ON THE STRUGTURE OF $Q_{2}(G)$ FOR FINITELY GENERATED GROUPS

GERALD LOSEY

1. Introduction. Let G be a group, $Z G$ its integral group ring and $\Delta=\Delta(G)$ the augmentation ideal of $Z G$. Denote by G_{i} the i th term of the lower central series of G. Following Passi [3], we set $Q_{n}(G)=\Delta^{n} / \Delta^{n+1}$. It is well-known that $Q_{1}(G) \simeq G / G_{2}$ (see, for example [1]). In [3] Passi shows that if G is an abelian group then $Q_{2}(G) \simeq S p^{2}(G)$, the second symmetric power of G. What is $Q_{2}(G)$ in general? We find a clue in [4] where Sandling shows that if G is any finite group then the canonical homomorphism $\varphi: G_{2} / G_{3} \rightarrow \Delta^{2} / \Delta^{3}$ given by $g G_{3} \mapsto(g-1)+\Delta^{3}$ is a split monomorphism; thus $Q_{2}(G) \simeq G_{2} / G_{3} \oplus M$ for some abelian group M. Comparing this with Passi's result it is tempting to conjecture that for any group G,

$$
Q_{2}(G) \simeq G_{2} / G_{3} \oplus S p^{2}\left(G / G_{2}\right)
$$

The object of this paper is, first, to extend Sandling's result to finitely generated groups and, secondly, to verify the above conjecture for such groups.

In § 2, we develop the necessary machinery for handling the problem. This is an extension to finitely generated groups of tools developed in [1] for finite groups. Some of these ideas have previously appeared in [2]. In § 3, we prove the results mentioned above.
2. Definitions and preliminary results. Let A be an abelian group. Then $S p^{2}(A)=A \otimes_{z} A / J$, where J is the subgroup of $A \otimes_{z} A$ generated by all elements $x \otimes y-y \otimes x, x, y \in A$, is called the second symmetric power of A. The image of $x \otimes y$ in $S p^{2}(A)$ will be denoted by $x \vee y$. The mapping $A \times A \rightarrow S p^{2}(A)$ given by $(x, y) \rightarrow x \vee y$ is bilinear and symmetric and is universal with respect to these properties.

Let G be a finitely generated nilpotent group of class c. For each $g \in G, g \neq 1$, set $w(g)=k$ if and only if $g \in G_{k}, g \notin G_{k+1} ; w(g)$ is called the weight of g. For convenience set $w(1)=\infty$. Since $\left[G_{i}, G_{j}\right] \leqq G_{i+j}$ for all i and j we have $w([g, h]) \geqq w(g)+w(h)$ for all $g, h \in G$. For each $g \in G$ define $o^{*}(g)$ to be the order of the coset $g G_{w(g)+1}$, that is, $o^{*}(g)$ is the order of the image of g in the quotient $G_{w(g)} / G_{w(g)+1}$.

Each quotient G_{k} / G_{k+1} is a finitely generated abelian group and thus there exist elements $\bar{x}_{k 1}, \bar{x}_{k 2}, \ldots, \bar{x}_{k \mu(k)}$ (where $\bar{x}_{k \imath}=x_{k i} G_{k+1}$) such that each element

[^0]$\bar{g} \in G_{k} / G_{k+1}$ can be written uniquely in the form
$$
\bar{g}=\bar{x}_{k 1}{ }^{e(1)} \bar{x}_{k 2}{ }^{e(2)} \ldots \bar{x}_{k \mu(k)}{ }^{e(\mu(k))}
$$
where $0 \leqq e(i)<o^{*}\left(x_{k i}\right)$ if $o^{*}\left(x_{k i}\right)<\infty$.
Set
$$
\Phi_{0}=\left\{x_{k i}: k=1,2, \ldots, c ; i=1,2, \ldots, \mu(k)\right\} .
$$

