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Abstract

We consider the Cauchy problem for the cubic fourth order nonlinear Schrodinger equation (4NLS)
on the circle. In particular, we prove global well-posedness of the renormalized 4NLS in negative
1

Sobolev spaces H*(T), s > —3, with enhanced uniqueness. The proof consists of two separate

arguments. (i) We first prove global existence in H*(T), s > —%, via the short-time Fourier
restriction norm method. By following the argument in Guo—Oh for the cubic NLS, this also leads to
nonexistence of solutions for the (nonrenormalized) 4NLS in negative Sobolev spaces. (ii) We then
prove enhanced uniqueness in H*(T), s > — é , by establishing an energy estimate for the difference
of two solutions with the same initial condition. For this purpose, we perform an infinite iteration of
normal form reductions on the H*-energy functional, allowing us to introduce an infinite sequence
of correction terms to the H*-energy functional in the spirit of the /-method. In fact, the main
novelty of this paper is this reduction of the H*-energy functionals (for a single solution and for the
difference of two solutions with the same initial condition) to sums of infinite series of multilinear
terms of increasing degrees.

2010 Mathematics Subject Classification: 35Q55

1. Introduction

1.1. The cubic nonlinear Schrodinger equation with quartic dispersion. In
this paper, we consider the Cauchy problem for the cubic fourth order nonlinear

© The Author(s) 2018. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.

https://doi.org/10.1017/fms.2018.4 Published online by Cambridge University Press


http://journals.cambridge.org/action/displayJournal?jid=FMS
mailto:hiro.oh@ed.ac.uk
mailto:y.wang.14@bham.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1017/fms.2018.4&domain=pdf
https://doi.org/10.1017/fms.2018.4

T. Oh and Y. Wang 2

Schrodinger equation (4NLS) on the circle T = R/ (2w Z):

idu = 0%u + |ul’u

(x,1) e T xR, (1.1)
ult:0 = Uy,

where u is a complex-valued function. The equation (1.1) is also called the
biharmonic nonlinear Schrodinger equation (NLS) and it was studied in [22, 40]
in the context of stability of solitons in magnetic materials. See also [2, 16, 23, 24]
for a more general class of fourth order NLS:

i0u = A07u + udlu £ |ulfu. (1.2)

In the following, we focus our attention on the equation (1.1). See Remark 1.8 for
a brief discussion on (1.2).

Our main goal is to study the well/ill-posedness issue of (1.1) in the low
regularity setting. We first recall the scaling symmetry for (1.1); if u(x,?) is a
solution to (1.1) on R, then u, (x, 1) = A 2u (A~ 'x, A~*t) is also a solution to (1.1)
on R with the scaled initial data u, (x) = A~2uo(A~'x). This scaling symmetry
induces the so-called scaling critical Sobolev regularity s.; = —%, leaving the
homogeneous H*t-norm invariant under the scaling symmetry. On the one hand,
the scaling argument provides heuristics indicating that a PDE is well-posed in
H® fors > s.; and is ill-posed in H* for s < s.;. This heuristics certainly applies
to many equations, including NLS and the nonlinear wave equations. See [9]. On
the other hand, this heuristics is known to often fail in negative Sobolev spaces.
This is indeed the case for (1.1) and its renormalized variant (1.5).

In [36], the first author and Tzvetkov proved that (1.1) is globally well-posed
in H*(T) for s > 0. The proof is based on the Fourier restriction norm method
(namely, utilizing the X*-*-space defined in (2.7)) with the L*-Strichartz estimate:

lulle S llullxosns (1.3)

X N

along with the conservation of the L>-norm. Following the approach in [5, 8], it
was also shown in [36] that (1.1) is mildly ill-posed in H*(T), s < 0, in the sense
that the solution map: uy € H*(T) — u € C([-T, T]; H*(T)) is not locally
uniformly continuous for s < 0. Moreover, following the work [19], it was pointed
out in [36] that (1.1) is indeed ill-posed in negative Sobolev spaces by establishing
a nonexistence result. See Corollary 1.2 below for a precise statement. We also
mention the following norm inflation result due to Choffrut and Pocovnicu [6].
Lets < —Z—). Then, given any ¢ > 0, there exist a solution u, to (1.1) on T and
t. € (0, &) such that

-1
lue Q) lgsery <& and  |u ()l gsry > 6.
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See also [38]. It is worthwhile to note that the regularity —% is higher than the
scaling critical regularity s.; = —% and that this norm inflation result for s < —%
also applies to the renormalized 4NLS (1.5) below.

In the next subsection, we introduce an alternative formulation for (1.1) such
that (i) it is equivalent to (1.1) in L?(T) but (ii) it behaves better than (1.1) in
negative Sobolev spaces. In the following, the defocusing/focusing nature of the
equation (1.1) does not play any role. Hence, we assume that it is defocusing, that
is, with the 4 sign in (1.1).

1.2. Renormalized cubic fourth order NLS. Given a global solution u €
C(R; L*(T)) to (1.1), we define the following invertible gauge transformation G
by
G (1) = ™" u(r)

with its inverse 4

G ) (@) == e u), (1.4)
where w(u) = f lu(x,t)|*dx := (1/2m) [ lu(x,t)|*dx. Thanks to the L*
conservation, j(u) is defined, independently of ¢ € R, as long as u, € L*(T).
A direct computation shows that the gauged function, which we still denote by u,
satisfies the following renormalized 4NLS:

idu=dlu+ |u|2—2][|u|2dx u
(x,nNeTxR. (L5

Ul;=0 = uo,

This renormalization appears as an equivalent formulation of the Wick
renormalization in Euclidean quantum field theory [4, 34, 35]. (By viewing
u as a complex-valued Gaussian random variables, the Wick renormalization of
|u|>u is nothing but a projection onto the Wiener homogeneous chaoses of order
three.) For this reason, we will refer to (1.5) as the Wick ordered cubic 4NLS in
the following.

In view of the invertibility of G on L?(T), we see that the original cubic 4NLS
(1.1) and the Wick ordered cubic 4NLS (1.5) describe equivalent dynamics on
L?(T). On the other hand, the gauge transformation G does not make sense
outside L*(T). Hence, they describe genuinely different dynamics, if any, outside
L*(T).

It is easy to see that this specific choice of gauge for (1.5) removes a certain
singular component from the cubic nonlinearity. Indeed, the nonlinearity on the
right-hand side of (1.5) can be written as

Nu) =N, u, u) := <|u|2 - 2][ |u|2dx)u
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=N, u,u)— R, u,u), (1.6)

where the nonresonant part N and the resonant part R are defined by

N ugus)e, )=y > @iy, Diia(na, Dtz (ns, )™, (1.7)

neZ n=nj—nz+n3
n#ny,n3

Ruy, uy, u3)(x, 1) = Zﬁl (n, Huy(n, Dz (n, t)e'™ . (1.8)
nez
Namely, the gauge transformation basically eliminates the contribution from n =
ny or n = nj. In the following, we choose to study the Wick ordered cubic 4NLS
(1.5). As with any renormalization procedure or gauge choice, we stress that this
is a matter of choice. See Remark 1.3.
We now state our first result.

THEOREM 1.1 (Global existence). Let s € (—2%, 0). Given uy € H*(T), there
exists a global solution u € C(R; H*(T)) to the Wick ordered cubic 4NLS (1.5)

with u|,—y = uy.

On the one hand, as in [36], one can easily prove local well-posedness of (1.5)
in L*(T) by a Picard iteration. On the other hand, it is easy to see that (1.5) is
mildly ill-posed in negative Sobolev spaces in the sense of the failure of local
uniform continuity of the solution map [15, 36]; see [15, Remark 1.4]. This in
particular implies that one cannot use a Picard iteration to construct solutions to
(1.5) in negative Sobolev spaces. We instead use a more robust energy method
to construct solutions. More precisely, we use the short-time Fourier restriction
norm method to prove Theorem 1.1. Here, the short-time Fourier restriction
norm method simply means that we use dyadically defined X**-type spaces with
suitable localization in time, depending on the dyadic size of spatial frequencies.
A precursor of this method appeared in the work of Koch and Tzvetkov [28],
where localization in time was combined with the Strichartz norms. The short-
time Fourier restriction norm method has been very effective in establishing a
priori bounds on solutions in low regularity spaces (yielding even uniqueness in
some cases), in particular, where a solution map is known to fail to be locally
uniformly continuous. See [10, 17, 21, 25-27].

Given T > 0,let F*(T) C C([-T, T]; H*(T)) denote the local-in-time version
of the X**-space adapted to appropriately chosen short-time scales and let N*(T)
be its ‘dual’ space. See Section 2 for their precise definitions. In establishing the
local existence part of Theorem 1.1, our main goal is to establish the following
three estimates:

Linear estimate: ||u ”FS(T) 5 ||Lt ”EJ(T) —+ ||m(u) ||N5(T)3 (1 9)
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Nonlinear estimate: @) | ws )y S ||u||;\(T), (1.10)
: . 2 2 4
Energy estimate: Nl Zs ey S Mol s + el by (1.11)

where E°(T) = L*([-T,T]; H°(T)). These three estimates yield an a priori
bound on (smooth) solutions in H*(T), which allows us to prove existence of
local-in-time solutions (without uniqueness) by a compactness argument. As we
see in the later sections, the short-time restriction adapted to the spatial dyadic
scales allows us to gain extra modulation (that is, smoothing) in the resonant case.
This in particular enables us to prove the trilinear estimate (1.10) below L*(T).

As for the global existence part, we employ the following H;,-norm adapted to
the parameter M > 1 defined by

I f e, = (M2 + 022 @)z

While the Hj,-norm is equivalent to the standard H*-norm, we have the following
decay property when s < 0:

Jim (1 f 1, =0

for all f € H*(T). This allows us to reduce the problem to a small data theory in
some appropriate sense. See Section 6.

As a corollary to the local-in-time a priori estimate established in the proof of
Theorem 1.1 for solutions to the Wick ordered cubic 4NLS (1.5) (see Remark 6.4),
we obtain the following nonexistence result for the original cubic 4NLS claimed
above.

COROLLARY 1.2. Lets € (—2%, 0) and uy € H*(T)\ L*(T). Then, for any T > 0,

there exists no distributional solution u € C([—T, T]; H*(T)) to the cubic 4NLS
(1.1) such that

(1) uli=o = uo.
(i) There exist smooth global solutions {u,},en to (1.1) such that u, — u in

C(-T,T]); D(T)) asn — oc.

In [19], the first author with Guo proved a similar nonexistence result for the
standard cubic NLS:
idu = 3u+ |ulu

in H*(T), s > —%, by first establishing an a priori estimate for solutions to the
following Wick ordered cubic NLS:

idu = 0%u + <|u|2—2][|u|2dx)u. (1.12)
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The main idea of the proof is to exploit the fast oscillation in the phase of the
inverse gauge transformation (1.4) and apply Riemann—Lebesgue lemma. See [19,
Section 9] for details. Note that our assumption in Corollary 1.2 is slightly weaker
than that in [19, Theorem 1.1], namely, the convergence in (ii) is assumed only
in C([—T, T]; D'(T)) but that the same proof applies since the only ingredient
needed from this assumption is the following convergence: (u, (-, 1), ¢ (-, 1)) 2 —
(u-,1), ¢ (-, 1))2 for any test function ¢ € D(T x [T, T]).

REMARK 1.3. By introducing another gauge transformation G, (u)(t) :=
e’y (t) with a parameter y € R, we arrive at a different renormalized

cubic 4NLS:
idu = du + <|u|2 —y ][ |u|2dx>u

= 3'u+ (lul* —y - co)u. (1.13)

As it was mentioned in [19] in the context of the cubic NLS, it is crucial to subtract
off the right amount of infinity in this renormalization procedure. It is easy to see
that (1.1), (1.5), and (1.13) are all equivalent in L?(T). In negative Sobolev spaces,
however, they are very different. In fact, the same nonexistence result in negative
Sobolev spaces holds for (1.13) unless y = 2, which shows that 2 - 00’ is the
right amount to subtract in the renormalization procedure.

REMARK 1.4. By applying our analysis with a parameter M > 1, we can extend
the local existence result of the Wick ordered cubic NLS (1.12) in [19] to global
existence (without uniqueness) in H*(T), s > —é.

Next, we turn our attention to the uniqueness issue of the solutions constructed
in Theorem 1.1. The main source of difficulty lies in establishing an energy
estimate for the difference of two solutions. The energy estimate (1.11) for
a single solution follows from an argument analogous to the /-method (the
method of almost conservation laws) [12, 13], which is ultimately based on the
conservation of the L%-norm for (1.5). The L%-norm of the difference of two
solutions, however, is not conserved under (1.5). Moreover, an estimate of the
form:

2 2 3 3
e = vligsry S @) — Oy + Nullps iy + N0l Il = vllp

https://doi.org/10.1017/fms.2018.4 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2018.4

GWP of the periodic cubic fourth order NLS 7

is false since it would imply smooth dependence on initial data and such smooth
dependence is known to fail in negative Sobolev spaces [15, 36]. In the following,
we establish an energy estimate for the difference of two solutions with the same
initial condition and thus prove uniqueness of solutions to the Wick ordered cubic
4NLS (1.5). Furthermore, our argument for proving uniqueness does not use
any auxiliary function space (in particular, we do not use the short-time Fourier
restriction norm method) and thus yields uniqueness in an enhanced sense.

THEOREM 1.5 (Global well-posedness with enhanced uniqueness). Lets € (—1,
0). Then, the Wick ordered cubic 4NLS (1.5) is globally well-posed in H*(T).
More precisely, the solution constructed in Theorem 1.1 is unique and the solution
map is continuous. Here, the uniqueness holds in an enhanced sense; the solution
constructed in Theorem 1.1 is unique among all the solutions in C(R; H*(T)) to
(1.5) with the same initial data equipped with smooth approximating solutions.

Here, we implicitly assume that these solutions belong to various auxiliary
functions spaces so that the cubic nonlinearity makes sense in some appropriate
manner. The point is that we do not need to know which auxiliary function space
each solution belongs to. Moreover, we assume that they satisfy the local-in-time
estimate: ||ullc,us S lluollgs for some T = T (JJug||g<) > 0. See Remark 8.19.

Note that our enhanced uniqueness does not assert unconditional uniqueness
in C(R; H*(T)), since we do assume that solutions with smooth approximating
solutions have some extra regularity so that the cubic nonlinearity makes
sense. (By slightly modifying the presentation in [18], one can easily prove
unconditional uniqueness of (1.1) and (1.5) in C(R; H*(T)) fors > é Clearly, the
threshold s > é is sharp in view of the embedding: H'/®(T) c L3(T) (in making
sense of the cubic nonlinearity). Recall also the nonuniqueness result by Christ [7]
of weak solutions in the extended sense in negative Sobolev spaces, where the
nonlinearity is interpreted only as a limit of smooth nonlinearities.) Instead, our
uniqueness statement should be interpreted as follows; given uy € H*(T), let
u be a solution to (1.5) with u|,—9 = uy constructed in Theorem 1.1 via this
particular version of the short-time Fourier restriction norm method. Suppose
that v is another solution to (1.5) with v|,—9 = u, constructed by some other
method, for example, by another version of the short-time Fourier restriction
norm method or by an adaptation of Takaoka and Tsutsumi’s argument [39] to
(1.5), where the definition of the X*’-space incorporates the initial data. (In a
recent paper [29], Kwak applied the ideas from [32, 39] and proved local well-
posedness of (1.5) in H*(T) for s > —%. On the one hand, this result extends
local well-posedness of (1.5) to the endpoint regularity s = —%. On the other
hand, the uniqueness in [29] holds only in (a variant of) the X**-space. When

https://doi.org/10.1017/fms.2018.4 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2018.4

T. Oh and Y. Wang 8

s > —%, the enhanced uniqueness in Theorem 1.5 allows us to conclude that the
local-in-time solution constructed in [29] agrees with our solution constructed
in Theorem 1.5 and hence is global. When s = —%, global well-posedness of
(1.5) is open. We also mention an analogous work by Miyaji and Tsutsumi [30],
prior to [29], on local well-posedness of the (renormalized) third order NLS in
negative Sobolev spaces, based on a variant of the X***-space incorporating initial
data.) In general, we do not have a way to compare these solutions belonging to
different resolution spaces. The enhanced uniqueness in Theorem 1.5, however,
asserts that # and v must agree. It is in this sense that our uniqueness statement
in Theorem 1.5 is enhanced since it allows us to compare solutions constructed
by different methods. It seems that this notion of enhanced uniqueness is one
of the strongest forms of uniqueness ‘in practice’. (Given a solution, it seems
reasonable in practice to assume that it comes with at least one sequence of
smooth approximating solutions.)

We stress that this enhanced uniqueness is by no means automatic since we do
not have a priori continuous dependence. (Our proof of continuous dependence
follows as a consequence of the uniqueness statement and the a priori bound
obtained in the proof of Theorem 1.1. See Section 7.) Let u, v € C(R; H*(T)) be
two solutions to (1.5) with the same initial data with some smooth approximating
solutions {u,},cn and {v,, }nen, respectively. Then, given T > 0, we have

e — vllc,ms <l —upllcpas + Nlun — Vnllerms + 1V — vlepas,

where CrH® = C([-T, T]; H*(T)). The first and third terms on the right-hand
side tend to 0 as n, m — oo. We, however, do not have any way to compare u,
and v,, in general, since we do not even know how these solutions # and v are
constructed. Nonetheless, our enhanced uniqueness in Theorem 1.5 allows us to
conclude that u = v.

