. Eisenhart, loc. cit., p. 169.
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and hence
V2r = /cn (2.71)

where n is the principle normal, and K is the curvature.

Another second order operator is V V. For an invariant V,
we have

V • V V = W F, v. (2.8)

§ 3. The general small deformation.

We shall now examine the space V'H obtained by deforming
Vn in Vh.

Let e be a constant of the order of magnitude of the greatest
displacement of points of Fn, and let the deformation be such that
e2 may be neglected. Then the position vector of a point of V'n is
given by

r' = r + es (3.1)

where es is the displacement vector of the point r, s being a finite
function of position on V,,,. Let dashes refer to V'n.

We have at once
r'i = ri + esi (3.11)

and hence,
9'v = r'i- r'J = 9v + *Cij (3.12)

where ctj = rt • s,- + r, • S;. (3.13)

From (3.12) and the identities g'{J g'Jk = S ,̂ we get

g'iJ' = gij - ec" (3.H)

where cij = gil g'm cbn.

From (3.12) we have

9'= j gj

i.e. V^V^l+eV'S). (3.15)

If dV, dV are corresponding elements of volume of Vn, V'n
respectively, the dilation is denned to be the ratio (dV — dV)/dV.
Hence, from (3.15), the dilation is given by

dV'-dV
— w - = ,V s, (3.16)

i.e. the dilation is the divergence of the displacement vector.
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Writing
2Cijk = (cy, fc + c«,j - c,x,<); C% = gih Cm, (3.2)

we have
rl}! = F'1 4- eCh (3.21)

where F\ , F'1 are the Christoffel symbols of the second kind.

Hence the curvature tensor is given by

and from (3.12), we have

R'hijk = Rhijk + e(chl R1^]. + Chile, j ~ Chij, fc)- (3.23)

From this equation and (3.14), we get

R' =R — e(c*>Ry, + c« ,•; - g*c ,-;) (3.24)

where i ^ is the Ricci tensor, and c = giJ c,, = 2 V • s.

Let N be a unit normal of Vn, and let N' be a corresponding
unit normal of V'n. We have N'• r'j = 0 (i = 1, 2, , w), and

writing N' = N + eN, we find

N = - ( V s ) N (3.3)

where N is taken to be tangent1 to Vn. Hence

N ' = N - 6 ( V s ) N . (3.31)

If Qi; is the second fundamental tensor in Vn associate to the
normal N, and Q'<; the corresponding tensor for N', we have

O.'i} = - N \ r T'J = Qi; + eN • B,?:,, (3.32)

and hence, the mean curvature for the normal N' is given by

Q' - g'ij Q.',j = Q + e (N • V2s - 2 V • s) (3.33)

where V is the operator given by the normal N.

The linear element of V'n is given by

eds'2 = eds1 + ec,:; dxl dxj; eds2 = gV) dx' dx1. (3.4)

Hence, the extension for the direction t = A' TJ is given by

€E = ^ - H ^ f = leeA^-'c = e e t V s t (341)

where e = t2 = dz 1.

1 We need not take N tangent to Vn, but we do so to define the particular normal N'.

All we actually know is that N is orthogonal to N, and satisfies N • Tj + N " Sj = 0 .
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If eEh (h = 1, 2, . . . . , n) are the extensions for the directions of
an orthogonal ennuple, we have Eh = ehXhl

i Xh|•> r<• S;, and hence

2 ^ = V s . (3.42)
h

Thus the sum of the extensions for n mutually orthogonal directions is
independent of these directions and is equal to the dilation.

From (3.41), we see that the extension has critical values for the
principal directions1 determined by the tensor c{j, and if ph are the corre-
sponding invariants, then -2Eh = ph.

Writing
Ehk = A M

i ^ ^ n • sj = t t , • V s • t M , (3.43)

Ekv=Xhi
tBi-'S^ = t » , . V s - N f f | ,

where t* i are the vectors of any orthogonal ennuple, we have
E,lh = eh Eh, and

V s = S e , e ^ ^ t « | t M + 2«« e, E6<7 te\ N, . (3.44)
D, $ 0, a

From (3.11), it is easily shown that a direction t tangent to
VH becomes the direction t' tangent to Vn' where

f = t + e(t- Vs — El), (3.5)

eE being the extension in the direction t.

Hence, for two directions tx j , t21 making an angle a>, the angle

between the new directions is w -j- e 6 where

8 sin a) = Ai | • A2 {
J ci} — (Et + E.2) cos a>. (3.51)

In particular, if oi = 77/2, we have

fl = A1|iA2|J'ci;= tM . (Vs + s V ) - t j | , (3.52)
where s V is the dyadic conjugate to V s, and hence, two orthogonal
directions remain orthogonal if they satisfy

Ai| ^ 2 1 ^ = 0 . (3.53)

From this condition, we see that if two directions are orthogonal, and
if one of them is a principal direction of cijt the directions remain
orthogonal.

Also the only orthogonal ennuple remaining orthogonal is the principal
ennuple of cfj.