Order Φ_{0} by putting $x_{i j}<x_{k l}$ if $i<k$ or $i=k$ and $j<l$. Enlarge Φ_{0} to a set Φ by adjoining to Φ_{0} all $x_{i j}{ }^{-1}$ for which $o^{*}\left(x_{i j}\right)=\infty$; extend the order on Φ_{0} to Φ by putting $x_{i j}{ }^{-1}$ immediately after $x_{i j}$. Let $|\Phi|=m$. Reindex Φ by the integers $1,2, \ldots, m$ so that $x_{i}<x_{j}$ if and only if $i<j$. Then every element $g \in G$ can be written uniquely in the form

$$
\begin{equation*}
g=x_{1}{ }^{e(1)} x_{2}{ }^{e(2)} \ldots x_{m}{ }^{e(m)} \tag{1}
\end{equation*}
$$

where
(i) $0 \leqq e(i)<o^{*}\left(x_{i}\right)$ for all i,
(ii) if $x_{i+1}=x_{i}^{-1}$ then $e(i) e(i+1)=0$.

The set Φ will be called a positive uniqueness basis for G. For each $x_{i} \in \Phi$, set $d(i)=o^{*}\left(x_{i}\right)$.
Let G be a finitely generated nilpotent group, Φ a positive uniqueness basis for G and $|\Phi|=m$. By an m-sequence $\alpha=(e(1), e(2), \ldots, e(m))$ we mean an ordered m-tuple of non-negative integers. The set S_{m} of all m-sequences is ordered lexicographically; S_{m} is then well ordered. An m-sequence $\alpha=(e(1), e(2), \ldots, e(m))$ is basic (with respect to Φ) if (i) $0 \leqq e(i)<d(i)$ for all i and (ii) if $x_{i+1}=x_{i}^{-1}$ then $e(i) e(i+1)=0$. It follows from the uniqueness of the expression (1) above that there is a one-one correspondence between the elements of G and the basic m-sequences.

The weight $W(\alpha)$ of an m-sequence $\alpha=(e(1), e(2), \ldots, e(m))$ is defined to be

$$
W(\alpha)=\sum_{i=1}^{m} w\left(x_{i}\right) e(i) .
$$

Given an m-sequence $\alpha=(e(1), e(2), \ldots, e(m))$ we define the proper product $P(\alpha) \in Z G$ to be

$$
P(\alpha)=\prod_{i=1}^{m}\left(x_{i}-1\right)^{e(i)}
$$

where the factors occur in order of increasing i from left to right. If $W(\alpha)=k$ then $P(\alpha) \in \Delta^{k}$. If α is basic then $P(\alpha)$ is called a basic product. Note that if $\alpha=(0,0, \ldots, 0)$ then $P(\alpha)=1$.

Since

$$
x_{i}^{e(i)}=\left(1+\left(x_{i}-1\right)\right)^{e(i)}=1+\sum_{j=1}^{e(i)}\binom{e(i)}{j}\left(x_{i}-1\right)^{j}
$$

from (1) we obtain

$$
\begin{align*}
g=1+ & e(1)\left(x_{1}-1\right)+\ldots+e(m)\left(x_{m}-1\right) \tag{2}\\
& + \text { a } Z \text {-linear combination of basic products of higher degree }
\end{align*}
$$

which we can rewrite as

$$
g-1=e(1)\left(x_{1}-1\right)+\ldots+e(m)\left(x_{m}-1\right)
$$

+ a Z-linear combination of basic products of higher degree.
Lemma 1. The basic products form a free Z-basis for ZG. The non-identity basic products form a free Z-basis for Δ.

Proof. It follows from (2) (respectively (2')) that the basic products (respectively basic products $\neq 1$) span $Z G$ (respectively Δ). The lemma will follow if we can show linear independence. Suppose $\sum r_{\alpha} P(\alpha)=0$ is a non-trivial linear relation among the basic products. Among the basic m-sequences α for which $r_{\alpha} \neq 0$ there is a maximal one, say $\beta=(f(1), f(2), \ldots, f(m))$. If we multiply out all the $P(\alpha)$ and collect terms we obtain a linear combination of group elements each expressed in its unique form (1). It follows from the maximality of β that the element $x_{1}{ }^{f(1)} x_{2}{ }^{f(2)} \ldots x_{m}{ }^{f(m)}$ occurs with coefficient $r_{\beta} \neq 0$. But this contradicts the fact that the elements of G are linearly independent in $Z G$.