In establishing an energy estimate for the difference of two solutions u and v
to (1.5) with the same initial condition, we perform an infinite iteration of normal
form reductions (= integration by parts in time. In fact, this process basically
corresponds to the Poincaré—Dulac normal form reductions. See the introduction
in [18].) In [18], the first author with Guo and Kwon proved unconditional
well-posedness of the cubic NLS on T in low regularity by performing normal
form reductions infinitely many times. See also [11]. (On the one hand, we
implemented an infinite iteration of normal form reductions in [11]. On the other
hand, symmetrization at each step played a crucial role in [11]. In this paper, we
will not employ such a symmetrization argument.) In our current setting, we do
not work at the level of the equation (1.5) unlike [18]. We instead implement an
infinite iteration scheme of normal form reductions for the evolution equations
satisfied by energy quantities. See (1.16) and (1.18) below.
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We first apply an infinite iteration of normal form reductions to a solution u €
C([—T,T]; H*(T)) to (1.5) and re-express u as

[@(n, 1) = [tto(n)* = Soo(u)(n, 1)

= N @, 1) + /l [ZR(j)(u)(n, )+ Y NP, z’)] dt,
j=2 o J0 j=I

j=2

(1.14)

where NV}’ (and RY) and N}”) are 2j-linear forms ((2j + 2)-linear forms,
respectively). (More precisely, for fixed ¢t € R, {J\/O(j )(n, t)},ez 1s a sequence of
2 j-linear forms. Equivalently, by viewing /\/Z)(j )(u)(n, 1) as the Fourier coefficient
of Nz)(j)(u)(t), we can view ./\/Z)(j)(~)(t) as a 2j-linear operator. With abuse
of terminology, however, we simply refer to /\f()(j ' as a 2j-linear form in the
following. A similar comment applies to R’ and N\”’.) Moreover, we show that
these multilinear forms are bounded in C([—T, T']; H*(T)), s > —%, uniformly
in n € Z. (In fact, we show that they are absolutely summable over n € Z.) See
Proposition 7.1 below for a precise statement.

Now, take two solutions u# and v to (1.5) constructed in Theorem 1.1 with the
same initial condition u|,—g = v|;—¢o = uy, satistying ||u||c, zs, |Vlcrms S luoll gs-
Then, with (1.5), we have

d 7 YR —_———
E“M(f) —v(®)|l3 = —2Rei Z(n)zs[/\/(u)(n) - N@)m]@n) —v(n))

nez
+2Rei Y (1) [R@)(n) — R@)m)][G@®) — 0(n))
nez
— I4+1L (1.15)

Let us only consider the second term II, corresponding to the resonant
contribution. Using (1.14) with u|,—o = v|,—9 = u, and (1.8), we obtain

@1 S | Y ) (@ 0OF — B, 0P ) @) — 20m)otn)
nez
< sup |Sec)(m, 1) — S (v)(m, )] - Z(n)zx () —v(m)|[v(n)]

nez

2
< Clluollg) llu = vlie, s

where we used the multilinearity of A", RY), and /\/l(j ) along with their
C([-T, T]H’(T))-bounds to control the first factor and Cauchy-Schwarz
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inequality on the second factor. As for the nonresonant contribution I in (1.15),
we expand it into a sum of infinite series analogous to (1.14) and obtain an
estimate of the form:

()] < Cllugll ) llu — Vg, e

See Proposition 7.2 and Section 8.6. This yields the desired energy estimate for
the difference of two solutions with the same initial condition.

Therefore, the main task is to prove the identity (1.14) with good estimates. We
achieve this goal by performing integration by parts in an iterative manner, which
introduces nonlinear terms of higher and higher degrees. While these nonlinear
terms thus introduced are of higher degrees, it turns out that they satisfy better
estimates. Namely, this infinite iteration of normal form reductions allows us
to exchange analytical difficulty with combinatorial and notational complexity.
In order to keep track of all possible ways to perform integration by parts, we
introduce the notion of ordered bi-trees. We devote Section 8 for presenting the
normal form reductions.

Finally, we point out the connection to the /-method. (The connection between
normal form reductions and modified energies in the /-method has already been
pointed out in [19].) At each step of integration by parts, we introduce boundary
terms. This corresponds to adding a correction term appearing in the /-method.
Namely, in the context of the /-method, our approach is nothing but to compute
and estimate a modified energy of an infinite order. (The highest order of modified
energies used in the literature is three in the application of the /-method to the
KdV equation [13], corresponding to two iterations of normal form reductions.)
For example, our argument yields the following infinite expansion of the H°-
energy for a single solution:

() = 1O =YY () Ng” w)(n. 1)

j=2 nez

+ /t [i D ROy (n, 1)
0

Jj=2 neZ

+ ) M @, ﬂ)} dr'. (1.16)

j=1 neZ

t
0

See (8.53) below. Namely, defining a modified energy E,(«) of an infinite order
by

Eoo() = llullfy = Y Y (m)* Ng” ) (m),

Jj=2 neZ
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we obtain

Eoo(u)(1) — Ecc(u)(0)

:/ [ZZ(H)ZSR(j)(u)(n,t’)—I—ZZ(n)h/\/}(j)(u)(n,t’)} dr’. (1.17)

t
0 . T
Jj=2 neZ j=1 neZ

While we do not need the modified energy E (1) in this paper, such an expansion
by adding an infinite sequence of correction terms seems to be new and of interest.

As for the difference of two solutions with the same initial data, while there are
contributions from the resonant part as well as the cross terms (I, and I,,, below)
in the nonresonant part, we also have a similar infinite expansion (with two factors
of u —v):

() = v (@)
= / {(qu(t/) - Iuv(t/)) - (Ivu(t/) - Ivv(t/))} dt/
0

- / 3 ) (Ga)(n.1) = G (W) (1, 1)) @y — 000, (1) ', (1.18)
0

nez

where the second term on the right-hand side involves a sum of infinite series in
view of (1.14). As for the integrands in the first integral, see (8.51), (8.53), (8.54),
(8.58), and (8.59), where each integrand is written as a sum of infinite series. See
Remark 8.20.

We conclude this introduction by stressing that reducing the H°-energy
functionals to the infinite series expansions (1.16) and (1.18) (also see (1.17)) is
the main novelty of this paper. In the proof of Theorem 1.5, we use the infinite
series expansion (1.18) for the difference of two solutions with the same initial
data to prove uniqueness of solutions to (1.5). In [33], (a variant of) the infinite
series expansion (1.16) for a single solution plays an important role in establishing
a crucial energy estimate in studying the transport property of Gaussian measures
on periodic functions under the flow of 4NLS (1.1). See Remark 1.6. We hope
that this idea of expanding energy functionals into infinite series by normal form
reductions can be applied to other equations in various settings.

REMARK 1.6. In a recent work [33], the first author with Sosoe and Tzvetkov
established an optimal regularity result for quasi-invariance of the Gaussian
measures on Sobolev spaces under the original 4NLS (1.1) by implementing
a similar infinite iteration of normal form reductions on the H*-functional for
solutions to (1.1) for s € (%, 1). While there are similarities between the normal
form approach in [33] and in Section 8 of this paper, more care is required
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in the present paper since we need to gain derivatives at each step of normal
form reductions in order to estimate the multilinear forms N, (u), R (x), and
/\/f’ (u) of arbitrarily large degrees in terms of the negative Sobolev norm of u.

REMARK 1.7. Recall that the mean-zero Gaussian white noise on T is formally
given by

du=2Z"'e V052 g,

In particular, a typical element under u is given by

P7(xX) = p(x; 0) = Y _ gu(@)e™, (1.19)

nez

where {g,},cz 1S a sequence of independent standard complex-valued Gaussian
random variables on a probability space (£2, F, P). (In (1.19), we dropped the
harmless factor of 27r. The same comment applies to the remaining part of this
paper.) From (1.19), it is easy to see that ¢ in (1.19) lies in H*(T) \ H~Y?(T),
s < — % almost surely. In particular, the regularity of the white noise is below the
regularities stated in Theorems 1.1 and 1.5.

In view of the L?-conservation for (1.5) and the Hamiltonian structure of the
equation, one may expect that the white noise is invariant under the dynamics of
(1.5). In [37], the authors with Tzvetkov proved that this is indeed the case. The
main difficulty in [37] lies in constructing local-in-time dynamics with respect
to the random initial data (1.19), which was overcome by a combination of
new stochastic analysis and deterministic analysis different from the analysis
presented in this paper.

REMARK 1.8. We can also start our discussion with the more general cubic fourth
order NLS (1.2) with u # 0 and consider its renormalized version. In this case,
the following phase function

Gru(A) = =00} = n3 +n = 0%) o (i} = n3 o+ 0§ = n)

= (n1 — na)(n1 — M{=2x + pu(nj +n3 + n3 + n’ + 2(n + n3)*)}
(1.20)

plays an important role in the analysis. Compare this with (2.4).

If the last factor in (1.20) does not vanish for any n,, n,, n3,n € Z, then the
main results in this paper clearly hold with the same proofs. Note that even if
the last factor may be 0, that is, 2A € uN, the new resonance occurs only for
low frequencies, where max(n?, n3, n3, n*) < A/u, and hence the same argument
basically holds.
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This paper is organized as follows. In Section 2, we introduce notations and
the function spaces along with their basic properties. In Section 3, we present
multilinear Strichartz estimates, which are then used to prove the crucial trilinear
estimate (1.10) and the energy estimate (1.11) in Sections 4 and 5, respectively. In
Section 6, we present the proof of global existence (Theorem 1.1). In particular,
given any T > 0, we choose M = M(T) > 1 such that the estimates (1.9)—
(1.11) adapted to the parameter M allow us to construct solutions on the time
interval [—T, T']. In Section 7, by assuming the key propositions (Propositions 7.1
and 7.2), we prove uniqueness of solutions to (1.5) in H*(T) for s > —%, which is
then used to establish continuous dependence on initial data and thus global well-
posedness (Theorem 1.5). In Section 8§, we present details of the normal form
reductions and prove Propositions 7.1 and 7.2.

2. Notations, function spaces, and their basic properties

2.1. Notations. Fora,b > 0, we use a < b to mean that there exists C > 0
such that a < Cb. By a ~ b, we mean that a < b and b < a. We also use a+
(and a—) to denote a + ¢ (and a — ¢, respectively) for arbitrarily small ¢ < 1.

Given a function # on T x R, we use & and F () to denote the space—time
Fourier transform of u given by

un, ) = / e e Ty (x, 1) dx dt.
TxR

When there is no confusion, we may simply use u or F () to denote the spatial,
temporal, or space—time Fourier transform of u, depending on the context. In
dealing with the spatial Fourier transform, we often denote u(n, t) by #,,(1).

For k € Z>o := Z N [0, 00), we define the dyadic intervals [, by setting I, =
{€ 1 |€] < 1}and I, = {£ : 271 < |&| < 2F} for k > 1. Next, we define the dyadic
intervals I, k > log, M, adapted to a given dyadic parameter M > 1, by setting

Iy, k > log, M,
IkM — Jlog, M

U I, k=log, M.

k=0

For simplicity, when k = log, M, we set

M _ M
Ilow - Ilog2 M

In the following, all the definitions depend on this dyadic parameter M > 1. For
convenience, we set
Zy = ZN[log, M, 00).
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Fork € Zy and j > 0, let
D,ff’jz{(n,r)EZxR: nel t+n*el;)

and D} ; = |, <; D};,. We also define D; by Dg; = Uz, Di'<;-

For k € Zy;, we use P, to denote the projection operator on L?(T) defined by
ﬂ(n) =1 M (n)u(n). Note that Piog, i is the projection onto ‘low’ frequencies
{In| < M}. With a slight abuse of notation, we also use P, to denote the projection
operator on L?(T x R) given by F(Pyu)(n, t) = llkM (n)F (u)(n, ). We also set

ng = Z Pg and P>k = ZP@

log, M <<k >k

Let ny : R — [0, 1] be an even smooth cutoff function supported on [—%, %
such that ny = 1 on [—%, %]. We define n by n(§) = no(§) — no(2£), and set
m(§) = n(27%) for k € Z. Namely, n; is supported on {2 - 2671 < [§] < £ -2k},
As before, we define n¢; = Zzgk ¢, and so on.

Given a set of indices such as j; and k;,i =1, ..., 4, we use j* and k to denote
the decreasing rearrangements of these indices. Also, given a set of frequencies
n;, i =1,...,4, weuse n; to denote the decreasing rearrangements of |n;|,i = 1,

.4

In the following, we use S(t) = e~i"% to denote the solution operator to the
linear fourth order Schrodinger equation: i d,u = 8*u. Namely, for f € L*(T), we
have R

S(t)f — Zeinxfin“tf(n)'
nez

In performing normal form reductions in Section 8, we use the following
interaction representation u (of #) on T x R:

u(t) := S(=Hu(t) = e u(r). 2.1)

On the Fourier side, we have U, (1) = €%, (1), n € Z. With this notation, (1.5)
can be written as

o0, =—i y e G, 0,4, + i, s,
I'(n)
=: =i N(u),(t) + i R(w), (), (2.2)

where the plane I (n) is defined

I'(n) ={(ny,ny,n3) €Z’: n=ny, —ny +nsand ny, n3 # n} 2.3)
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and the phase function ¢ (1) is defined by

¢ (n) = ¢(ny,ny,n3,n) = n‘f - n;‘ —f—ng —nt
= —(n —n)(n —n3)(n7 + n3 +n3 +n’ 4+ 2(n + n3)?). (2.4)

Here, the last equality holds under n = n; — n, + n3. See [36, Lemma 3.1].
We also recall the phase function w(77) for the usual Schrodinger equation:

w(@it) = —n} +n; —nj +n’
= 2(ny —ny)(ny —n3) =2(n — ny)(n — n3), (2.5

where the last two equalities hold under n = ny; — n; + n;.

2.2. Function spaces and their basic properties. Recall the definition of the
standard Sobolev space H*(T):

1f s = 1) F)llez,

where (-) = (14| -1*)"2. Given M > 1, we define the H;,-norm adapted to the
parameter M > 1 by

1 f 1l = (M + 02 F )2

Clearly, the Hj,-norm is equivalent to the standard H*-norm. When s < 0,
however, it follows from the dominated convergence theorem that

Jim | f g, =0 (2.6)

for all f € H*°(T). This decay property (2.6) plays an important role in our
analysis.

Next, we define our solution space adapted to this parameter M > 1. In [3],
Bourgain introduced the dispersive Sobolev space X**(T x R) via the norm:

lullxsecrxmy = [1{n)*(t +”4)bﬁ(n, T)||e§L§(ZxR) = ||<ax>x(at>bu”L2('ﬂ'><]R)y 2.7

where u is the interaction representation defined in (2.1). The Fourier restriction
norm method, utilizing the X**-spaces and their variants, has been very effective
in studying nonlinear evolution equations in low regularity settings. In the
following, we consider the X*’-spaces adapted to short-time scales and the
parameter M > 1. When M = 1, these spaces were introduced by lonescu
et al. [21] in the context of the KP-I equation. Also, see Christ et al. [10] and
Koch and Tataru [26, 27] for similar definitions. While we state some basic
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properties of these function spaces, we refer readers to [19] for the details of
their proofs.
Fix M > 1. For k € Z,;, we define the dyadic X**-type spaces X by

Xyr = {fk € L*(Z x R) : fi(n, 7) is supported on [} x R

and [ fils = 32720y (¢ + ) fuln, Dlgiz < oo}.

Jj=0

Then, the following properties hold for X, ., kK € Zj (with implicit constants
independent of M > 1):

(i) We have

/|fk(n7 T)ldr
R

S Willxy, and /Ilgk(n,f)llzg dt S I fellxu
R

&
for all f, € Xy 4, where g, (n, 1) = fi(n, T —n*).

(ii) Fork, £ € Zy and f; € X;, we have then

Z 212 (x +n4)/ | filn, TH1 27 A + 279 — 't
j=t+1 R 212
+ 2% n<e(t +n4)/ | fen, TH 27 A + 27 — ') dr’
R 4Ll
S il xangs (2.8)

where the implicit constant is independent of k and ¢. See [17] for the proof.
(iii) As a consequence of (ii), we have

IFIy Q¢ —10)) - F () llxus S W fellxuns 2.9

fork, ¢ € Zy, ty € R, fy € Xyi and y € S(R), where the implicit constant
in (2.9) is also independent of &, £, and .

Next, we consider the time localization of the X, ;-space onto the time scale
~ 271*kl ‘where @ > 0 is to be determined later. Here, [x] denotes the integer part
of x. For k € Zy we define the spaces Fy; , and Ny , by

Fy = {u € L*(T x R) : @(n, t) is supported in I x R
and Jlull g, = sup | Flno@e = 1) -ul . < oo},

neR
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Ny = {u e L*(T x R) : #(n, t) is supported in I,f” x R and

lullyg,, = sup || (x +n* 4+ 2D Fno QM@ — 1)) - ul|| s < oo}.
neR ’
Given T > 0, we define the time restriction spaces Fy, ,(T) and Ny, ,(T) by

Fino(T) = fu e CO=T. T8 LX) < Nl 0y = inf il .

U=uonTx[-T,T]

Ny (T) = {M € C([-T.T]; L*(T)) : lullwe, ) = - Oni%le[_T - ||ﬁ||zvg4_k}-
Here, the infimum is taken over all extensions i € Co(R; L*(T)).

We finally define our solution space F,,“(T) and its dual space Nj,*(T)
by putting together the dyadic spaces defined above via the Littlewood—Paley
decomposition. For s € R, « > 0, and T > 0, we define the spaces F,,"(T)
and N,,"(T) by

. 2 2ks 2
Fy*(T) = {u.uunW) i <oo},

kEZM

2k: 2
Z 27N Peuellye 7y < oo}.
kEZM

N(T) = {u : ||u”f2\’3'4(T>

Here, « = a(s) > 0 is a parameter to be chosen later. See Section 2.4. When
M =1, we simply drop the subscript M from the function spaces and use F*“(T),
and so on.

In order to handle the short-time structure embedded in the definitions of
F,,*(T) and N,;*(T), we define the corresponding energy space E},(T') by

N,y =Y, sup 2 Peac(t) 132, (2.10)

keZy twel-T,T]

foru e C([—T, T]; H*(T)). While the definition of E3,(T) dependson M > 1,
itis independent of the parameter o > 0. This space is essentially the usual energy
space C([—T, T]; H;,(T)) but with a logarithmic difference. See Section 2.3.

We conclude this subsection by recalling some basic lemmas from [19]. While
these properties are stated and proved for M = 1 in [19], a straightforward
modification yields the corresponding statements for M > 1 (with implicit
constants independent of M > 1). In the following, we fix M > 1 and o > 0.

The first lemma shows that a smooth time cutoff supported on an interval of
size ~ 27" acts boundedly on Ny, .
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LEMMA 2.1. Letk € Zy, t; € R, and y € S(R). Then, we have
I(x +n*+i2 ) Fly @4 — 1)) - -F_I(fk)]HxM,k
S +nt + 2N fillx,,,

for fi supported on I x R. Here, the implicit constant is independent of M, «,
k, and ty.

The second lemma shows that F*- and F*“-norms control the supremum in
time (of the appropriate spatial norms).

LEMMA 2.2. (i) Let u be a function on T x R such that suppu C IM x R,
k € Zy. Then, we have

lullerz < Nullrg, -
Similarly, we have
IF " Inei (@ +nYa )l ere S Nullrg,, (2.11)
forany j € Z. Here, (2.11) also holds when we replace n¢; by n; or n- ;.