1 An account of the principal directions of a tensor is given by Eisenhart,
loe. cit. 5 33.

https://doi.org/10.1017/S0013091500013833 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500013833


84 A. G. WALKER

If the principal ennuple of ci; is also the principal ennuple given
by a normal N, it becomes the principal ennuple in Vn' of the
normal N' if

(Q.'i:i-K'hg'^Xh]
i = 0. (3.54)

Writing K\ = Kh + eicA, and substituting from (3.12), (3.32), these
conditions become

Eh Kk) gi; - lc{} Xh |
; = 0 (3.55)

where &<; = N • s,,;;. Hence the ennuple must also be the principal
ennuple of the tensor ki;, and if pk are the principal invariants for this
tensor, the principal curvatures for the normal N' are KA + e/cA where

= ph — 2«i Eh. (3.56)

Let us now find the conditions that a geodesic congruence A' in
Fn becomes geodesic in F,,'. We have

A'4 r';, A'{ = (1 - eE) X\ E = eA' A' c,;, (3.6)

Differentiating covariantly with respect to g'y, and substituting
Ai

);A
; = O in Vn, we find

A';,; A'; = eA; \k {C% - 2eAJ A' C

Hence the congruence remains geodesic if

A; A4 (C)l - 2eA* A' C,Jk) = 0.

Multiplying by A; and summing, we get

(3.61)

(3.62)

Xl\;\kCijk. = 0. (3.63)

Substituting in (3.62), we have the necessary and sufficient conditions
that the geodesic congruence X1 should remain geodesic are

A'' A* C\k = 0, (i = 1, 2, ,n). (3.64)

We at once see tha t the necessary and sufficient conditions that all
geodesies of Vn should become geodesies of V„' are

c0-t = 0 (i,j, k=l,2, ....,n). (3.65)

A more general theorem is as follows.

If the vectors fil are parallel along the curves of the congruence X1 in Vn,
the corresponding vectors are parallel along the corresponding curves
in F,/ if

. A>-tC;i = 0. (3.66)
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The differential equations (3.65) have been studied by Eisenhart1 and
Levy2. A particular result is that when Vn has constant Riemannian
curvature, the tensor c,, must be a constant multiple of the funda-
mental tensor gi;. In this case F,,, FB' are conformal, and the
extension is constant in all directions and at all points of Vn, being
ep where ci} = p gir

§ 4. Some particular types of deformation.

An inextensible deformation is such that all lengths remain
unaltered. For this, we must have g'Vl = gi:. Hence, the necessary
and sufficient conditions for an inextensible deformation are

ci; = 0 (*, j= 1, 2, . . . . , n). (4.1)

In this case, we have V • s = 0, V • s =0, and (3.33) reduces to

Q' = Q + e N V - s . (4.11)

From the definition, the curvature tensors remain unaltered.

A normal deformation, is such that all points of Fn are displaced
in directions normal to Vn. If N is the normal direction of displace-
ment of the point r, the deformation is given by

s = s N (4.2)

where s is a function of position of Vn.

If O;; is the tensor associate to N, and Q the corresponding mean
curvature, we have

C;;=-2sQ;;, (4.21)

and V - s = - s Q . (4.22)

The normal to Fn' corresponding to N is now

N' = N — eVs. (4.23)

If p = n + 1, (3.24), (3.32), and (3.33) reduce to

R' = R + 2e (s Q>-! Rh• + V • V s - Q V2s), (4.24)

Q.'i:= Qi; + e {s, u - s (Q Q.;j + eRiJ}, (4.25)

Q' = Q + e {V2s + s (Q.2 + eR)}, (4.26)

where e = N2 = ± 1 .

1 Trans, of the Amtr. Math. See, 25 (1923), 297.
2 Annals of Math., 27 (1926), 91.
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The only orthogonal ennuple remaining orthogonal for a normal
deformation is now the principal ennuple of the normal N, and substi-
tuting for k,j in (3.55), we find that this becomes the principal ennuple
of N' if it is also the ennuple given by the tensor stij — 'Leaiia\iiia^

where pa 11 = N • Nff, u NCT | (a = 1, 2, p — n — 1) being orthogonal

to N, and ea = N .̂ |2 = ^ 1- Also, if p\ are the invariants of this
tensor, the principal curvatures KK of N become xh -f- eKh where

Kh = ph + SK\. (4.27)

A tangent deformation is such that all points of Vn are displaced
in directions tangent to Vn. Writing

S = ATi (4.3)
we have

T'=r + eXiTi=r(xi + eX
i) (4.31)

to the first order of approximation.
Hence this tangent deformation is equivalent to a point transformation
of Vn, given by

xn — xl = eX\ (4.32)

Tangent deformations - have been discussed intrinsically from this
point of view by McConnell.1

In concluding, we may remark that, writing St for <=, and
considering s also as a function of the parameter t, the spaces Vn, Vn'
may be considered as members of a family of such spaces in Vp, i.e.
hypersurfaces of a Vn+\. Many of the above results may then be
interpreted as giving the variation with respect to t of the tensors,
etc., connected with Fn.

1 Annali di Mat., 6 (1928-1929), 207.
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