Lemma 2. Let $x_{i(1)}, x_{i(2)}, \ldots, x_{i(s)} \in \Phi$ and let $k=\sum_{j=1}^{s} w\left(x_{i(j)}\right)$, $\mu=\min \{i(j): 1 \leqq j \leqq s\}$. Then the product

$$
\left(x_{i(1)}-1\right)\left(x_{i(2)}-1\right) \ldots\left(x_{i(s)}-1\right)
$$

can be written as a Z-linear combination of proper products $P(\alpha)$ such that for each such $\alpha=(e(1), e(2), \ldots, e(m))$
(i) $W(\alpha) \geqq k$,
(ii) $j<\mu$ implies $e(j)=0$.
(The process of replacing such a product by a linear combination of proper products satisfying (i) and (ii) will be called straightening.)

Corollary. The ideal Δ^{k} is spanned over Z by all proper products $P(\alpha)$ with $W(\alpha) \geqq k$.

The proofs of Lemma 2 and its corollary are the same as those given in [1, Lemma 4] for the case of a finite group G; we refer the reader to the proofs given there.

Lemma 3. The ideal Δ^{2} has a free Z-basis consisting of the elements.
(i) $d(i)\left(x_{i}-1\right), \quad$ where $w\left(x_{i}\right)=1, d(i)<\infty$;
(ii) $\left(x_{i}-1\right)+\left(x_{i+1}-1\right)$, where $w\left(x_{i}\right)=1, x_{i+1}=x_{i}^{-1}$;
(iii) $P(\alpha)$, where α is basic, $W(\alpha) \geqq 2$.

Proof. If $w\left(x_{i}\right)=1$ and $d(i)<\infty$ then $x_{i}{ }^{d(i)} \in G_{2}$ and since

$$
x_{i}{ }^{d(i)}=\left(1+\left(x_{i}-1\right)\right)^{d(i)} \equiv 1+d(i)\left(x_{i}-1\right) \bmod \Delta^{2}
$$

we have

$$
d(i)\left(x_{i}-1\right) \equiv x^{d(i)}-1 \equiv 0 \bmod \Delta^{2}
$$

If $w\left(x_{i}\right)=1$ and $d(i)=\infty$ then, if $x_{i+1}=x_{i}{ }^{-1}$,

$$
\left(x_{i}-1\right)+\left(x_{i+1}-1\right)=-\left(x_{i}-1\right)\left(x_{i+1}-1\right) \in \Delta^{2} .
$$

Thus elements of types (i), (ii) and (iii) are all in Δ^{2}.
Let $\psi: \Delta \rightarrow G / G_{2}$ be the canonical mapping determined by $g-1 \mapsto g G_{2}$ for all $g \in G$. It is well-known (see [1] for example) that $\operatorname{Ker} \psi=\Delta^{2}$. Let $\gamma \in \Delta^{2}$. Then, by Lemma 1, we can write γ uniquely in the form
$\gamma=a(1)\left(x_{1}-1\right)+\ldots+a(k)\left(x_{k}-1\right)+$ a Z-linear combination of elements of type (iii),
where $w\left(x_{1}\right)=\ldots=w\left(x_{k}\right)=1$. Since $\gamma \in \operatorname{Ker} \psi$ we have

$$
\psi(\gamma)=\prod_{i=1}^{k} x_{i}^{a(i)} G_{2}=G_{2}
$$

and so $\prod_{i=1}^{k} x_{i}{ }^{a(i)} \equiv 1 \bmod G_{2}$. By the uniqueness of the expression (1) it follows that $a(i)=b_{i} d(i)$ for some integer b_{i} if $d(i)<\infty$ and that $a(i)=$ $a(i+1)$ if $d(i)=\infty$ and $x_{i+1}=x_{i}^{-1}$. Thus we have $a(i)\left(x_{i}-1\right)=$ $b_{i} d(i)\left(x_{i}-1\right)$ if $d(i)<\infty$ and

$$
a(i)\left(x_{i}-1\right)+a(i)\left(x_{i+1}-1\right)=a(i)\left(\left(x_{\imath}-1\right)+\left(x_{\imath+1}-1\right)\right)
$$

if $d(i)=\infty$ and $x_{i+1}=x_{i}{ }^{-1}$. It follows then that γ can be written uniquely as a Z-linear combination of elements of types (i), (ii) and (iii).
3. The main results. We are now in position to prove