(i) Lets €e Rand T > 0. Then, we have

sup Nu(llay, < el ey ey
1e[~T,T]

In the following, we define the corresponding function spaces with the temporal
regularity b. For k € Zy and b € R, define X%, , by

o

1 fillxs,, o= Y27 I + ") fi(n, Ol

j=0

for f; supported on I¥ x R. Note that X, = X }fk Then, we define the spaces
FAb/j( and F};"*(T) with X%, 1 just as we defined Fy; , and F**(T) with X .

The following lemma allows us to gain a small power of time localization at a
slight expense of the regularity in modulation.

LEMMA 2.3. Let T > 0Qand b < % Then, we have
||Pku||p;4-_ﬂk S 711/27[77||PkM||FﬁM

for any function u supported on T x [—T, T].
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The following lemma shows that the multiplication by a sharp cutoff function
in time is ‘almost’ bounded in X .

LEMMA 2.4. Letk € Zy. Then, for any interval I = [t1, t,] C R, we have

sup 272||n; (¢ + n)FIL () - Pl gz S IF Pran) lxy,»

X n=t N
JE€L>0

where the implicit constant is independent of M, k and 1.

Finally, we state a linear estimate associated with the fourth order Schrodinger
equation.

LEMMA 2.5. Let T > 0. Suppose that u € C([—T, T]; H*(T)) is a solution to
the following nonhomogeneous linear fourth order Schrodinger equation:

idu—dlu=v onTx (=T, T),
where v € C([—T, T]; H*(T)). Then, for any s € R and o > 0, we have

Nl pse < Nulles,ry + IVl wse ry.

2.3. On the energy space. As pointed out above, the energy space Ej, (T)
defined in (2.10) is essentially the usual energy space C([—T, T']; H;,(T)) but
there is a logarithmic difference that we need to handle. In this subsection, we
introduce a sequence {ay, }x,ez, Of symbols that allows us to control the E},-norm.
Similar symbols have been used in [26, 27].

Fix ky € Zy,. For sufficiently small 6o = 8¢(s) > O (to be chosen later. See

Proposition 5.2 below), we define a symbol a,?u on R by setting

] 2% }50

% T (2.12)

al &) = | min{

for [£] = 2" with k € Zy and we extend the definition of ;) onto R by linear

interpolation. As for the choice of §; > 0, see Proposition 5.2 below. In particular,

it is constant on [—M, M. As it is, a,?o is not smooth and thus we need to smooth
1t out.

Let ny : R — [0, 1] be a smooth cutoff function with ny(§) = 1 for |§] < % and

= 0for || > % as above. Then, choose ¢, > 0 such that f cono(€) dé = 1. Given

k € Zy, we define a symbol g, in a neighbourhood of a dyadic point 2* by
ar, (§) = (ag 6 (E) onJe:={§ e R: g —2"| <24,

where 6, (&) = (10cy/2%)n0((10/2%)&). For & ¢ Ukez,, Ji» we set ag, (§) = a,?o(é).
Then, the symbol a,, satisfies the following properties:
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(i) For y =1, 2, we have
18] ak, ()] S ary (§) - (M* + €377, (2.13)
(i1) For |&| < M /2 and k, € Z,;, we have
iy (§) = a, (0) ~ M>+h027%k, (2.14)

(iii) For & € IM, we have
ako (%-) ~ 22ks2730|k7k0\ .

As a consequence of (ii) and (iii), we have, for |&]| ~ |&'],

a, (§) ~ ay, (§). (2.15)

Next, we define a sequence {Ey, }x,ez, Of energy functionals by

Ei, () (1) = (a,(D)u(), u(0)) 2 = Y ag, ()|ii(n, ). (2.16)

nez
Then, from (2.12) and (2.15), we have
25 Py () 1320y S Eig () (0). (2.17)
In particular, from (2.10) and (2.17), we have
Ny S D sup Eig()(tiy) (2.18)
ko€Zm tkOE[—T,T]

for any T > 0. In Section 5, we establish the desired energy estimate (1.11) by
estimating Sup,, er-r.71 Exo () (ti) in a summable manner over kg € Zy,.

2.4. On the choice of «. In Section 2.2, we defined the function spaces
Fy,*(T) and N, (T) depending on a parameter & > 0. In this subsection, we
provide a heuristic discussion on how to choose o > 0. In fact, we choose the
smallest @ > 0 so that a solution to (1.5) localized around the spatial frequencies
{In| ~ 2%} behaves like a linear solution up to time ~2~*, Namely, 27 is the
first time scale on which the nonlinear effect becomes visible. In the following,
we set M = 1 for simplicity.

Fix s < Oand k € Zs. Let f € L2(T) with supp f C I such that || f| = = 1.
Then, we have || f||,2 ~ 27, Let u be the (smooth) solution to (1.5) with u|,_y =
f, satisfying the following Duhamel formulation:

u(t) =S f — i/ St —HNw) (@) dt,
0
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where 91(u) is the nonlinear part of (1.5) defined in (1.6). We investigate the
largest time scale T such that u(t) ~ S(t) f on [0, T]. By the standard X**-
estimates and the L*-Strichartz estimate (1.3) as in [36], we have

/ St — tHYNw) () dt’
0

‘ / St — tHNw) (@) dt’
0

S
0,1/2+
LYL2 Xy

< Mulull o1

= sup / U|M|2udxdt
Ivllgo.12-=1 | JTx[0,T]
3
= sup vl llull;.
llvll40,1/2-=1 wT x.T
ST Null e
T

By making a heuristic substitution u(¢) &~ S(¢) f,
5 T3/4_||f||iz ~ T3/4_2_3ks.

Here, X" denotes the local-in-time version of the X*’-space restricted on the
time interval [0, T']. This shows that the solution u basically propagates linearly
on the time scale T if T3/47273% « 2% thatis, T < 2~% with

a:—?—l-e (2.19)

for some small ¢ > 0. Indeed, the condition (2.19) on « naturally appears in
establishing the crucial trilinear estimate. See Section 4.

3. Strichartz and related multilinear estimates

In this section, we state and prove certain multilinear Strichartz estimates.
While the basic structure of the argument follows closely that in [19], we obtain
stronger estimates with simpler proofs thanks to the stronger quartic dispersion.

Recall the following periodic L*- and L°-Strichartz estimates:

lullcs, crxmy S llulixosne  and  [IS@P Lo, rxmy < Cell 7Nl (3.1

for any ¢ > 0, where ¢ is a function on T such that suppa is contained in an
interval / of length |/|. These estimates are essentially due to Bourgain [3].
See [36] for the proof of the L*-Strichartz estimate. The LS-Strichartz estimate
follows from the algebraic identity (2.4) and the divisor counting argument as
in [3].

By the Galilean transformation and the transference principle, we have the
following estimate; if we assume that supp C D¢; N (I x R) for some interval 7,
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then we have
lull s, < ClTI27 a2, (3.2)

for any ¢ > 0. As a corollary to (3.1) and (3.2), we have the following lemma.
See [19] for the proofs.

LEMMA 3.1. Let uy, j, be afunction on T x R such that suppuy, ;, C D/ ;.. Then,
we have

4
ST T2 1F i) ez (3.3)
i=1

/ Uky, ji Uky jo Wks, jsUky. s dxdt
TxR

4
S22 T[22 F i)l (34)

i=1

/ Uky, ji Uky, jo Wks, jsUky. s dxdt
TxR

forany ¢ > 0. Here, jI and k} denote the decreasing rearrangements of j; and k;,
i=1,...,4

As in [19], we can refine the analysis and obtain the following multilinear
estimates.

LEMMA 3.2. Let u; be supported in D/Z{gj,-’ i =1,2,3. Suppose that 25 > M.
Then, the following estimate holds:

3
PN (uy, us, us)ll2, < 2k }2}2{(1 + 2'i[2kf)1/22j'/2}<1_[ 2ji/2||f(ui)”L’EL%)a
' i=1

(3.5)

Here, N'(u,, u», u3) is the nonresonant part of the nonlinearity defined in (1.7).

The proof of Lemma 3.2 is analogous to that of [19, Lemma 5.3]. Note that,
thanks to the stronger dispersion, we do not need frequency separation which was
assumed in [19, Lemma 5.3].

Proof. Let f; =u; fori = 1,3 and f; = u; for i = 2. By duality, we have

LHS of (3.5)

4
= sup / Z l_[f,-(n,-,t,-)dr] dr,dt;. (3.6)
T1—0+13—14=0

\|f4HL2;‘ ni—na4nz—nsy=0 i=1
supp faCli, xR n1#ny,ng
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For simplicity of notations, we drop the supremum over f; in the following. Note
that, under the assumption 2K > M, we have

nt o~ 24,
See Remark 3.4 below.

e Case (a): |ny| < 28,
Under n, — n, + n3 — ny = 0, we have max{|n.|, |ns|} ~ 25. With g;(n, 7) =
fi(n, T — n*), we have

6.6 < [ 3 lgstnsmol 3 lgstor, wllgatm, )

ny,nz

X |g3(=ny + ny + ng, h3(ny, ny, ny, 7, 7o, w))ldridndrn,  (3.7)
where h3(ny, ny, nyg, 71, 72, 74) is defined by
hy(ny, na, ng, Ty, T, Ty) = —T1 +r2—|—r4+n‘l‘—n‘2‘—nﬁ+(—n1 +n, +n4)4. (3.8)
For fixed ny, ny, 71, 72, and 14, define the set E3; = E3(ny, ny, 71, 72, 74) by
Ex = {ny € Z: h3(ny, ny, na, 71, 1o, 74) = O(27)).
Since n; # n4, we have
180,713 = 4] — 13 + (—ny + ny + n4)’|
= 4|(=n1 4 na) (3 + na(=ny + ny 4 na) + (=1 + ny 4 n4)*)|

> max{n3, n3} ~ 2%,
where the second to the last step follows from completing a square:
n% + nons + n§ = (n, + %l’l3)2 + %ng = %n% + (%nz + n3)%
Hence, we conclude that
|Ex| S 1428724, (3.9)

Now we are ready to estimate (3.6). By Cauchy—Schwarz inequality in n,, ny,
ng4, we obtain

(B.7) S (142872172 f D lgalna, w)| Y lgin, r1)|(2 |82(n2, )’

12
X |g3(=ny + ny + ny, hs(ny, ny, ng, 71, 7o, ‘54))|2) dridr,dty
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S22 (14257 gy (e, w)lp, 12,

X sup / g (nr, T)lle, (Z |g2(n2, )
ng ny

12
2
X Z llg3(—ny + ny + ng, hs(ny, ny, ny, 71, 7, T4))||Lg4) dt, dt,.

ni

Noting that /5 is linear in 74, and applying Cauchy—Schwarz inequality in T,
and 15,

2 4
<ML (1 4 2]3—2k1)l/2< [ ey e, > ( I1 I8i: ez, L§i2>
i1=1 ir=3

3
< ka/2 (1+ 2j3—2k7)1/22—j3/2 1_[ 2ji/2||ﬁ||e%L%,

i=1

yielding (3.5). Note that even if we replace the role of n, and n;, the same
argument still holds with a factor (1+2/1~21)!/22=/1/2, The same comment applies
to Cases (b) and (c).

e Case (b): |n,| ~ 2% (A similar argument applies to the case |n3| ~ 2%.)

In this case, we have max{|n,|, |n3]} ~ 24 and thus (3.9) holds. Then,
proceeding as before, we have

(3.7) < (14257212 / Y lgi, )l Y Iga(n, r4)|<Z |82(n2. T2)

12
X |g3(=ny + ny +ny, h3(ny, ny, ng, 7, T, T4))|2) dvidt,dt,
S22+ 2j32k')1/2/ g1 (ni, 'ﬁ)”zg1 dti||g4(na, T4)||454L$4

X SUP/ (Z|g2(”12,‘52)|2

ni,Tt

1/2
2
X Z lg3(—ny + ny + ng, hs(ny, ny, 0y, 71, 7, t4))||L%4) dr,.

ny

The rest follows as in Case (a).
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e Case (¢): k, = kj.
In this case, we have max{|n;|, |ns3|} ~ 2. For fixed ns, n4, 71, 7, and 7,
define the set E31 = E31(l’l2, ng4, 71, T, T4) by

Esi ={n € Z: hy(ni, na, ng, 71, o, 7a) = 0(27)},
where /5 is as in (3.8). Note that
|0, ] = 4|n3 — 4(—n; + ny + ny)?|
=4|2n) — ny — ny)(n} 4+ ny(—ny + ny + ny) + (—ny +ny +n4)?)|
~ |y —ns| - 2%,

If ny = n3, then we have n; = (n, 4+ ny4)/2. Namely, n; is uniquely determined for
fixed n, and ny and hence we have |E3 | = 1. Otherwise, we have |, h| > 2%,
Therefore, we conclude that

|Es| S 14257,

Then, proceeding as before, we have

(3.7) < (14257212 / Y 1ga(na, Tl Y Iga(na, Tz)|<Z l81(n1. 7))
ng ny ni
12
X |g3(=ny + ny +ny, h3(ny, ny, ng, 7, 7o, T4))|2) dridrndt

S22+ 2j32kf)1/2/  g2(n2, 1’2)”552 d1,||g4(na, T4)||e,%4L$4

X sup/ (Z|81(’11,T1)|2

n2,m

12
2
X Z lg3(=ny + ny + ng, hs(ny, ny, 0y, 71, T, f4))||Lg4) dr,.

ny

Then, the rest follows as before. OJ

As a corollary to Lemma 3.2, we obtain the following multilinear estimates by
further assuming j; > [ak{],i =1,2,3,and « € [0, 2].

LEMMA 3.3. Let a € [0, 2]. Let u; be a function on T x R such that suppu; C
Dl?,-d,jz and 2% > M. Suppose that ji, j», j5 > [ak}]. Then, we have

4
Ny, wy, u3) - Ty dx di| S 2712070k =0DE T 202 F () | o

‘ TxR i=1

(3.10)
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When j, > j, by noting that 27/#/2 < 27/i/2 the desired estimate (3.10)
directly follows from Lemma 3.2. When j; < j;, we first rewrite the left-hand
side of (3.10) as

N (uy, uy, us) -y dx dt
TxR

N(uilv uiz’ ui3) . ﬁu d.x dt s

‘ TxR

where (iy, i, i3, 14) = (2,3,4,1), 3,4, 1,2), or (4, 1, 2,3) such that j;, 2> j;.
Then, (3.10) in this case also follows from Lemma 3.2.

REMARK 3.4. The assumption 251 > M is necessary in Lemmas 3.2 and 3.3.
In fact, when 2 = M, we only know that n} belongs to the interval 7} but it
is possible to have n* « 24 = M. We also point out that Lemmas 3.2 and 3.3
also hold under an alternative assumption: n} ~ 2% This observation plays an
important role in the energy estimate in Section 5, where we apply symmetrization
to eliminate the contribution from the low frequencies {(n;, ny, n3, ny) : n} <

M/2).

We conclude this section by stating a multilinear estimate when there is a gap
between the two largest (spatial) frequencies and the rest.

LEMMA 3.5. Let a € [0, 2]. Let u; be a function on T x R such that suppu; C
D} .. Suppose that ks, ks < k3 — 10, ju, jo, j3 = [ak}], and 277 > |§()|, where
¢ (n) is the phase function defined in (2.4). Then, we have

4
S A-TT2 21 F @l 3.11)

i=1

N (uy, uy, u3) - iy dx dt

‘ TxR

where A is given by

e 2-UDCHOR /K2 if ks — fy] = 2,
2~ (/DG Heki+k5/4 otherwise.

Proof. First, we consider the case |ks — k4| > 2. Then, we have j; > 3k7 4+ k5 =35,
since | ()| ~ |(ny — n3)(n3 — ny)|(n)* ~ (n})*|n3 — ny| ~ 2°*7|n3 — ny|. Then,
(3.11) follows from Lemma 3.3. Here we used n* ~ 2% and nj ~ 2% which was
implied by the assumption 251 > 25 > 28 > M.

Next, we consider the case |k; — k4| < 1. We separately estimate the contri-
butions from the following two cases: (a) |13 —n4| > 25/2 and (b) |n3—ny| < 2572,
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In Case (a), we have j; > (3/2)kj + k5 /2 — 5. Then, Lemma 3.3 yields
4
LHS of (3.11) < 27 W/2CHM o84 TT 202 | Fup) a2 (3.12)
i=I

In Case (b), we write I, = {J, Ji,.i = 3,4 where |J,,| = 25/2 Then, if ns € J,
for some ¢, there are only O(1) many possible values of £, = €4(¢3) such that
ny € Jy,. Then, by writing

2.2.=2. ) 2 )

n3  n4 U3 La=L4(L3) n3E€Joy na€ly,

and repeating the previous argument for each £3, we only lose |J;,|'/? = 2k/4
by applying Cauchy—Schwarz inequality in n3 or ny at the end. Finally, applying
Cauchy—Schwarz inequality in £3, we obtain (3.12). 0

4. Trilinear estimates

In this section, we prove the crucial trilinear estimate for the Wick ordered cubic
4NLS (1.5). This establishes the nonlinear estimate part (1.10) of the short-time
Fourier restriction norm method.

PROPOSITION 4.1. Lets € (—29—0, 0) and T > 0. Then, with o = —8s/3+, there
exists 6 > 0 such that

3
0
IV Gar. iz, us) sy + IR G uzs un)llwsery S 0 sl e cry.

i=1

where N (uy, ua, us) and R(uy, ua, us) are as in (1.7) and (1.8).

The proof of Proposition 4.1 is analogous to the proof of the trilinear estimate
for the Wick ordered cubic NLS (1.12) considered in [19]. More precisely,
we prove Proposition 4.1 by first applying the dyadic decomposition and then
performing case-by-case analysis on different frequency interactions. For readers’
convenience, we first summarize the size estimates on the phase function ¢ (1)
defined in (2.4) in various frequency regimes under the nonresonance assumption

{n1, n3} # {n,ny}:
(i) If |n| ~ |n3| > |ny], |nal, then

g ()| ~ (07 |n2 — nil. 4.1
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(ii) If [n| ~ [na| > |ny|, |ns], then
lp ()| ~ ()" (4.2)
(i) If [n| ~ [no| ~ |n3| >> |n,], then
¢ ()| ~ (n})*. 4.3)

These size estimates immediately follow from the factorization in (2.4). Note that
the conditions (i)—(iii) hold under the symmetries n; <> n3 and n <> n,, and {n,,
n3} <> {n, n,}, respectively. Recall that we have 28 > M,i =1, ..., 4.

In the following, by assuming that u; has the Fourier transform supported on
I, x R, we prove trilinear estimates for different frequency interactions. We
first consider the case when the output frequency is high (relative to the input
frequencies). In particular, this also includes the case when all the frequencies are
low.

LEMMA 4.2. Leta > 0. If ky > ki — 5, then we have

3
— G/ a—ok}
PN (uy, ua, us)llng,, + 1P Ry, uz, us)llng, <2 B/ (@—e)k] l_[ il g,
i=1

4.4)

forany e > 0.

In view of (1.8), there is no contribution from the resonant part R (u, u,, u3)
except for the case: 2K ~ 2K which is treated in Lemma 4.2. Lemma 4.2 also
handles the low frequency case: 261 < M. The proof of Lemma 4.2 closely follows
that of [19, Lemma 6.2]. We present the details for readers’ convenience.

Proof. Lety : R — [0, 1] be a smooth cutoff function supported on [—1, 1] with
y =1on[—1, 1] such that

Zy3(t—m)zl, t e R.

mez

Then, there exist ¢, C > 0 such that

o2 — 1)) = oMt — 1)) Y Y @G — 1) —m)

Im|<C

and
no(z[akijt) . y(zlaki‘Hct) — y(zlakTHct) 4.5)
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fori = 1,2,3. Let f;, = FlyQe™(t —,)) -wl, i = 1,3, and fi, =
Fly QEkie(t — 1,)) - us]. Then, it follows from the definition and Lemma 2.1
that

LHS of (4.4) < sup [[(r +n* + 271, (0)(fi, * foo * fi) s,

tk4E]R
< sup Z 0Js/2 Z (27 4 lekily=1
J4—0 JisJ2s j3Zloks]
X 10%‘/4 . (fkl,jl * sz,jz * fk3,j3)||l%L%a (46)

where f(n, )= f(—n,—7)and f, ;,i = 1,2, 3, is defined by

f(n, T (t +n*) for j; > [aky],
fki,j,‘(ni T) = ' ' 4 .
S (, ONgarg (t + %) for j; = [aky].

Using the fact ID%, < 1pw _ -, we have
4-J4 ‘4 J4

(4.6) < sup ( Z Z >2j4/2
Ty €R ja<loks]l  ja[okal
XY @2 gy fi ok Fo # fiusllae
Dy jy k10 2.2 3,3 1162 L2
Juoj2, j3=laks]
< sup Z 2l Moy - iy * fraip * fro i) llge

t,eR . T
KSR i o jasja>laks)

o ~
Ssup sup D 27| L < ki * S * o) ez
Uy R ALkl > lakal v

4.7
Then, (4.4) follows from (3.3) in Lemma 3.1 and (2.8) with (4.5). ]

REMARK 4.3. In the proof of Lemma 4.2, we used the L*-Strichartz estimate
(3.3) in Lemma 3.1. We point out that the multilinear Strichartz estimates in
Lemmas 3.2 and 3.3 do not yield a better bound in this case. Consider the case:
high x high x high — high. Then, applying Lemma 3.3 to (4.7) yields a bound
with a constant ~2*+1/2+k " which is worse than the constant 2~G/9@=9ki jp
(4.4) when o < 2. The proof of Lemma 4.2 based on the L*-Strichartz estimate
(3.3) in Lemma 3.1 also allows us to handle the case: 2K < M, for which
Lemma 3.3 is not applicable. See Remark 3.4.
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Next, we consider the case when the output frequency is low relative to the
input frequencies. In such a case, we have 25 > 2% > M. We treat this case in
the next two lemmas.

LEMMA 4.4 (High x high x high — low). Let o > 0. If ks > max(20, log, M),
ks — k;i| <5,i =1,2, and ky < ki — 10, then we have

||Pk4N(M1, U, M3)||N,f(4<k4 S min(Ay, Ap)llu, ”F,‘fdh ”’42”FX‘M2 ||”3||F,°‘;<k3, (4.8)

where Ay and A, are given by

A = 2(72+a+6)ki‘—uk4 and A, = 2(72+a/2+5)k’f+(]/270¢)k4
forany e > 0.

Proof. In this case, we localize each component function u; onto subintervals of
length ~27, With y : R — [0, 1] as in the proof of Lemma 4.2, we have

@Mt — 1) = oMt — 1)) Y PR — 1) —m)

M
| <2tk 1-laka]

and 1o (21kilt) -y (Qekiltery = o (2lekilFery for i = 1, 2, 3. In particular, we divide
the time interval of length ~27%* into O (2**i~**)) many subintervals of length
~27%i_ Then, proceeding as in the proof of Lemma 4.2 with (2.8), it suffices to
prove that

ki —k. —ja/2 g
2‘1( 1 @ Z 2 ! ||15]{Z/4 : (fk],j] * sz,jz * fk}.j})”l%L%

Jjazloky]

3
S min(Ay, 4o) [ 12221 fi il

i=1

forany f;, ; : ZxR — R, supported on 5,’(”1 with j; > [ak}],i = 1,2, 3, where

v _ DY, when j; = [ak{],
“i | DML when ji > [aki].
Here, we can assume that j; > [ak]], i = 1, 2, 3, thanks to the time localization

over an interval of size ~2~1#%1 and (2.8). Hence, (4.8) with A, follows from (3.4)
in Lemma 3.1 with (4.3), while (4.8) with A, follows from Lemma 3.3. I

https://doi.org/10.1017/fms.2018.4 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2018.4

GWP of the periodic cubic fourth order NLS 31

LEMMA 4.5 (High x high x low — low). Let« € [0, 2]. Ifk; > 20, |k; —ks| < 5,
and k3, ks < ki — 10, then we have

PN (uy, us, us)llng, < min(As, Al Nualleg, luslleg, . (4.9)
where A; and Ay are given by

A3 — 2(—3/2+a+e)kj‘—ak4—ﬂ with ﬂ — '
0 otherwise,

and
2 /DB-a— k] =k [24KG/ 2oksf |y — fou| > 2,

Ay = 2—(1/D)G—a—e)kf +K3 4—aks

otherwise,

forany e > 0.

Proof. We proceed as in the proof of Lemma 4.4, Then, (4.9) with A5 follows
from (3.4) in Lemma 3.1 with the size estimates (4.1) and (4.2). Similarly, (4.9)
with A4 follows from Lemma 3.5. O

In the following, we briefly discuss the proof of Proposition 4.1. From
Lemmas 4.2-4.5, we have

sk
2% {|IP N (uy, us, us)llwg,, + PRy, uz, us)llng,, }
/<
S 2% A g, Nualleg, lluslleg, s (4.10)

where A* denotes the constants in Lemmas 4.2-4.5, depending on different
frequency interactions. Note that it suffices to guarantee that

osks g% S zfekfzx(k1+kz+k3). “4.11)

Then, Proposition 4.1 follows from summing (4.10) over different dyadic blocks.
Moreover, at a slight expense of the regularity in modulation, we can gain a factor
T? for some 6 > 0. See [19] for the details.

In the following, we perform case-by-case analysis on the constants obtained
in Lemmas 4.2—4.5 and compute the restrictions on s < 0 and « > 0 such that
(4.11) holds. In the following, ¢ = £(s) > 0 denotes a small constant which may
vary line by line.

(i) The output frequency is high. In view of Lemma 4.2, we need to have
—(3a — &) < 2s. Hence, it suffices to choose

a:—?—{—g (4.12)
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for some sufficiently small ¢ = (s) > 0. Note that this is consistent with the
heuristics presented in Section 2.4.

(i) High x high x high — low: In view of (4.8) with A, of Lemma 4.4, we need
to have

—2+a+e < 3s. (4.13)

Then, it follows from (4.12) that (4.13) holds for s > —<& + &. Next, we
consider the case s < —1%. Then, from (4.8) with A,, we need to have

(=24 2% + o)k} + (s + 1 — )k} < 35k (4.14)

In view of (4.12), we must have s > —1% + ¢ from the coefficients of k7,
while we have s < — % + ¢ from the coefficient of k* Hence, it follows from

(4.13) and (4.14) that (4.11) holds for any s € (— 13, 0).

(iii) High x high x low — low: First, we consider s > —¢. From (4.9) with A;
of Lemma 4.5, we need to have

(=2 +a+eok <25kf and (s —a)ky — B < sks.

In view of (4.12), the first condition provides s > —% + &. The second
condition is trivially satisfied when &k, > k3 — 5. When k3 > k4 + 5, it gives
s > —1. Hence, (4.11) holds for s € (—5, 0).

Next, we consider s < —%. First, we consider the case |k3 — k4| < 1. From
(4.9) with A4, we need to have
—1B—a—e)ki <2ski and (; —a)k; <O0. (4.15)

In view of (4.12), the first condition provides s > —% + ¢, while the second
condition provides s < 32 +&.

Next, let us consider the case k3 > k4 + 2. (The case ks > k3 + 2 is easier.)
In this case, we need to have

—%(3—0{ — o)k — k3+(s+ > — a)ky < 25k + sk;. (4.16)
This yields the condition s € (— 20, 220) Hence, it follows from (4.15) and
(4.16) that (4.11) holds for any s € (—55, — 1.

Putting all the cases (i)—(iii) together, we see that (4.11) holds for s € (— 20, 0).
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5. Energy estimate on smooth solutions

In this section, we establish an energy estimate for (smooth) solutions to the
Wick ordered cubic 4NLS (1.5). Let u € C(R; H*°(T)) be a smooth solution to
(1.5). Then, in view of (2.18), our goal is to estimate

sup Ekn (u) ()

te[-T,T]

in a summable manner over k) € Zy, where E; (1) is as in (2.16). By the
fundamental theorem of calculus with the equation (1.5), we have

Ey (u)(r) — E,(u)(0) = 2Re (/t D au, (03,18, ()it (1) dt/)

nez
1
= —2Rei(/ Zako(n) Zﬁmﬁﬁ%ﬁ(,") dp)
0 ez ')
t
+2Rei( / Zako(n)|’1[n(t’)|4dt’)’ (5.1)
nez
=0
where ['(n) is as in (2.3). By letting ny, = n and symmetrizing under the
summation indices n, ..., ny, We obtain

Ek(,(u)(r)—Eko(u)(mzé / 3 W) TG, () dI’
0

ny—ny+n3—ng=0
nyF#ny,n3

=: Ry, (1), (5.2)
where ¥ (n) is defined by
¥n) = [ (ny) — g, (n2) + ako(nB) - 6%(”4). (5.3)

The symbol ¥ (n) provides an extra decay via the mean value theorem and the
double mean value theorem [13, Lemmas 4.1 and 4.2] applied to the symbol
a, (£). See (5.8), (5.9), and (5.10).

REMARK 5.1. In this section, we study an energy estimate on a single solution.
In Section 7, we establish an energy estimate for the difference of two solutions
in order to prove uniqueness of solutions. It is significantly harder to establish an
energy estimate for the difference of two solutions mainly due to (i) the resonant
contribution for the difference of solutions (corresponding the second term on
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the right-hand side of (5.1)) does not vanish and (ii) the symmetrization process
above fails for the difference of solutions. In order to overcome this difficulty, we
perform an infinite iteration of normal form reductions.

The main goal of this section is to establish the following multilinear estimate
on Ry,.

PROPOSITION 5.2. Lets € (—29—0, 0) and « = —8s/3+ as in (4.12). Then, there

exist 8o > 0 and 6 > O such that
|Riy (T)] S 27T [[ul| s (5.4)

forallky € Zy and0 < T < 1.

In [19], we studied a similar energy estimate for solutions to the Wick ordered
cubic NLS (1.12). There, we needed to perform a normal form reduction (that
is, add a correction term) in order to achieve a better energy estimate and hence
match the regularity from the trilinear estimate. The Wick ordered cubic 4NLS
(1.5), however, possesses much stronger dispersion and we do not perform a
normal form reduction.

REMARK 5.3. Asin [19], the energy estimate (5.4) possesses a certain smoothing
property, namely, (5.4) still holds true even if we replace the F**(T)-norm on
the right-hand side by F*~%%(T)-norm for some small § > 0. This smoothing
property plays an important role in proving a compactness property of smooth
approximating solutions (Lemma 6.3; see also Lemma 7.4). See the proof of
Lemma 8.2 in [19].

Proof of Proposition 5.2. We first write Ry, as a multilinear operator given by

Rko (t) = Rk(;(“l: Us, Uz, u4)(t)

= %/ Z U ()i (ny) i (no)us(n3)us(ng) (¢') dt’.
0

ny—na+n3—ng=0
ny#n N3

Apply the dyadic decomposition on the spatial frequencies |n;| ~ 2%, k; > log, M,
i =1,...,4. By symmetry, assume that |n;| ~ n7. Then, it suffices to prove
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4
6 ~n—38ok —)k;
Ry (T)] S TP27%% [ T2 M IPuill g, -

i=1

Here, a small extra decay is needed to sum over dyadic blocks. Let #; be an
extension of u; such that ”ﬁi”Fﬁ}_k. < 2||Pyullrg, (r)- Let y : R — [0,1] be a
smooth cutoff function supported on [—1, 1] such that

Zy4(t—m)zl, t e R

mez

With K = ki + ¢, define f; j, m, ji € Zx0,i =1,...,4,by
ﬁ.ji,m = fﬁl[’?j,‘ (T + n4)f[y(2[aK]t - m)ﬁl]]
Then, it suffices to prove

' / Lon() ) > > W () 1y (1) Foyn (12)
R
J

1500 JA€Z >0 |m|L2W@KI(T 1) ny—na+n3—ns=0
naF#ny,n3

4
ST T2 il ey, - (5.5

i=1

X jsm(13) Fa jym(na) (1) dt

In the following, we prove (5.5) for each dyadic modulation size ~Q =1,
..., 4. In view of (2.8), we assume that j; > « K. Define the subsets .4 and B of
{m € Z:|m| <2@KN(T + 1)} by

A={meZ: 1)yt —m) =y 2Nt —m)},
B={meZ: 1)y —m) # y 2t —m)
and 1y ) (1)y 2%t —m) # 0}.
Namely, A denotes the set of m € Z such that the support of y 2Lt — m) lies
in the interior of the interval [0, T'], while BB denotes those m € Z such that the
support of y (2%t — m) intersects the boundary point # = 0 or ¢ = T. In the

following, we separately estimate the contributions from A and 5. Finally, we
simply denote f; ; . by f; j in the following.

Part 1: First, we consider the terms with m € A. Note that we can drop the sharp
cutoff 1o, 7)(¢) on the left-hand side of (5.5) in this case. We prove (5.5) with 6 = 1
in this case. The main ingredients are the (double) mean value theorem and the
following lower bound on the largest modulation; with o; = 7; + n‘}, we have

oy :=max(|o1], |02, o3|, loul) 2 ¢ @) ~ (]|,
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where ¢ () and w(n) are as in (2.4) and (2.5). Recall that we have 28 > M,
i=1,...,4.Given k € Zy, it follows from (2.12) and (2.13) that

|07 ag, (€)| < 23—k ~dolk=kol

foré e IM,y =1,2.

e Case (a): 2 < M.
In this case, we have 251 ~ 2% Then, by the double mean value theorem [13,
Lemma 4.2], we have

W @) < lag ()] - [(ng — np)(ng — ny)| S 2 2Ki—olki—hol |y )|
S 2R @R @) (5.6)

We first consider the case n¥ > 24, In this case, we apply Lemma 3.3 in view
of Remark 3.4. With (4.12), we have

Z (0_1*)7]/2 | /4 (ﬁ) |2(7ot/2+]/2)kf < T2750k02akf/2 |M(ﬁ) | ]/22(2s75/2+80)k1‘
m| <20 KT +1)
s T2 ~d0ko ((2/3)s=3/2+30+)k] < T2 —S0kon (4s =)k} (5.7

for sufficiently small §, = §o(s) > O, provided that s > —%. Then, (5.5) follows
from Lemma 3.3 with (5.7) in this case.

Next, we consider the case n} < 2. In this case, Lemma 3.3 is not applicable.
Note, however, that this case occurs only when nj < M. Moreover, from the
definition of the symbol ay,, we see that a,, (n) is constant for |n| < M /2. Hence,
we conclude that ¥ (n) = 0 when n} < M and there is no contribution to (5.5) in
this case.

e Case (b): |ny — ny|, |ny — ns| < nt and 24 > M.
In this case, we have |n| ~ |ny| ~ |n3| ~ |n4| ~ n} ~ 2. Moreover, by the
double mean value theorem, we have

W ()] S 220N )| (5-8)

as in Case (a). Then, the rest follows as in Case (a).

e Case (¢): [ny — ny| ~ n* > |ny — n3| = |n; — ny| and 24 > M.
In this case, we have |n,| ~ |n;| ~ nj. Then, by the mean value theorem, we
have

—8okory (25— 1+80)k}
lag, (n1) — ag, (n2)| < lag, ()] - Iny — np| S 27002F 0 Iy — s (5.9)

Moreover, from (2.4), we have |¢ (n)| ~ (nT)3|n4 — nzl.
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o Subcase (c.i): [ny — n3| K nj.
In this case, we also have |n3| ~ |n4| ~ n}. Then, by the mean value theorem,
we have

Sokoy (25— 1+80)k;
lag, (n3) — ar,(na)| S lag (n3)] - Ing — nz| S 270002@ 0K, — pa) (5.10)

We point out that (5.10) holds true even when n§ < M, since a,/q) (n) = 0 for
[n] < M/2. See (2.14). Hence, it follows from (5.9) and (5.10) that

@ ()] S 27002 |y — )
and thus
Z (61*)—1/2|q,(,—1)|2—(a/2)k72kj;/2

|m| <21 K (T+1)

—80ko~ (—(4/3)s—3/24)k} 5 (2s—1/2+80)k} 1/2
§T2 0ko D (—(4/3)s—3/2+)ky 5 (2s—1/ °3|n4—n3|/

4
< T—0ko(—(4/3)s=3/2+80 K} 925K5 < —bokon(—(10/3)s=3/2+80H)k] (1—[2@-—)1@).
i=1

Hence, (5.5) follows from Lemma 3.3, provided that s > —% and §p = So(s) > 0
is sufficiently small.
o Subcase (c.ii): [ny — nz| ~ nj.