Theorem 1. Let G be any finitely generated group. Then the canonical homomorphism

$$
\varphi: G_{2} / G_{3} \rightarrow \Delta^{2} / \Delta^{3}
$$

defined by $g G_{3} \mapsto(g-1)+\Delta^{3}$ is a split monomorphism.
Theorem 2. If G is any finitely generated group then

$$
Q_{2}(G) \simeq G_{2} / G_{3} \oplus S p^{2}\left(G / G_{2}\right)
$$

Proof of Theorem 1. By passing to quotients by G_{3} we may assume $G_{3}=1$. Then G_{2} is abelian and $\varphi: g \mapsto(g-1)+\Delta^{3}$. We define a homomorphism $\sigma: \Delta^{2} \rightarrow G_{2}$ by defining it on the basis given in Lemma 3 as follows:

$d(i)\left(x_{i}-1\right)$	$\mapsto x_{i}{ }^{d(i)}$	$w\left(x_{\imath}\right)=1, d(i)<\infty$
$\left(x_{i}-1\right)+\left(x_{i+1}-1\right)$	$\mapsto 1$	$w\left(x_{i}\right)=1, x_{i+1}=x_{i}{ }^{-1}$
$x_{i}-1$	$\mapsto x_{i}$	$w\left(x_{i}\right)=2$
$P(\alpha)$	$\mapsto 1$	
	other basic $\alpha, w(\alpha) \geqq 2$,	

where $\Phi=\left\{x_{i}\right\}$ is a fixed positive uniqueness basis for the finitely generated nilpotent group G.

If $g \in G_{2}$ then we can write g in its unique form

$$
\begin{equation*}
g=x_{i(1)}{ }^{e(1)} x_{i(2)}{ }^{e(2)} \ldots x_{i(s)}{ }^{e(s)} \text { with each } w\left(x_{i(j)}\right)=2 . \tag{1}
\end{equation*}
$$

Hence, from (2^{\prime}),

$$
g-1=e(1)\left(x_{i(1)}-1\right)+\ldots+e(s)\left(x_{i(s)}-1\right)
$$

$$
+ \text { basic products of weight } \geqq 3
$$

Thus from the definition of σ,

$$
\sigma(g-1)=x_{i(1)}^{e(1)} \ldots x_{i(s)^{e(s)}}^{e}=\mathrm{g}
$$

Therefore $\sigma(g-1)=g$ for all $g \in G_{2}$.
We claim that σ vanishes on Δ^{3}. In view of the Corollary to Lemma 2, it suffices to show that σ vanishes on all proper products $P(\alpha)$ with $W(\alpha) \geqq 3$. We show this by induction over the well ordered set S_{m} of m-sequences. Suppose $W(\alpha) \geqq 3$ and $\sigma(P(\beta))=1$ for all $\beta<\alpha$ with $W(\beta) \geqq 3$. If α is basic then σ vanishes on $P(\alpha)$ by definition. So assume α is not basic. Then $P(\alpha)$ is either of the form

$$
\text { (I) } \quad P\left(\alpha_{1}\right)(x-1)\left(x^{-1}-1\right) P\left(\alpha_{2}\right)
$$

or

$$
\text { (II) } \quad P\left(\alpha_{1}\right)(x-1)^{d} P\left(\alpha_{2}\right)
$$

for some $x=x_{i} \in \Phi, d=d(i)$, and suitable products $P\left(\alpha_{1}\right)$ and $P\left(\alpha_{2}\right)$.
Case (I): In this case we have

$$
P(\alpha)=-P\left(\alpha_{1}\right)(x-1) P\left(\alpha_{2}\right)-P\left(\alpha_{1}\right)\left(x^{-1}-1\right) P\left(\alpha_{2}\right) .
$$