In this case, we have |¢(72)| = (n7)°n% and |¥ ()| < 27%0k02@sH0k  Thus, we
have

Z (O’l*)_l/2|W(fl)|2_(a/2>kT2kz/2

|m|<2KI(T+1)

4
S Tzféoko2(7(10/3)s73/2+50+)k1‘2(*371/2)k3‘2(s+1/2)kj{ ( l_[ 2(s)k,-) )

i=1

—2 and 8§ > O is

Hence, (5.5) follows from Lemma 3.3, provided that s > —3;

sufficiently small.

e Case (d): |[ny — ny|, |ng — ns| ~ nt and 24 > M.
In this case, we have |¢ ()| ~ (n*)* and |¥ ()| < 2%k 22 +0k Thys, we
have

Z (0,1*)71/2“1/(’/—1)|27(a/2)k72k3{/2
|m| L2 KI(T+1)
4

5 T2—aok02(—(13/3)3—2+50+)k72(s+1/2)kj; ( l_[ 2(s—)k,-> )

i=1
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9

Hence, (5.5) follows from Lemma 3.3, provided that s > —5; and & > 0 is

sufficiently small.

Part 2: Next, we consider the terms with m € B. In this case, we use Lemma 2.4
to handle the sharp cutoff 1j7;. Note that there are only O(1) many values of
m € B. Namely, we can save (n7)~* as compared to the analysis in Part 1.

We only consider Case (a) above as the other cases follow in a similar manner.
With (5.6) and |¢ (7)| ~ (n})?|(7)|, we have

(0,1*)71/2+9+|l1/(ﬁ)| S 27501(0 (nT)4s7

for & > O sufficiently small such that —1 + 20 < s. Suppose o; = o;. Then, by
L%, LS, L%, L% -Holder’s inequality and Lemma 2.4, we have

x,t0 Hxt Mt

4
—3ok 4s— 1/2—60-)j
|Riy (T)] S 275 (n) ™ sup 2 >0 F(lo ry fi)llgz D [T fesllee,
! Joja.ja i=2
4
0 ~—8ok s—)k; ~
S T2 [ ] 2% 1Py Tl

i=1

where we used Lemma 2.3 in the last step. This completes the proof of
Proposition 5.2. O

6. Global existence

In this section, we prove global existence (Theorem 1.1) by putting together the
trilinear estimate (Proposition 4.1) and the energy estimate (Proposition 5.2). We
also make use of the decay property (2.6) of the H;,-norm as M — oc. Moreover,
we establish an exponential growth bound on the H*-norms of solutions. In view
of the time reversibility of (1.5), we only consider positive times in the following.

6.1. Proof of Theorem 1.1. The following proposition establishes the long-
time existence for small initial data which plays a key role in the proof of
Theorem 1.1.

PROPOSITION 6.1. Let s € (—%, 0). Then, given uy € H*(T), there exist T =
T (lugllgs) > 0 and a local-in-time solution u to the Wick ordered cubic 4NLS
(1.5) on [0, T] with u|,—g = ug. Furthermore, there exists &y > 0 such that if

ug € H*(T) satisfies

luollmy, < €0 6.1)
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for some dyadic M > 1, then the corresponding solution u to (1.5) with u|,—g = ug
can be extended to the unit time interval [0, 1] with the following estimate:

sup |lu(®)llay, < 2lluolluy,- (6.2)
tel0,1]

We first assume Proposition 6.1 and present the proof of Theorem 1.1.

Proof of Theorem 1.1. Given T > 0, we iteratively apply Proposition 6.1 and
construct a solution u on [0, T]. Let uy € H*(T). Then, there exists M = M (s,
T, ug, &9) > 1 such that

luollm;, < 271t

’

where ¢ is as in Proposition 6.1. Hence, we can apply Proposition 6.1 [T] + 1
times and construct the solution u on [0, T'], satisfying
[T]+1

sup [lu(0)|lp, <2
1€10,T1

ol as, < &o.
M

This proves Theorem 1.1. O

Before proceeding to the proof of Proposition 6.1, we recall the following
lemma [19, Lemma 8.1].

LEMMA 6.2. Let s € R. Given u € C(R; H*(T)), let Xy(T) = llullgy, ) +
199 | w3 (r). Then, Xy(T) is nondecreasing and continuous in T € R,.
Moreover, we have

%iir(lJXM(T) = ||“(0)||H;4-

While our function spaces depend on the parameter M > 1, the proof of Lemma
8.1 in [19] applies to Lemma 6.2 without any change for fixed M > 1.

Proof of Proposition 6.1. We only sketch the proof under the smallness
assumption (6.1), since it follows closely the a.rgument in [19, Section 8].
See also Remark 6.4. Fix s € (— 2O,O) and o = ——s+ Letu € C(R; H*(T))
be a smooth solution to (1.5) with u|,—g = uy. Then it follows from Lemma 2.5,
Proposition 4.1, (2.18), and Proposition 5.2 that there exists 6 = 0(s) > 0 such

that
H”“F”‘(T) ~ ||M||Eé T + ”m(u)“N”’(T)a (6.3)
1@ Iwse )y S TelluIIFsam, (6.4)
IIMIIEJ a S ||M0||2s +CT"IIMII4W<T), (6.5)
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forany T > 0and M > 1, where M(u) = N (1) + R(u) denotes the nonlinearity
of (1.5) defined in (1.6). Letting X,,(7T') be as in Lemma 6.2, it follows from (6.3),
(6.4), and (6.5) that

Xu(T)? < 2lluollzyy, + CT{Xu(T)* + Xu(T)*) - X (T)?
for any T > 0. Now, choose gy, > 0 sufficiently small such that
C(4ej + 16¢p) < 1.
Then, in view of Lemma 6.2, it follows from a continuity argument that
Xu(T) < 2uollmg, (6.6)

for any T € (0, 1]. Hence, the a priori bound (6.2) for smooth solutions follows
from (6.6) and (2.10).
Next, we recall the following compactness lemma.

LEMMA 6.3. Lets > —2%. Givenuy € H;,(T), letu, € C(R; H*(T)) be a global
solution to (1.5) with u,|,—y = P<,uo. Then, there exists To = To(||uo||ps) > O such
that the set {u,},en is precompact in C([—T, T1; H;,(T)) for T < Ty. Moreover,
IP-nunllc,my, tends to O as N — oo, uniformly inn € N.

See [19, Lemma 8.2] for the details of the proof. See also Lemma 7.4 below.
We point out that the smoothing property of the energy estimate in Proposition 5.2
plays an important role in proving Lemma 6.3.

In view of Lemma 6.3 with T, = 1, we can extract a subsequence, which we still
denote by {u,},en, converging to some u in C ([0, 1]; H;,(T)). It remains to show
that this limit « is a distributional solution to (1.5). It follows from Lemma 6.3
that {u,},en also converges in Ej,(1). In view of (6.3) and (6.4), this in turns
implies that {u,} converges to u in F,,“(1). Finally, by applying the trilinear
estimate (Proposition 4.1), we see that the nonlinearity {J(u,)},cy converges to
MN(u) in Ny;*(1). Hence, the limit u is a distributional solution to (1.5) on the time
interval [0, 1]. This proves local existence for the Wick ordered cubic 4NLS (1.5)
in H;;(T) fors > — 29—0. Moreover, from the a priori estimate for smooth solutions
and the convergence of u, to u in Ej, (1), (6.2) also holds for the solution u. [

REMARK 6.4. Let us briefly discuss the case when we do not impose the
smallness assumption and M = 1. This is the setting considered in [19] and hence
is relevant for the proof of the nonexistence result (Corollary 1.2).

Let R = |lug|lgs Then, choose Ty = To(R) < 1 sufficiently small such that

CTy(4R* 4+ 16R") < 1.
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Then, a continuity argument with Lemma 6.2 yields (6.6) for T € (0, Ty]. By
repeating the argument above, one can prove local existence on [0, Ty] for Ty =
To(lluollz=) > 0.

6.2. On the growth of Sobolev norms. In this subsection, we study the

growth of the H’-norm of a solution to (1.5), s € (—%, 0), constructed in
Theorem 1.1.

Fix 5o € (—~

35> 0). The following bound follows from iterating Proposition 6.1.

LEMMA 6.5. Let sg < s < 0and 0 < & < &), where g, is as in Proposition 6.1.
Let u be a solution to (1.5) with u|,—o = ug € H*(T) such that

luoll o < &
for some dyadic M > 1. Then, the following bound holds:

sup [u@®lla, S 2" luollmy,, (6.7)

1€[0,T1
&

Ty ~ log, <—0>.
e

Proof. When s = s, the estimate (6.7) follows from the proof of Proposition 6.1,
namely iterating (6.2) [T] 4+ 1 times. For general s € (59, 0), we exploit the
following equivalence

forall0 < T < Ty, where

2 —250+2s 2
1 W, ~ D K0 (6.8)

K>M

for any f € H*(T) and any dyadic K > M > 1. We first assume (6.8) and prove
(6.7). By (6.8), (6.7) for s = s, and the monotonicity of the H;,-norm in M, we

have
2 —2s0+2 2
sup [lu(@)ly; < E K727 sup (lu(®)|l}0
t€[0,T] KoM t€[0,T] K
2 —2s50+2 2 2 2
<27 E K722 lug 1300 ~ 227 [luoll s -
K M
K>M
This proves (6.7).
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It remains to show (6.8). Let us first consider the contribution from |n| < M.
With K2 + n?> ~ K? for K > M, we have

—2s50+42s 2 2s 2 2 :
DK eyl ~ Y KW feulie ~ MW feule ~ 1 fam g

K>=M K>=M

(6.9)

where fey = F [, Mf]. Next, we consider the contribution from |n| > M.
By Fubini’s theorem, we have

Z K72S0+25||f>M”?.1;<0 ~ Z K> Z |f(n)|2

k>m K>M M<|n|<K
+ Z K ~2s0+2s Z |n|230|f(n)|2
K>M |n|>K
KZs R
< XX meser
>
n|>M > K=|n|
—2s0+2s oy 2 s
+ Z ( Z |n|230+25)|n| |f(n)|
nl>M M<K <n]
~ ||f>M||21:W, (6.10)
where f.y = f — f<u. Then, (6.8) follows from (6.9) and (6.10). 0

By applying Lemma 6.5, we obtain the following global-in-time bound on the
H’-norm of solutions to (1.5) for sy < s < 0.

PROPOSITION 6.6. Fix sy € (—%, 0). Let s € (so,0), B > 0, and u be a solution

to (1.5) with u|,—o = uy € H*(T) such that
luolls < B.
Then, we have
lu (@)l S &g/ @' B)! =/~ (6.11)
forallt > 0, where g is as in Proposition 6.1.
Proof. By choosing M > 1 sufficiently large, it follows from (6.8) that

luoll o < M™T0B < .
HM
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Then, it follows from Lemma 6.5 that

T
sup Nlu(llay, < 2" lluollm,
1€[0,T]

for all 7 > O such that

TR ) 1/(s—s0)

M.Y—S()
T < log, (T“?o> Namely, M > < o

Therefore, we obtain

sup [lu(@)llgs < M~ sup u(®)llm, < ey @7 B) /=0
tel0,T] t€l0,7T]

for any 7' > 0. This proves (6.11). O

REMARK 6.7. In Proposition 6.6, we only obtain an exponential upper bound
for the growth of the H®-norm. One may upgrade this exponential bound to
a polynomial bound if one incorporates a scaling in the argument (as in [27]).
We, however, do not pursue this issue since (i) our argument with one parameter
M > 1 (without a scaling parameter) suffices to prove global existence and (ii) a
polynomial bound is by no mean optimal.

7. Uniqueness and continuous dependence

In Section 6, we proved local and global existence of solutions to the Wick
ordered cubic 4NLS (1.5). The remaining part of this paper is devoted to the
proof of Theorem 1.5. The main difficulty lies in proving uniqueness of solutions.
Once we prove uniqueness, continuous dependence follows immediately. See
Section 7.2.

In Section 7.1, we set up an energy estimate for the difference of two solutions
with the same initial condition. In particular, we state a key identity, expanding
the energy estimate into a sum of infinite series of multilinear expressions of
arbitrarily large degrees (Propositions 7.1 and 7.2). See Remark 8.20. This
identity allows us to establish crucial smoothing estimates. In Section 7.2, we
use this proposition to prove Theorem 1.5, in particular uniqueness. The proofs
of Propositions 7.1 and 7.2 are somewhat lengthy, involving an infinite iteration
of normal form reductions. We therefore postpone the proof of Propositions 7.1
and 7.2 to Section 8.

7.1. Energy estimate on the difference of two solutions. In this subsection,
we consider an energy estimate for the difference of two solutions. As pointed
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out in Remark 5.1, there are two main sources of difficulty: (i) the resonant
contribution for the difference of solutions does not vanish and (ii) the
symmetrization process in (5.2) and (5.3) (for handling the nonresonant
contribution) fails for the difference of solutions; see (7.1).

Let us consider an energy estimate for the difference of two solutions with the
same initial condition. Given uy € H*(T), s > — 290, let # and v be two solutions to
(1.5) constructed in Section 6 with the same initial condition u|,—g = v|;—9 = uy.
Then, we haveu, v e C([—T, T]; H*(T))NF**(T) forsome T = T (J|ug| 5s) > O.
See Remark 6.4. Using the equation (1.5), we have

d d .~
@ —v® = 3 ), =0,

neZ
=2Re ) (n) —(u,, —U,) - (U, — Vy)
nez
= —2Rei Y _(m)*[Nw), — N (), ]G — o)
nez
+2Rei Y (W) *[R@w), — R(),|Gn — o)
nez
= —2Rei Y () [N ), — N ), ]G, — 50
~2Rei nef}nfsumlz ~ [0, @, — 90,
=410, " (7.1)

where A (1) and R () are as in (1.7) and (1.8).
We first discuss how to handle the main difficulty (i). The main idea is to
perform normal form reductions infinitely many times and express

[, (D = [0, = (@, @) = [@,(0)*) — ([0, — [1,(0)[*)

in (7.1) as the difference of sums of multilinear forms of arbitrarily large degrees.

PROPOSITION 7.1. Let s > —_%. Then, there exist multilinear forms {./\fo(j)}io:z,
{R(Z)} >, and {N] (100 }°2 1, depending on a parameter K > 0, such that

[, (1)) — [, (0)]* = ZN(”(u)(n r)

Jj=2

+/ [ZR(j)(u)(n,t')+Z./\fl(j)(u)(n,t’)]dt (7.2)
0 Lj= j=1
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for any solution u € C(R; H*(T)) to (1.5) with smooth (local-in-time)
approximations. (Namely, given t, € R, there exists a sequence of smooth
solutions {uy}yen to (1.5) and an interval 1 > tq such that uy tends to u in
C(I; H (T)) as N — o0.) Here, N\’ is a 2j-linear form, while RY and N;”
are (2j + 2)-linear forms (depending on t € R), satisfying the following bounds
on H*(T); given any 6 € (0, %], there exist functions Cy ;, C, ;, C, ; : Ry — Ry,
depending on s and 6, such that

2j
>IN i fon o Bl S Coy [Tl (73)
nez i=1
2j42
D IRV oo o)l < Coy [Tl )
nez i=l
2j+2
YN foeeos )Nz S Coy [T il (79
nez =l
or any f; € H*(T) an > U, wnere
f y f; € H*(T) and K > 0, wh
K max(=1/2,—1-25) ifj=2,
Co.;j(K) = —((=1(1— - f]
K-(G-Da 6))/20(] 2) ifj >3,
Kmax(71/2,71735) if i = 2,
C.:(K)= . . lf]
J K-G0 if >3,
K1/2-2 ifi =1
CK) =10, A,
: K-UD0-02(j=2) i i > 2.

It follows from the proof presented in Section 8 that the decay in j is much
faster than j~2 but it suffices for our purpose in taking double difference in (8.60).

Proposition 7.1 exhibits a smoothing property analogous to Takaoka and
Tsutsumi [39] in the context of the modified KdV on T. In [39], Takaoka and
Tsutsumi performed a normal form reduction (= integration by parts) once. See
also Nakanishi er al. [32] and Molinet et al. [31], where the authors applied
normal form reductions twice in obtaining effective energy estimates for the
modified KdV on T. In order to maximize the smoothing effect, however, we
instead perform normal form reductions infinitely many times and re-express
[, (t))*> — |u,(0)|*> as a sum of infinite series of multilinear forms of arbitrarily
large degrees.

Next, we turn our attention to the nonresonant part I in (7.1). In this case, we
cannot apply the symmetrization argument as in Section 5. A straightforward
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energy estimate in terms of the F*“(T)-norm without symmetrization works only
for s > —%. See Remarks 7.3 and 8.21. In the following, we apply an infinite
iteration of normal form reductions to estimate the nonresonant part I in (7.1) and
express I as a sum of infinite series consisting of multilinear terms in « and v. The
following proposition follows as a corollary to Proposition 7.1. See Section 8.6
for the proof.

PROPOSITION 7.2. Lets > —%. Then, there exists T = T (||ug||gs) > O such that

‘ / I(t)) dt’
0

foranyt € [T, T] and any two solutions u,v € C([—T, T]; H*(T)) N F**(T)
to (1.5) constructed in Section 6 with ul,—g = v|;—g = ug € H*(T). (As in
Proposition 7.1, it suffices to assume that u,v € C([-T,T]; H*(T)) are two
solutions with smooth (local-in-time) approximations.)

< ! 2
S Z”” - UHCTH\‘

We postpone the proof of Propositions 7.1 and 7.2 to Section 8. In the next
subsection, we present the proof of Theorem 1.5, assuming Propositions 7.1
and 7.2.

7.2. Uniqueness and continuous dependence. In this subsection, we use
Propositions 7.1 and 7.2 to prove Theorem 1.5. Given s > —%, letu,ve C(-T,
T1; H*(T)) N F**(T) be two solutions to (1.5) constructed in Section 6 with the
same initial condition u|,—y = v|,—g = uo € H*(T), satisfying

lullcrms, IVlicrms <7
for some r > 0. Then, it follows from Proposition 7.1 and the multilinearity of

N, RD, and N} that

-~ 12 -~ 2 -~ 2 -~ 12
sup [[[7,1* = [Oul*lz < D il = [0l

nez net,

= Z (7 ]® = 1@, (0)1%) = ([T, > = [, (0) ) [l

nez
<Y Y ING )y = N @) 0) |1
nezZ j=2
+ T D IRV @)(m) — RY ) ()|
nez j=2
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+ 7Y D INM @) — N @) ()|

nez j=I

(o]
< Km0, 3, e ms + Z K—U=D0=00/2,2j=1) 1, e, e
j=3

o0
+ TKmax(fl/Z,flff%s)rS”u N UHCTH* + TZ K~ (G=31-0))/2,2j+1 llu — v”CTW
j=3

+TKY% | u—vle,ms + T Z K GmDA=MR2p204 | e
j=2
Then, by first choosing K = K (r) > O sufficiently large and then choosing 7 =
T(K) = T(r) > 0 sufficiently small, we conclude that

1
-~ 2 -~ 2 -~ 2 -~ 2
sup |1, = [0l < Y Mwal* = 18Pz < - lu = vl (7.6)

nez nel

Hence, it follows from (7.6) and Cauchy—Schwarz inequality that

T
‘ / 1(¢) dt
0

< Tl =27 | Y ) (@ > = [0, @y — 0.0,

nez

LF
1 2
< Z”u - v”CTH“ (77)

Therefore, by integrating (7.1) from O to 7 with u(0) = v(0) and applying
Proposition 7.2 and (7.7), we obtain

2
5”“ - UHCTHS'

This proves local-in-time uniqueness of solutions to (1.5)in C([—T, T]; H*(T))N
F**(T) with some T = T (||ug||z<) > 0. In view of the global-in-time bound in
Proposition 6.6, we can iterate this argument and establish uniqueness globally in
time. Here, uniqueness holds in

2
lu —vlc, s <

ﬂ{u € CR; H (T)); u(- —1) € F**(T (1, up))}

teR

for some appropriate 7'(f,uy) > 0. (Since we only need Propositions 7.1
and 7.2, the uniqueness holds among the solutions in C(R; H*(T)) with smooth
approximations. Note that in such a class, uniqueness is by no means automatic
since we do not have continuous dependence (at this point).)
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REMARK 7.3. (i) We stress that it is crucial that # and v have the same initial
condition in the argument above.

(il)) We can estimate the nonresonant contribution I in (7.1) in terms of
the F*“(T)-norm for s > —%. See Remark 8.21 below. This provides
3

uniqueness for a more restrictive range s > — 5.

Note that an energy estimate of the form:
2 2 6 2
I = vllgery S N1u@) = vO) Iy + T°CUlullpeacry, Il pra) e = Vil

for two solutions u and v with different initial data u(0) # v(0) is false for
s < 0in view of the failure of local uniform continuity for the solution map
for (1.5) in negative Sobolev spaces.

(iii) By combining the proofs of Propositions 7.1 and 7.2, we can express
lu(t) — v(2)||3, as a sum of infinite series consisting of multilinear linear
terms (in # and v) of arbitrarily large degrees. Moreover, thanks to the
multilinearity of the summands and the double difference structure of I and II,
we can rearrange the series so that we can extract two factors of (the Fourier
coefficient of) u — v in each of the multilinear terms. See Remark 8.20.

Thanks to the uniqueness of solutions, continuous dependence of the solution
map for (1.5) on initial data in H*(T) basically follows from repeating the
argument in Section 6.

LEMMA 7.4. Given s > —%, let {u,},en and u are the unique solutions to (1.5)
in C(R; H*(T)) with u,|;=0 = uo,, and ul;—o = uy. If we have

lim uo, — uollws =0,

n—0o0
then we have

Tim flu, = wllcon =0 (7.8)
forany T > Q.
Proof. 1t suffices to prove (7.8) for sufficiently small 7 > 0 since the general
case follows from iterating local-in-time arguments in view of the global-in-time
bound in Proposition 6.6. Let T = T (J|ugllgs) > O be the local existence time

from Section 6 for initial data of size ||ug||gs + 1. Without loss of generality, we
assume that sup, _;, luo,llus < lluollus + 1.
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Note that it suffices to prove that {u,},cn is precompact in C([-T,T];
H*(T)) N F**(T). This implies that any subsequence of {u,},cy has a convergent
subsubsequence. In view of convergence to u, at time O and the uniqueness
of solutions, such a convergent subsubsequence must converge to u since it
converges to u, at time 0. Therefore, the entire sequence {u,},cn converges to
uin C([-T, T]; H*(T)), yielding (7.8).

Since ug, converges to uy in H°(T), we see that {1, },en U {uo} is compact
in H*(T). Then, by Riesz’ characterization of compactness, given ¢ > 0, there
exists N € N such that

IPoyitonllns <& and [|P.yuollnys <€ (7.9)

for all n € N. Then, by exploiting the smoothing property of the energy estimate
(5.4) in Proposition 5.2 (see Remark 5.3) as in [19, Lemma 8.2], we claim that,
given ¢ > 0, there exists Ny € N such that

|IP>Nun||C1H"' <E€ (710)

for all N > Ny, uniformly in n € N. In view of Remark 5.3, it follows from (the
proof of) Proposition 5.2 with the a priori bound:

”u”LOO([—T,T]:HS) f, ”u”FW(T) < 2||luoll g (7.11)

that there exists small § > O such that

2 2 [4 2 2
|||P>Nun||EX(T) - |IP>Nu0,n||HS| S T ||P>cNun||F.\78,u(T)||un”Fxfri,a(r)

< Clluollas )N~ — 0,

as N — oo, uniformly in n € N. Note that the a priori bound (7.11) follows from
Lemma 2.2 and (6.6). Hence, from (7.9), there exists Ny € N such that

2 2 2 -2
PNt lE, e < IP-nUallZ gy S IP-nstonllf + Cllluolla )N S e (7.12)

for all N > Ny, uniformly in n € N. This proves (7.10).

Fix ¢ > 0. By (7.10), there exists Ny > 0 such that [P y,u, [ c, ns < 5 foralln €
N. Arguing as in the proof of Lemma 8.2 in [19] with Ascoli—Arzela compactness
theorem, we conclude that {Pgyu,},en is precompact in C([—T,T];
H*(T)). Hence, there exists a finite cover by balls of radius &/3 (in CrH®)
centered at {P¢ Nou,,k},le. Then, the balls of radius ¢ (in CrH*) centered at
{unk},‘f=1 cover {u, },en. This proves the precompactness of {u,},cyin C([—T, T];
H*(T)).

Let us extract a subsequence, still denoted by {u, },cn, converging to some « in
C([-T, T]; H°(T)). In view of the uniform tail estimate (7.12), this subsequence
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also converges in E*(T). Then, by making T smaller, if necessary, it follows from
(6.3) and (6.4) that

Nty — il poecry S Nt — Ul sty

Hence, {u,} converges to u in F**(T). O

8. Normal form reductions

It remains to prove Propositions 7.1 and 7.2. In this section, we perform
an infinite iteration of normal form reductions and present the proofs of these
propositions in Sections 8.5 and 8.6.

Let u be a smooth global solution to the Wick ordered cubic 4NLS (1.5) and
u(t) = S(—1t)u(t) be its interaction representation defined in (2.1). Then, by the
fundamental theorem of calculus with (2.2), we can write the growth of the energy
quantity iz, (¢)|* as

[, (1) > = [, (0)]* = [@,(1)* — [6,(0)*
= —2Rez( / e G, 0, 0,,1, (1) dt’).
0

Ir'(n)

(The quantity [u,(z)|* is often referred to as an action.) Integrating by parts in
time,

t

e~ i @1
=2Re (Z 5 un,unzumun>

I(n)

e it@1 -
—2Re</0 Z 50 8,(un1unzun3un)(t)dt>. (8.1)

0

In view of the factorization (2.4), we see that the gain of ¢ (72) in the denominators
corresponds to the gain of derivatives. The price to pay here is that the second term
on the right-hand side of (8.1) is now 6-linear. In order to handle the last term in
(8.1), we need to apply an integration by parts again, yielding 8-linear terms. In
fact, we iterate this procedure infinitely many times in the following. When we
apply integration by parts in an iterative manner, the time derivative may fall
on any of the factors, generating higher order nonlinear terms. (In the following,
we perform integration by parts without integration symbols, which we refer to
as differentiation by parts, following [1]. Moreover, we perform integration by
parts only in the case the phase factor is ‘sufficiently large’.) We need to keep
track of all possible ways in which the time derivatives fall and sum over the
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contributions from all possible choices. This can be a combinatorially challenging
task. In order to handle multilinear terms of increasing complexity appearing in
the infinite iteration of normal form reductions, we introduce the notion of ordered
bi-trees in the following.

8.1. Ordered bi-trees. In [18], the first author implemented an infinite
iteration of normal form reductions to study the cubic NLS on T, where
differentiation by parts was applied to the evolution equation satisfied by the
interaction representation. In [18], (ternary) trees and ordered trees played an
important role for indexing such terms and frequencies arising in the general
steps of normal form reductions.

In the following, we instead implement an infinite iteration scheme of normal
form reductions applied to the energy quantity [u,(¢)|>. More precisely, to the
evolution equation satisfied by the energy quantity. In particular, we need tree-
like structures that grow in two directions. For this purpose, we introduce the
notion of bi-trees and ordered bi-trees in the following. Once we replace trees and
ordered trees by bi-trees and ordered bi-trees, other related notions can be defined
in a similar manner as in [18] with certain differences to be noted.

DEFINITION 8.1. (i) Given a partially ordered set 7 with partial ordering <,
we say thatb € 7 withb < aandb #aisachildofa € T,ifb<c<a
implies either ¢ = a or ¢ = b. If the latter condition holds, we also say that
a is the parent of b.

(ii) A tree T is a finite partially ordered set satisfying the following properties:

(a) Letay,ax,a3,as € T.Ifay < a, < a; and as < a3 < a;, then we have
ar < as or ds < a.

(b) Anodea € 7T is called terminal, if it has no child. A nonterminal node
a € T is a node with exactly three ordered children denoted by a;, as,
and as.

(c) There exists a maximal element » € T (called the root node) such that
a<rforallaeT.

(d) T consists of the disjoint union of 7° and 7, where 7° and
T denote the collections of nonterminal nodes and terminal nodes,
respectively.

(iii) A bi-tree T = T, U 7, is a union of two trees 7, and 7,, where the root
nodes r; of 7;, j = 1,2, are joined by an edge. A bi-tree 7 consists of
the disjoint union of 7° and 7°°, where 7° and 7 denote the collections
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1]
%)

Jj=1 j=2 J

r r r r r mn

AT RTORA

Figure 1. Examples of bi-trees of the jth generations, j = 1, 2, 3.

of nonterminal nodes and terminal nodes, respectively. By convention, we
assume that the root node r; of the first tree 7, is nonterminal, while the root
node r, of the second tree 7, may be terminal.

(iv) Given a bi-tree T = T; U 7, we define a projection I71;, j = 1, 2, onto a tree
by setting
;(T) = T;.

In Figure 1, IT,(T) corresponds to the tree on the left under the root node r;,
while IT,(T") corresponds to the tree on the right under the root node ;.

Note that the number |7 | of nodes in a bi-tree 7 is 3j + 2 for some j € N,
where |7°| = j and |7>| = 2j + 2. Let us denote the collection of trees of the
Jjth generation (namely, with j parental nodes) by BT (), that is,

BT (j) :={T : T is a bi-tree with |T| = 3j + 2}.

Next, we introduce the notion of ordered bi-trees, for which we keep track of
how a bi-tree ‘grew’ into a given shape.

DEFINITION 8.2. We say that a sequence {’7}}{:1 is a chronicle of J generations,
if '

(@) T; € BT(j) foreach j =1,...,J;

(b) T;41 is obtained by changing one of the terminal nodes in 7; into a
nonterminal node (with three children), j =1,...,J — 1.

Given a chronicle {’7;}jj.:1 of J generations, we refer to T, as an ordered bi-tree
of the Jth generation. We denote the collection of the ordered trees of the Jth
generation by B (J). Note that the cardinality of BT (J) is given by [(BE(1)| =1
and

BITJ) =4-6-8----.2J =2""Jl=1¢c,, J>=2. 8.2)
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We stress that the notion of ordered bi-trees comes with associated chronicles.
For example, given two ordered bi-trees 7, and 7, of the Jth generation, it
may happen that 7, = 7, as bi-trees (namely as planar graphs) according to
Definition 8.1, while 7; # 7T, as ordered bi-trees according to Definition 8.2. In
the following, when we refer to an ordered bi-tree 7, of the Jth generation, it is
understood that there is an underlying chronicle {7} /]‘=1'

Given a bi-tree T, we associate each terminal node a € 7 with the Fourier
coefficient (or its complex conjugate) of the interaction representation u and sum
over all possible frequency assignments. In order to do this, we introduce the
index function assigning frequencies to all the nodes in 7 in a consistent manner.

DEFINITION 8.3. (i) Given a bi-tree 7 = 7; U T,, we define an index function
n: 7 — Z such that

(a) n,, = n,,, where r; is the root node of the tree 7;, j = 1, 2;

(b) n, =n, —ny,+n, fora € TP, where a;, a,, and a; denote the children
of a;

(C) {nu» nuz} N {nala na3} = @ for a S 7_0,

where we identified n : 7 — Z with {n,}.er € Z7. We use MU(T) C Z7 to
denote the collection of such index functions n on 7.

(ii) Given a tree T, we also define an index function m : 7 — Z by omitting the
condition (a) and denote by 91(7) C Z” the collection of index functions n
on 7, when there is no confusion.

REMARK 8.4. (i) In view of the consistency condition, we can refer to n,, = n,,
as the frequency at the root node without ambiguity. We shall denote it by #,.

(i1) Just like index functions for (ordered) trees considered in [18], an index
function n = {n,},.7 for a bi-tree 7 is completely determined once we
specify the values n, € Z for the terminal nodes a € 7°°. An index function
n for a bi-tree 7 = 7; U 7T, is basically a pair (n;, n,) of index functions
n; for the trees 7;, j = 1,2, (omitting the nonresonance condition in [18,
Definition 3.5 (iii)]), satisfying the consistency condition (a): n,, = n,,.

(iii) Given a bi-tree T € 9B%(J), consider the summation of all possible
frequency assignments {n € 91(7T) : n, = n}. While | 7| = 2J +2, there are
2J free variables in this summation. Namely, the condition n, = n reduces
two summation variables. It is easy to see this by separately considering the

cases IT,(T) = {r,} and IT,(T) # {r}.
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Given an ordered bi-tree T; of the Jth generation with a chronicle {7;}11.:1
and associated index functions n € 91(7;), we would like to keep track of the
‘generations’ of frequencies as in [18]. In the following, we use superscripts to
denote such generations of frequencies.

Fix n € 91(7;). Consider 7 of the first generation. Its nodes consist of the two
root nodes ry, rp, and the children ry;, rj», and r;53 of the first root node r;. See
Figure 1. We define the first generation of frequencies by

1 @ @ (1)
(n( ) nl anz 7n3 ) (nrlanr]l’nrlganrm)'

From Definition 8.3, we have
1 1 1 1 1 1
n(l):nm n“’:nﬁ) ()+n() ();énﬁ),ng).

Next, we construct an ordered bi-tree 7, of the second generation from 7; by
changing one of its terminal nodes a € T,°° = {r,, r11, 12, r13} into a nonterminal
node. Then, we define the second generation of frequencies by setting

2 2 2
(i’l() I’l(l ),ng),n3)) = (nuv nalsnazvnm)

Note that we have n® = n» or n,((l) for some k € {1, 2, 3},

n§2) (2) + n(Z) (2) £ n® @

2
n 1 an3 ’

where the last identities follow from Definition 8.3. This extension of 7; € BT (1)
to T, € BZ(2) corresponds to introducing a new set of frequencies after the first
differentiation by parts, where the time derivative falls on each of U, and ﬁ,,,., j=
1,2, 3. (The complex conjugate signs on 0, and U,, do not play any significant
role. Hereafter, we drop the complex conjugate sign. We also assume that all the
Fourier coefficients of u are nonnegative.)

In general, we construct an ordered bi-tree 7; of the jth generation from 7;_,
by changing one of its terminal nodes a € 7;0_01 into a nonterminal node. Then, we
define the jth generation of frequencies by

j G G Uy .
(n(])a nlj n2] ’ n’sj ) = (nav na17 n112’ na3)-

As before, it follows from Definition 8.3 that
n(j) — ngj) (J) + n(/) (j) ;é n(})’ n\j

Given an ordered bi-tree 7, we denote by B; = B;(T) the set of all possible
frequencies in the jth generation. Figure 2 below shows an example of a bi-tree
T € BE(3) ornamented by an index function n € DN(T).
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r rn

Figure 2. An example of a bi-tree 7 € BE(3). Here, we have ornamented the
nodes with the values of an index function n = {n,},c7 € M(7T), specifying the
generations of frequencies as discussed above.

We denote by ¢; the corresponding phase function introduced at the jth
generation:

¢; =¢; D, 0 0 n) = 0 — )+ ) — @) (8.3)
Then, by (2.4), we have

5o , ; , .
lp;| ~ n )2 |(nV — nﬁ’))(n(” _ né’))|,

max

where nV) = max([n|, [n{|, |n$"|, |n{]). Finally, we denote by s ; the phase
function (at the jth generation) corresponding to the usual cubic NLS with the

second order dispersion:
IO ) NG N (Hy2 (Hy2 (Dy2 2
wi = w0 0 0 0y = 1) — @) + @) — )
j ) i ()
— _2(n(./) _ nlJ )(n(_/) _ n3} ).
Note that we have

o] ~ D)% | = (8.4)

8.2. First few steps of normal form reductions. We first implement a formal
infinite iteration scheme of normal form reductions for smooth functions without
justifying switching of limits and summations. As before, let # be a smooth
global solution to (1.5) and u(¢#) = S(—¢#)u(¢) be its interaction representation.
For simplicity of notations, we simply set u, = U, in the following. We may also
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drop the minus signs and the complex number i. In the following, we establish
various multilinear estimates. Our argument has a common feature with [18] in
that Cauchy—Schwarz inequality plays an important role. On the other hand, while
the divisor counting argument played a crucial role in [18], we do not use the
divisor counting argument in maximizing a gain of derivative. (We, however, use
the divisor counting argument to show that the error term converges to 0, where
we do not need to show any gain of derivatives. See Section 8.4.)

Given s > —%, fix K = K(s) > 0 (to be chosen later. As we see in
Section 8.6, the constant K will also depend on other constants.) Using the
notations introduced in the previous subsection, for fixed n, we have

d o
2 . _ .
Sru (O] = —2Rei Y e, U, 0,

r'(n)

= —2Rei e u, = NPw),, (8.5)
> 2 [T u.