If $W\left(\alpha_{1}\right)+W\left(\alpha_{2}\right) \geqq 2$ then both terms on the right are proper products $P(\beta), \beta<\alpha$ and $W(\beta) \geqq 3$ and, by the induction hypothesis, we are done. So we may assume $W\left(\alpha_{1}\right)+W\left(\alpha_{2}\right) \leqq 1$. Suppose $W\left(\alpha_{1}\right)+W\left(\alpha_{2}\right)=0$, that is, $P(\alpha)=(x-1)\left(x^{-1}-1\right)=-\left((x-1)+\left(x^{-1}-1\right)\right)$. If $w(x)=1$ then $\sigma(P(\alpha))=1$ by definition; if $w(x)=2$ then $\sigma(P(\alpha))=x^{-1} \cdot\left(x^{-1}\right)^{-1}=1$. Suppose $W\left(\alpha_{1}\right)+W\left(\alpha_{2}\right)=1$, say $P\left(\alpha_{1}\right)=y-1, P\left(\alpha_{2}\right)=1, w(y)=1$. Then

$$
\begin{aligned}
P(\alpha) & =(y-1)(x-1)\left(x^{-1}-1\right) \\
& =-(y-1)(x-1)-(y-1)\left(x^{-1}-1\right)
\end{aligned}
$$

If $y<x<x^{-1}$ then both terms on the right are basic and σ vanishes on both terms by definition. If $y=x<x^{-1}$ then

$$
P(\alpha)=-(x-1)^{2}+\left((x-1)+\left(x^{-1}-1\right)\right)
$$

and again, σ vanishes on both terms by definition. The case $P\left(\alpha_{1}\right)=1$, $P\left(\alpha_{2}\right)=y-1, w(y)=1$, is handled similarly.

Case (II): In this case we have

$$
P(\alpha)=\sum_{j=1}^{d-1}\binom{d}{j} P\left(\alpha_{1}\right)(x-1)^{j} P\left(\alpha_{2}\right)+P\left(\alpha_{1}\right)\left(x^{d}-1\right) P\left(\alpha_{2}\right) .
$$

We replace $x^{d}-1$ in the last term by its basic form (2^{\prime}) and straighten the resulting terms. If $W\left(\alpha_{1}\right)+W\left(\alpha_{2}\right) \geqq 2$ then this expresses $P(\alpha)$ as a linear combination of proper products $P(\beta)$ with $\beta<\alpha$ and $W(\alpha) \geqq 3$. By the induction hypothesis σ vanishes on each term and so σ vanishes on $P(\alpha)$. We may therefore assume $W\left(\alpha_{1}\right)+W\left(\alpha_{2}\right) \leqq 1$. Suppose $W\left(\alpha_{1}\right)+W\left(\alpha_{2}\right)=0$; then $P(\alpha)=(x-1)^{d}=\sum_{j=1}^{d-1}\binom{d}{i}(x-1)^{j}+\left(x^{d}-1\right)$. If $w(x)=1$ then $P(\alpha)=-d(x-1)+\left(x^{d}-1\right)+$ elements of $\operatorname{Ker} \sigma$ and so, since $\sigma(g-1)=g$ for all $g \in G_{2}, \sigma(P(\alpha))=x^{-d} \cdot x^{d}=1$. If $w(x)=2$ then $x^{d}=1$ and so $P(\alpha)=-d(x-1)+$ elements of Ker σ. Therefore $\sigma(P(\alpha))=x^{-d}=1$. Now suppose $W\left(\alpha_{1}\right)+W\left(\alpha_{2}\right)=1$, say $P\left(\alpha_{1}\right)=1, P\left(\alpha_{2}\right)=y-1$, w $(y)=1$. Then $P(\alpha)=(x-1)^{d}(y-1)$ and $w(x)=1$. We can write this as

$$
P(\alpha)=-\sum_{j=1}^{d-1}\binom{d}{j}(x-1)^{j}(y-1)+(y-1)\left(x^{d}-1\right)
$$

since $x^{d} \in G_{2} \leqq C(G)$. If we replace $x^{d}-1$ by its basic form (2') then, by definition of σ,

$$
P(\alpha) \equiv-d(x-1)^{d-1}(y-1) \bmod \operatorname{Ker} \sigma .
$$

If $x \neq y$ then $(x-1)^{d-1}(y-1)$ is basic and σ also vanishes on this term. If $x=y$ then $P(\alpha) \equiv-d(x-1)^{d} \bmod \operatorname{Ker} \sigma$. But $\sigma\left((x-1)^{d}\right)=1$ as shown above. Hence $\sigma(P(\alpha))=1$. The case $P\left(\alpha_{1}\right)=y-1, P\left(\alpha_{2}\right)=1, w(y)=1$ is handled similarly.