TieBE(1) neN(Ty) aET]DO
ny=n

where I'(n) is as in (2.3). (Due to the presence of =%, the multilinear form
N®(u), is nonautonomous in z. Hence, strictly speaking, we should denote it by
ND(@)(u(t)),. In the following, however, we estimate these multilinear forms,
uniformly in ¢ € R, and thus we simply suppress such ¢-dependence when there
is no confusion. The same comment applies to other multilinear forms.)

We divide the frequency space into |¢;| < K and |¢,| > K. Namely, define Ag
by

Ag = eN(T) :lp()| < K, n, =n}
and write
NO = NO 4 N,

where N is the restriction of N onto Ax and A" = N'® — A", Thanks to
the restriction |¢;| < K, we can estimate the nearly resonant part /\/’f” as follows.

LEMMA 8.5. Let M(l) be as above. Then, for any s < 0, we have

SNV @l < K (8.6)

nez

REMARK 8.6. In Lemma 8.5, we established an £!-bound on {N[" (u),},cz. In
this and the next subsections, we estimate various multilinear terms in the £} -norm.
We point out that, in proving uniqueness of solutions to (1.5) with the same initial
condition, it suffices to estimate these multilinear terms only in the much weaker
£°°-norm. Unfortunately, we do not know how to convert this gain in summability
to a gain in differentiability to go below —%. See Lemma 8.10.
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Proof. For notational simplicity, we drop the superscript (1) in the frequencies
n =n, and n;I). In view of (2.4), the condition 0 < |¢;| < K implies that

()~ (n) S (n2) < (13) 7 S s <K (8.7

on I'(n), provided that s < 0. Then, by crudely estimating the contribution with
Cauchy—-Schwarz inequality, (8.7), and |®8%(1)| = 1, we have

YMP@ ST YT > > ] fwal

nez neZ TieBE() |pI<K neN(T1) acT®
ny=n
1=

<t s ( £ ) (S E )]

neZ \ o) nmax|(n —ny)(n — n3)| neZ I'(n) i=1

S Kl
This proves (8.6). Note that the power of K is by no means sharp. O

Next, we consider the nonresonant term Afz(l)(u). It turns out that there is no
effective estimate for ./\/’2(1) (u) and thus we perform a normal form reduction. In the
following, we restrict our discussion to

lf1] > K, (8.8)

namely, the set of frequencies are restricted onto A%. When it is clear from
the context, however, we suppress such restriction for notational simplicity.
Differentiating by parts, that is, integrating by parts without an integral sign, we
obtain

/\f;‘><u>n=2Rea,[ Yoy e ]"[una]

TieBET() ne‘II(T) aeT®
ny
l¢1[
— 2Re Z Z ( l_[ una)
TieBT(1) ne‘ﬁ(T) aeT™
7l¢|t
=2Rea,[ oy« — |1 una]
TieBIT() ne‘II(T) aeT>®
R Y Y Y Rw, ] w
TieBT(W) beT* nedUTi) aeT e\ (b}
ny
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—i(p1+¢2)t
—oke Y Y S [u,
T2eBT(2) nenfﬁ(Tz) aeTy®
=: 3, Ny” (), + R? (u), + N?(u),. (8.9)

In the second equality, we applied the product rule and used the equation (2.2) to
replace 9,u,, by the resonant part R(u),, and the nonresonant part N(u),,. Note
that substituting the nonresonant part N(u),, amounts to extending the tree 7, €
BT(1) (and n € N(T))) to T, € BZ(2) (and to n € N(T>), respectively) by
replacing the terminal node b € 7,% into a nonterminal node with three children
bl, bz, and b3.

REMARK 8.7. Strictly speaking, the phase factor appearing in N'® (u) may be
¢1 — ¢, when the time derivative falls on the terms with the complex conjugate.
In the following, however, we simply write it as ¢, + ¢, since it does not make any
difference for our analysis. Also, we often replace £1 and =i by 1 for simplicity
when they do not play an important role. Finally, for notational simplicity, we
drop twice the real part symbol ‘2Re’ on multilinear forms, but it is understood
that all the multilinear forms appear with twice the real part symbol.

We first estimate the boundary term N>,

LEMMA 8.8. Let ./\/0(2) be as in (8.9). Then, for s > —%, we have

Z |A/32)(u)n| ,S Kmax(—l/z,—l—25)||u||é}1x. (810)

nez

Proof. As in the proof of Lemma 8.5, we drop the superscript (1). From (2.4), we

have
-8
sup Z nma;v( < sup Z 1 < Kmax(—l,—2—4s) (8 11)
2~ _ _ 2,448 ™~ :
nel o |1 ne o [(n —ny)(n —n3)|*ngts
[¢11>K |1|>K

fors > —%. Then, by Cauchy—Schwarz inequality with (8.11) and |®8%(1)| = 1,

we have
IAEED SIS DD Bl B ) [0
nez T1eBX(1) neZ nem(T) aeT™

I¢1I>K

https://doi.org/10.1017/fms.2018.4 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2018.4

GWP of the periodic cubic fourth order NLS 59

g”“””S{<s“p > |2> (ZZH 7 >}1/2

n€L I (ny neZ I(n) i=1
|¢11>K
max(—1/2,—1-2s) 4
SK lall%:-
This proves (8.10). O

The following estimate on R® is an immediate corollary to Lemma 8.8.

LEMMA 8.9. Let R be as in (8.9). Then, for s > —1, we have

2 —-1/2,—1-3 6
D IR @), S KT .

nez

Proof. This lemma follows from the proof of Lemma 8.8 and ¢> C £° once we
observe that

7125

Z Tmax < Z < Kmax(—l,—2—6s)
2 ~ 4+125‘ ~ ’

o |1 o ]

[p1]>K |p11>K

provided that s > — O

1
-

As in the first step of the normal form reductions, we cannot estimate N ® as
it is. By dividing the frequency space into

Ci={l¢1 + | S 61p1]'"} (8.12)
for some A € (0, 1) (to be chosen later) and its complement C¢, split N'® as
N(Z) :/\/'1(2) +./V.2(2), (813)

where |7 is the restriction of N'@ onto C; and N := N'® — N[?. (Clearly,
the number 6° in (8.12) does not make any difference at this point. However, we
insert it to match with (8.30). See also (8.16).)

Thanks to the frequency restriction, we can estimate the first term ./\/'1(2) as
follows.

LEMMA 8.10. Let /\/1(2) be as in (8.13). Then, for s > —%, we have

2 6
D TIMP @l < lullf,..

nez
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Before presenting the proof of Lemma 8.10, let us briefly describe how to
handle the second term of /\/2(2). On the support of N, @ we have

g1 + @2 > 6’| > 6K, (8.14)

Namely, the phase function ¢; 4 ¢, is ‘large’ in this case and hence we can exploit
this fast oscillation by applying the second step of the normal form reduction:

e~ @1+t :|

N W), :8,[ Z Z o1(1 + ¢) l_[ e

T>eBZ(2) neN(T7) aeTy®
ny=n

e i@+t
B Z Z d1(1 + ¢2) 8,( 1_[ un”)

T2€BX(2) neN(T2) a7y

ny=n

e~ @1+t
=8,[ Z Z d1(P1 + @) l_[ e

T>eBZ(2) neN(T7) aeT,®

ny=n

e @1+t
P IEP I D R L

T2eBE(2) beTy° neN(T2) aeT°\{b}

np=n

e~ i@1tdate)r

22 ey Ll

T3eBT(3) nE]qut:(Z}) aeT®
= N ), + ROw), + N®(u),. (8.15)

The first two terms N> and R on the right-hand side can be estimated in a
straightforward manner with (8.8) and (8.14). See Lemmas 8.12 and 8.13 below.
As for the last term N'®, we split it as

3 3
N® = NP + N,
where N and \}” are the restrictions onto

Co={lg1 + &2 + &3l S &1 + ol YU |1 + 2 + 3] S 8[|} (8.16)

and its complement C5, respectively. By exploiting the frequency restriction, we
can estimate the first term M<3) (see Lemma 8.14 below). As for the second term
/\/2(3), we apply the third step of the normal form reductions. In this way, we iterate
normal form reductions in an indefinite manner.

We conclude this subsection by presenting the proof of Lemma 8.10.
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Proof of Lemma 8.10. Note that we have |¢,| ~ |¢;| thanks to (8.12). Then, with
(84)and |u;| < (n\) )%, j = 1,2, we have

max

(n(l) )7GS(n(2) )76s 1
sup max 2max < sup DO e
nel |11 neZ | vy [ el (maximax ) 2468
ny=n ny=n
|11~ \¢2I>K I¢1|>K
1
< sup — <1, 8.17)
el T Yy
ny=n
provided that s > —3 3- In the last step, we first summed over na) and n(z) for fixed

[¢))

n® and then summed over n!" and n\" for fixed n.

e Case 1: We first consider the case IT,(7;) = {r,}. Namely, the second root node
r, is a terminal node. By Cauchy—Schwarz inequality with (8.17), we have

SPwisY Y o [w

neZ neZ TreBZT2) neN(Tr) aeT®
L (Ta)={r} Wr=n
[¢1]>K
2, 1/2
5||u||m{2( y Yo |¢| I1 una) }
neZ N THeBITQ) neM(T) 1 aeT o\
L (T2)={r2} Wr=n
[¢11>K
_ een 172
(n(l) ) 6s(n(2) ) 6s
< lullg sup (sup Y
TreBT(2) nez 1
M(To)={r) nedu(T)
[¢11>K

(T x [ )

nez nem(Tz) aeTy°\{
S ..

In the last step, we used the observations in Remark 8.4.

e Case 2: Next, we consider the case IT,(7,) # {r.}. In this case, we need to
modify the argument above since the frequency n, = n does not correspond to a
terminal node. Noting that 7,° = IT,(7,)*° U IT,(7,)* and hence

> Mwr=I( ¥ 1 wr)

neN(T2) aeTy* Jj=1 ne‘ﬁ(ﬂl(ﬁ))a,enj(ﬁ)”

ny=n ny;=n
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we have
2
IIGIVAED SO D o § )
nez neZ TreBT(2) neN(Ty) aeT®
My(To)#r} r=n
|p11>K
eon 12 12
(n(l) ) 6s(n(2) ) 6s ,
< sp S3(3 i) (5[] e
ToeBT(2) 1 0
Hz2(72)¢{r21 nez nen?iz(nTz) ne??_(Tz)aeT
lp11>K
12
S sup Z( >oI1 <na>2“‘|unu|2>
TeBT(2) .
1722(7’2)95{&1 nez ne‘ﬂz(z’z) aeT,

1/2
<o SI( Y 1 efer)

TEBIQ) ey =1 N neNUT;(T2) ajell; (T)™

I (T2)#{r2} ny.=n
J
1/2
2 2
< sup n(z > 1 o)
2
HTZZ(%;T&(U) j=1 " nez negrtlf.ﬁ:’(y’z))ajeﬂ (T
J
6
< .
This completes the proof of Lemma 8.10. L]
p p

REMARK 8.11. The above computation in Cases 1 and 2 in particular shows that,
given 7; € BE(j), j € N, we have

Z( > 11 |unu|2>l/2 13372

neZ ~neN(T;) aeT”c

ny=n

8.3. General step: Jth generation. After the Jth step, we have

Né“(unzaz[ Y oy e u]

T;eBZT(J)neN(Ty) 1_[] 1¢J aeTye

ny=n
- Y XY arg R [T
TreBIT(J) beT® nenmgn 1_[1 1 aeTe\{b})
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*l¢/+1l

D IEDY H“ml_luna

Ti1€BTU+D neN(Trin) €T,
= 8N ), + RV ), + N ), (8.18)
where 5 ; is defined by
J
b= o, (8.19)
j=1
Recall that |¢;| > K and
16,1 > (2 +2)° max(lg; 11", [¢u]'™") > (2j +2)°K'~, (8.20)
for j = 2,...,J. One of the main tasks in estimating the multilinear forms in

(8.18) is to control the rapidly growing cardinality ¢, = |*8%(J)| defined in (8.2).
As in [18], we control ¢; by the growing constant (2j + 2)* appearing in (8.20).
First, we estimate AV’ and RV+D.

LEMMA 8.12. Let /\/O(H]) be as in (8.18). Then, for s > —%, we have

D OING )| S KT a3

nez

The implicit constant is independent of J. The same comment applies to
Lemmas 8.13 and 8.14 below.

Proof. From (8.19), we have
;| < max(|¢; 11, |¢;])-

Then, in view of (8.20), we have

QiPK'1p;| < |pi1119;1. (8.21)

Hence, with (8.20) once again, we have

J J J
[]@i+2°k"1¢,D) < Inllds | [ [C@2°K' 19,1 < [ [ 18517 (8:22)

j=1 j=2 j=1
We only discuss the case IT,(7;) = {r.} since the modification is
straightforward if IT,(T;) # {r,}. As in (8.17), we have
n() )=os nl) y=6s 1
( max) ~ ( max?) /S 1 (8.23)
|9 Il (uax)? [T
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fors > —%. Then, by (8.22) and (8.23), we have

J
( y(é;x) —6s K*J(l*@) ( ;{;ix) 6s
Sup Z 1_[ | |2 J 2i 23.8 Z 1_[ o]
"L hem(Ty)  j=1 ¢/ Hj:l( JE2)7° nel a7 o j
np=n nr=n
_ I#il=K $;#0
161> 2j+2)3K 10 j=1.d
=2,
K—/0-6 J 1
S“ J 2 23-Sllp Z 1_[|I'L'|l+
HJ:I( J+2)7 nez neN(7y) j=1 "/
r=n
wj#0
j=1,...,
CJK7](170)
(8.24)

<o
[ j=1 (2j+2)°
By Cauchy—Schwarz inequality with (8.8), (8.20), and (8.24), we have

G | < ()™
SwE S Y {(s Y [T YA
J

neZ T;eBI() neL pen(Ty)  j=l
bot — ny=n
2(TH={r2} . |¢|'\>K
1¢j1>2j+2)3Kk!=?
2]

(T x I erwr))

neZ neN(Tj) aeTP\{r2}
ny=n

Cy - (jj/2
[1/_,2j +2)%2

~

—J(1-6)/2 |4y (|20 +2 —J(1=6)/2 1112 +2
KOO a3 < K002 ) 3

(8.25)

This completes the proof of Lemma 8.12. O

LEMMA 8.13. Let RY*V be as in (8.18). Then, for s > max(—3+, —(3 — 20)/5),
we have

S IR ), | S K WDy (8.26)
neZ

In particular, if 6 € (0, %], then (8.26) holds for s > —%.

Proof. Just like Lemma 8.9 on RP this lemma follows from a modification of
the proof of Lemma 8.12.
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We first consider the case |¢,;| 2 |¢;|. Noting that (n{))™ < |¢,| fors > —1,
it follows from the second inequality in (8.22) and (8.23), we have
g Ty (D)7
_4s 4
DR IRCRD (A
nez neN(Ty) Jj=1 |¢’|
ny,=n
_Ieil>K
11> @2j+2° K~
=20d
—(J=1)(1-6 Iy y-4s 1 ) }—6
o K 3 (n50) ™" 7 (1)~
[RCT R ? 6,1
[T,Qj+2° ez, b &l 10 o
ny=n
670
j=1..,J
C!K-U-D1-9)
S (8.27)

[1_,2j+2)?

provided that s > —%. Then, proceeding as in (8.25) with (8.27), we obtain (8.26)
in this case.

Next, consider the case |$]| < |¢y|. In this case, we have |¢;| ~ |(75J,1|.
Proceeding as in (8.22) with (8.21), we have

J—1 J
AN N CHR SR IR

j=2 j=1

From (8.20), we have |¢;| > (27 4+ 2)%|¢,_1|' ~ (2J +2)|¢;|'*. This gives

J J
K200, P2 TTe2) + 210, < [ T16,1

j=1 j=1
Hence, we obtain

J

(j) )—6s
(J) \—4s (nmax)
o
ne neN(Ty) j=1 J
ny=n
R
1§ 1>@2j+2)3K =0
j=2,..., J
—(J=2)(1-0 J)\—10s J—1 N N—6
< _KTOT - sup Z (35%) sl—[(”fﬁzx) i
J . 3-20
[T21Q2j 420 nez S5, 1941 o 19l
$/70
j=1,..,J
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C’ K-~
L2+ 28

provided that s > —% and s > —(3 — 26)/5. Then, proceeding as in (8.25) with
(8.28), we obtain (8.26) in this case. [

(8.28)

Finally, we consider N'V/*V_ As before, we write
NUFD = D D (8.29)
where N’ is the restriction of A"+ onto
Cr={1gs1l S QT +2°1g, 1" "YU llgsi] S QT +2°1pi]'™")  (8.30)

and N}/ := NUD N Y*D In the following lemma, we estimate the first term
./\/'1(”1). Then, we apply a normal form reduction once again to the second term
./\/'2(”1) as in (8.18) and repeat this process indefinitely. In the next subsection, we
also show that this error term A}’ *" tends to 0 in the £!-nom as J — oc.

—1 we have

LEMMA 8.14. Let M(]+l) be as in (8.29). Then, for s > 3

Z |/\/'1“+”(u),,| < K—((J—l)(l—@))/z||u||%+4, (8.31)

nez

Proof. We proceed with (8.21) as in the proofs of Lemmas 8.12 and 8.13. It
follows from the restriction |¢y11| = | + ¢yi]l < (2J + 2)%|dy)'~¢ that
|ps1] < J3|¢,|. Then from (8.21), we have

J J
Billgsl [ [@i+2°K 19,1 < P[] 165

j=2 j=1

Proceeding as in (8.24), we have

LI+ 6 (n(/)) —6s
+ s max
wp o Y e e

2
nez ne?}(j}ﬂ) j=1 |¢j|
[p11>K
16 1>(2j+2)3K' 0
Jj=2,.., J
K-(U-D1-0) (n) =65
S el DD H Y
[T Q2j+2) nez neN(Ty51) j=1 J
)
j=1,...,J+1
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CJ+1K7(171)(1—0)
[15@j+27°

(8.32)

provided that s > —%. Then, (8.31) follows from the Cauchy—Schwarz argument

with (8.32) once we note that
CJ+1C(J+1)/2

[/2Qj+2%

uniformly in J. O

~

8.4. On the error term. In this subsection, we prove that the error term

./\/’2(J+1)(u) tends to 0 as J — oo under some regularity assumption on u.
From (8.18), we have

—i$ypit

A/‘z(]+l)(u)n = - Z Z u,,

Tr+1€BTI+1) ned(Tr41) 1_[] 1¢/ aeTy,
nyp=n

l¢]l

== > X X 7 ———Nw,, [] w.. 33

TieBIT() beT® ne‘n(T/) aeT°\{b}

where it is understood that the summations in (8.33) are restricted to frequencies
satisfying (8.8) and (8.20). (In fact, ]\f;”l) is also restricted to C§ but we do not
need to use this fact. Namely, our argument also shows that NV (u) — 0 as
J — .)