Thus we have shown by induction over the well ordered set S_{m} that σ vanishes on Δ^{3}. It follows that σ induces a homomorphism $\bar{\sigma}: \Delta^{2} / \Delta^{3} \rightarrow G_{2}$ with the property that $\bar{\sigma}\left((g-1)+\Delta^{3}\right)=g$ for all $g \in G_{2}$. Therefore $\bar{\sigma} \varphi$ is the identity on G_{2} and, consequently, φ is a split monomorphism.

Proof of Theorem 2. It follows from Theorem 1 that

$$
Q_{2}(G) \simeq G_{2} / G_{3} \oplus \operatorname{Coker}(\varphi)
$$

Let $\eta: G \rightarrow G / G_{2}$ be the natural map and let $\tilde{\eta}: Z G \rightarrow Z\left(G / G_{2}\right)$ be its linear extension. Then $\tilde{\eta}$ is a ring homomorphism with kernel $I_{G}\left(G_{2}\right)$, the (right) ideal of $Z G$ generated by all $g-1, g \in G_{2}$. Let

$$
\bar{\eta}: Z G / I_{G}\left(G_{2}\right) \rightarrow Z\left(G / G_{2}\right)
$$

be the induced isomorphism.
The ideal $I_{G}\left(G_{2}\right)$ is spanned over Z by the elements $(g-1) h, g \in G_{2}, h \in G$. Now

$$
(g-1) h+\Delta^{3}=(g-1)+(g-1)(h-1)+\Delta^{3}=(g-1)+\Delta^{3} \in \operatorname{Im}(\varphi)
$$ It follows that

$$
\operatorname{Im}(\varphi)=I_{G}\left(G_{2}\right)+\Delta^{3} / \Delta^{3}
$$

and, therefore, that

$$
\operatorname{Coker}(\varphi) \simeq \Delta^{2} / I_{G}\left(G_{2}\right)+\Delta^{3}
$$

On the other hand,

$$
\bar{\eta}^{-1}\left(\Delta^{2}\left(G / G_{2}\right)\right)=\Delta^{2}(G) / I_{G}\left(G_{2}\right)
$$

and

$$
\bar{\eta}^{-1}\left(\Delta^{3}\left(G / G_{2}\right)\right)=\Delta^{3}(G)+I_{G}\left(G_{2}\right) / I_{G}\left(G_{2}\right)
$$

Thus

$$
Q_{2}\left(G / G_{2}\right) \simeq \Delta^{2}(G) / \Delta^{3}(G)+I_{G}\left(G_{2}\right) \simeq \operatorname{Coker}(\varphi)
$$

Combining this with the above we see that

$$
Q_{2}(G) \simeq G_{2} / G_{3} \oplus Q_{2}\left(G / G_{2}\right)
$$

By the result of Passi [3] mentioned in § 1,

$$
Q_{2}\left(G / G_{2}\right) \simeq S p^{2}\left(G / G_{2}\right)
$$

and Theorem 2 follows.
I wish to thank the referee for pointing out a substantial simplification in the proof of Theorem 2.

References

1. G. Losey, N-series and filtrations of the augementation ideal (to appear).
2. - On dimension subgroups, Trans. Amer. Math. Soc. 97 (1960), 474-486.
3. I. B. S. Passi, Polynomial functors, Proc. Cambridge Philos. Soc. 66 (1969), 505-512.
4. R. Sandling, The modular group rings of p-groups, Ph.D. thesis, University of Chicago, 1969.

University of Manitoba, Winnipeg, Manitoba

[^0]: Received January 18, 1972 and in revised form, April 21, 1972.