LEMMA 8.15. Let N;JH) be as in (8.33). Then, givenu € H'S(T), we have

>INy, — 0, (8.34)

nez
as J — oo.
Proof. The following simple estimate yields the minimum regularity restriction

s > ¢, required for N 0as J — oo. By Hausdorff-Young’s, Holder’s,
and Sobolev’s inequalities, we have

—1 /15 3 3
IN),, llee = E | | u, | < IF (DI S lhallge. (8.35)
nsmg-l)ae'ﬁoo EZZ
ny=nj
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o Case 1: We first consider the case IT,(7;) = {r»}.
Suppose that b # r, in (8.33). In this case, by summing over the 2J variables
{na}aeTJoo\{h,,z, first and then over n € 7Z, we have

ZZ <1>)1+ 1_[ |“”a2<z i Z l_[ w,, °

neZ neN(Ty) Mmax aeT\{b,r2} neZ neN(Ty) aeT\{b.r2}
ny=n

ny=n

S lhullys. (8.36)

Then, by Cauchy—Schwarz inequality with (8.22), (8.35), (8.36), and | T, \ {r:}| =
2J + 1, we have

YN @S T D Y Nl

nez TIEBT(J) beT;® nel neN(7Ty)
IL(T))={r2} ny=n
|¢1|>K
1§;1>(2j+2)3K'~°
Jj=2,...J

1
X —5 = 1_[ |llna|

Hj:l 1451 a€TP\(b,r2)
3
N J”“n”é% [l s

<y (T e 1w

neN(7,) H/‘=l 191 a€TPo\{b,r2}

T€BT) nez
= ny=n
I (Ty)={r2} |¢>1\>K
1§ 1>2j+2)° K0
Jj=2,...,J

JC]
LK =7 7 ~an
[T, 2j +2"

J
X sup {(sup Z (ngix)“l_['(;')
J

—J(1-6)/2 3
K=/0R | 2 w16

T;eBIJ) nez
(T =r3) neMTH
¢;70
j=L..., J

<Z > PROR )1+ [ |“”«|2)}1/2

neZ ned(Ty) \Jimax aeT\(b,r2}

ny=n

2J+1

JCJCJ
—-J(1-6)/2
S S

NI @) +2)%

for any K > 0, as J — oo. See Section 8.5 for a more precise condition on K
required for the convergence of the series for ./\/0(/ ), J\/](" ) and RV,

lall3,,6 — 0 (8.37)
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Next, suppose that b = r, in (8.33). This time, we need to work our way from
the bottom. Let us first state and prove a useful lemma which follows from the
nonresonance condition in Definition 8.3(c) and the divisor counting argument.

LEMMA 8.16. Let J € N. Given an ordered bi-tree T; € B (J) with a chronicle
{7;};:1 such that IT,(T;) = {r2}, fix a € T;° \ T;°,. (By convention, we set T
to be a bi-tree of the zeroth generation consisting of the two root nodes r\ and r,
Jjoined by an edge. Hence, we have T° = {ry, r,}.) Then, for fixed m € Z and
vie€Z, j=1,...,J, we have

J
#neNT) ing=m, wy@=v;, j=1...J)<C J]lvI". 838)
j=1

In view of IT,(7;) = {r,}, we can identify the ordered bi-tree 7; with an
ordinary (ternary) ordered tree (in the sense of [18, Definition 3.3]). Lemma 8.16
is really a property of an ordered tree. Before proceeding to the proof of
Lemma 8.16, let us recall the following arithmetic fact [20]. Given n € N, the
number d(n) of the divisors of n satisfies

d(n) < Con’ (8.39)
for any § > O.

Proof of Lemma 8.16. We first consider the case J = 1. Letry;, j = 1, 2, 3 be the
children of the first root node r;. Then, it follows from p, = —2(n,,, —n,,) (1, —
n,,) and (8.39) that given n,, = m for some k € {1, 2, 3}, there are at most
o(|w1|°") many choices for n,,;, j # k and hence for n, = n,,.

When J > 2, (8.38) follows from an induction. In obtaining the ordered bi-tree
7T, we replaced one of the terminal nodes, say b € 7;°, into a nonterminal node.
In particular, a € 7;° \ 7;°, must be a child of b. Then, applying the argument
for the J = 1 case, we see that for fixed n, = m € Z and u; € Z, there are at
most o(|p;|°T) many choices for n;, (and the frequencies of the other two children
of b). Now that we have fixed n;, (up to o(|;|°*) many choices), (8.38) follows
from the inductive hypothesis on 7;_;. O

REMARK 8.17. Note that Lemma 8.16 also holds even if we replace any of u;

We continue with the proof of Lemma 8.15. Before proceeding to the case

b = ry, let us go over the main idea in the previous case (b # r;). When
b # ry, we placed N(u),,, in the £;°-norm and by expressing the summation over
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n € N(T;) as

Yo=Y, (8.40)

neN(Ty) neZ neN(Ty)
ny=n
we applied Cauchy—Schwarz inequality (in particular, in n, = n) in the second
inequality in (8.37), thus creating the factor

3
T lle2 INQ,, lleze S llwallez [1uall 6

thanks to (8.35). This left 2J factors u,,, a € 7, \ {b, r,}, to which we applied
(8.36). In this argument, it was crucial that we have b # r, so that we have the
factor u, = u,, for the application of Cauchy—Schwarz inequality in n,, = n.
When b = r,, we no longer have the factor u, = u,, . Instead, the term
corresponding to the frequency n,, is given by N(u),,,z, which we place in the
Zﬁ‘; -norm as in the previous case. Now, fix @ € 7,°\ 7;°,. Note that o # r.

Write
Z :Z Z . (8.41)

neN(7y) meZ neN(Ty)
Ng=m
Namely, we single out the frequency n, = m at the terminal node o € 7,° \
77°,. Compare this with (8.40) from the previous case, where we singled out the
frequency n, = n at the terminal node r, € 7,°. In the following, we use u,, = u,,
as a replacement of u, = u,, in the previous case and apply Cauchy—Schwarz
inequality in n, = m. Also, note that, as a variant of (8.36), we have

ZZ (J>)1+ H |na2<z i Z 1_[ lu,,|?

meZ neN(Ty) Tmax acTo\{r,a} meZ neN(77) acT\{r,a}
Ng=m ng=m

S lulflgz. (8.42)

Indeed, (8.42) follows from first summing over the 2J variables {n4}se7r\(r2.0)
and then over m € Z with nl) > |n,|. Then, from Cauchy—Schwarz inequality,

max

(8.22), (8.35), (8.40), and (8.41), we have

Y OINT @l S IN@,llge D Y. 1 [] Iw.l
IT5- 151

nez TreBT) neN(7Ty) aE7-j°Q\{r2}
IL(TH={r} _  |1l>K
161> 2j+2)°K '~
=2,
Cy —J(—
K (1-6)/2

TR
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I 12
SETIE D D DI ) n¢—}

TieBEWJ) —
M(TH=lr)  "E eI =
911> K

181> Q2j+23K '~

.....

1 21/2
A2 e J

ned(7;) N max acTo\{r2,a)
By (8.42), (8.4), and Lemma 8.16,

J
CCJ

mlf*m Ol a3,
j=1

~

J—1

1 R LG
X sup {Z|um|2 Z |]|3/21_[|v'|2}
j=t "

TreBEJ)
m(Th=tr) = "<F bEno)

C’c -
ST s iz)ssz JOOR 20 ulld —> 0, (8.43)
j=1

as J — oo.

e Case 2: Next, we consider the case IT,(7;) # {r.}. Note that we have b # r,
by assumption. In this case, we can proceed as in (8.43) by replacing r, by b and
choosing & € 7°\ (772, U {b}). O

REMARK 8.18. (i) If we assume a higher regularity u € H°(T), 0 > %, we
can conclude (8.34) simply by the algebra property of H? (T), which suffices
for our purpose. See [33, Section 4.4]. We, however, decided to include the
argument above since this provides the sharp regularity criterion (o > é

for the vanishing of the error term. Moreover, Lemma 8.16 seems to be of

independent interest.

(i1) In view of the equation (2.2) with the cubic nonlinearity, we see 0 = % is
the minimum regularity required for the application of the Leibniz rule in
(8.9), (8.15), and (8.18). See [18]. By a computation similar to that in this
subsection, we can also justify the switching of the time derivatives and the
summations when o > é (by the dominated convergence theorem). We point
out that it is also possible to justify the switching of the time derivatives
and the summations as temporal distributions under a weaker assumption.

See [18, Lemma 5.1].
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8.5. Proof of Proposition 7.1. In this section, we put together all the estimates
obtained in Sections 8.2—8.4 and prove Proposition 7.1.

Let u be a smooth global solution to the Wick ordered cubic 4NLS (1.5) and
u be its interaction representation as above. Then, by applying the normal form
reductions J times, we obtain

J+1 J+1 J+1
alw, > =0,y Ny, + Y RY@, + Y N @), + N ),
j=2 j=2 j=1

(Once again, we are replacing £1 and +i by 1 for simplicity since they play no
role in our analysis.) In view of Lemma 8.15, by taking the limit as J/ — oo, we
obtain

afu, =8,y Ny @, + Y RY@), + Y N (),

Jj=2 j=2 j=1

Then, integration over [0, ¢] yields the identity (7.2) for smooth solutions. (With
a slight abuse of notations, we are identifying ./\/'o(j )(u)n with j\/‘o(j ) (u),, and so
on. The same comment applies in the following.) Furthermore, the multilinear
estimates (7.3), (7.4), and (7.5) follow from Lemmas 8.5, 8.8, 8.9, 8.10, 8.12, 8.13,
and 8.14 and choosing 6 € (0, 2]. (We fix an absolute constant # € (0, 2] once and
for all and thus suppress dependence of various constants on 6 in the following.)

In the following, we verify (7.2)—(7.5) for rough solutions u« to (1.5) by an
approximation argument. Fix s € (—%, 0). Let u be a (possibly nonunique)
solutionto (1.5)in C([—T, T]; H*(T))NF*%(T), thatis, with M = 1, constructed
in Section 6. Note that we have T = T (||u(0)||z<) > 0. See Remark 6.4.

Let uy be a smooth solution to (1.5) with uy|,—o = P<yu(0). Then, from the
construction in Section 6, there exists a subsequence {uy, }xey such that

klirgo lu —unlcyms = 0. (8.44)
Moreover, uy, and u satisfy a uniform bound:

sup llunllcrmess ullcpns < v~ u(O)] s (8.45)

keN

Hence, it follows from (8.44) and (8.45) that, for each fixed n € Z, we have

Tim {[@iy, (n, O = [y, (n, 0) ) = [@n, D — [, O, (8.46)

uniformly in¢t € [T, T].
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Since uy, is smooth, we have

- 2 - 2
|MNk(n7t)| _IuNk(n70)|

=Y N un)(n, 1)

j=2

+ /t [ZM"’)(uNk)(n, )+ D R (), z’)] dr'. (8.47)
o LT =

t
0

Note that the identity (7.2) for a rough solution u follows from (8.46) and (8.47)
once we prove

lim Y NG ) 0) = Y NG @), 1), (8.48)
Jj=2 j=2
lim > ROy, 1) dt' = / Y ROW)(n, 1) dt, (8.49)
— 00 0 = 0 =

t X t 00
lim f > Ny, 1y dt = / S NPy, 1)t (8.50)
Tedo o 0 j=i
uniformly in ¢ € [T, T]. In the following, we only verify (8.48), since (8.49)
and (8.50) follow in an analogous manner. .

From Lemmas 8.8 and 8.12 with the multilinearity of ./\/:J(J ) and (8.45), we can
choose K = K(r) > 1 such that

D NG @)ty = Y NG @), 1)

j=2 j=2

[o¢]
S Kmax(71/2,7172s)r3||u _ uNkHCTHS + ZKf((jfl)(lfe))/ZijJrl”M _ MNkHCTHS
j=3

S COllu —uylleyn —> 0,

as k — oo, uniformly int € [—T, T]. This proves (8.48).

Finally, note that, in view of the global existence (Theorem 1.1) and the Sobolev
norm bound (Proposition 6.6), we can iterate the above discussion to conclude the
identity (7.2) for all ¢ € R. This completes the proof of Proposition 7.1.

REMARK 8.19. In the above argument, we assumed that u € C([-T,

T]; H(T)) N F**(T). It is, however, sufficient to assume that u € C([—T,
T1; H*(T)) is a solution to (2.2) for some T = T (||uo|| =) > 0 with some smooth
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approximating solutions {u,},cy such that

lim [lu — uyllc,ns =0 and  suplluyllcme, Nulleyns < Nu(O) g,

n—oo neN
replacing (8.44) and (8.45). The same comment applies to the proof of
Proposition 7.2 presented in the next subsection.

8.6. [Energy estimate for the nonresonant part. In this subsection, we briefly
discuss the proof of Proposition 7.2 on the nonresonant part of the energy estimate
(7.1) for the difference of two solutions with the same initial condition. In fact,
we reduce the matter to (a slight modification of) the discussion in the previous
subsections.

Given ug € H*(T), s > —%, let u and v be two solutions to (1.5) on [T, T]
with the same initial condition u|,—y = v|,—¢ = u,, satisfying

lwllcrns llerms <~ lluollas.

Let u and v denote the interaction representations of u and v, respectively. Then,
from (7.1), we have

I=—2Rei Y (n)*[N(w), — N¥),]@, —¥,)

nez
= —2Rei Y (n)*N), T, +2Rei Y _(n)*Nw),7,
nez nez
+2Rei Y (m)*N¥),8, —2Rei Y (m)*NW),¥,
nez nez
=: Ly — Ly — Ly + 1. (851)

From (8.5) with (2.2), we have

Lu=Y (m*N®@, and L,=) >NV, (852

nez nez

By repeating the arguments in the previous subsections, we have

/ L) = DO N @y, 1)

0 Jj=2 neZ

+ f [Z Do RO@m, )+ ) N @), t’)] dt’ (8.53)
0

j=2 neZ j=1 nez

t
0
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and
/ L, (t) dt’ —ZZ Ny ), r)
j=2 neZ
- / [Z Y mWPROW @ )+ >3 (>N W), z’)] dr'. (8.54)
0 J=2 neZ j=1 neZ

In Sections 8.2 and 8.3, we performed the normal form reductions for each fixed
n € 7 and the weight (n)* in (8.52) does not affect the argument.

In order to handle the cross terms I, and I,,, we need to introduce new
notations. Define NV (u, v),, by

NO@,v), =-2Rei > > e_i¢"( I u)( I] an)~

ﬂE%T(l)nenm_(T) aell; (T1)® bell(T1)>®
Namely, N'®(u,v), is constructed from N in (8.5) by taking different
functions u and v over the terminal nodes of the first tree IT;(7;) and the second
tree IT,(7;), respectively. (Note that the second tree IT,(7;) consists only of the
(second) root node r,. We, however, use this notation in order to be consistent
with the general case. See (8.55), (8.56), and (8.57).)
Then, we have

Iuv = Z<n>2.\'j\7(l)(u’ V)n and Ivu = Z<n>2xj\7(l)(v’ u)n-

nez nezZ

We also make similar modifications to the multilinear terms introduced in
Sections 8.2 and 8.3 and define N(’)(u V), RO, v),, and N9 (u, v), by

N v, = Y >

Ti—1€BE(j—1) neN(T;-1) 1_[

x< I1 u_>< ] v,,,,), (8.55)

aell (Tj-1)® bell)(T;—1)®
l(;j 1t

ﬁ(j)(u, V), = Z Z Z 1_[] 1~ R(),,

Ti-1€BE(j— ])0167—07o neMN(7T;-1)
ny=n

x< I1 {}u,,a>( [ {}V,,b>, (8.56)

aell (Tj—>\{a bell (Tj—1)>®\{a

71(]5] 1t
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N, v), = Z Z '¢f¢( l_[ u,,a)< l‘[ an)- (8.57)
k

T;€BE(j) neN(T;) aell | (T;)™® bellr (Tj)™®

ny=n

(As mentioned in Remark 8.7, we are dropping unimportant +, +i, and 2 Re.)
Compare these definitions with (8 18). Moreover, we define /\/ U >(u v), and

/\/;(’)(u, v), as the restrictions of N (u, v), onto Cj-1 and C§_; (see (8.30)).
Then, from the discussion in the previous subsections, we have

/ L, (1) dt’ _ZZ PN (u, v)(n, z)

Jj=2 neZ

/ [ZZ PR (w, v)(n, 1)

Jj=2 neZ

+ 3N P NP @, vy, f)] dr’ (8.58)

j=1 nez

and

/ L (") dr’ —ZZ N (v, w)(n, t)

j=2 neZ

/ [ZZ VERD (v, w)(n, 1)

Jj=2 neZ

+ Z S >N (v wn, z/)] dr'. (8.59)

j=1 nez

In the following, we simply drop the factor (n)*. (By making use of the
factor (n)*, we may extend Proposition 7.2 to s > —%. This, however, involves
modifications of the multilinear estimates in Sections 8.2 and 8.3. In view
of the regularity restriction s > —% for the resonant part (Proposition 7.1),
we simply use the multilinear estimates from Sections 8.2 and 8.3 and prove
Proposition 7.2 for s > —%.) Then, by applying the multilinear estimates in
Lemmas 8.5, 8.8, 8.9, 8.10, 8.12, 8.13, and 8.14 (with § € (0, 2]), it follows
from (8.51), (8.53), (8.54), (8.58), and (8.59) that

t t
f I(#)dt'| = / {L (@) = Ly (@) — (L () — Ly ()} 1’ (8.60)
0 0
oo
5 Kmax(71/2,71725)r2”u _ UH%TH‘ + Z Kf((,/fl)(lfe))/zrzrz”u _ v”ZcTHS
Jj=3
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o0
+ TKmax(—l/Z,—]—3s)r4”u _ U”i‘THJ +T Z K—((j—3)(1—9))/2r2j”u _ U”%‘TH»‘
j=3

o0
1/2-2s..2 2 —((j=2(1-0))/2,2j 2
+ TR u = 0|3y + T Y K220y — 2,
j=2

uniformly for ¢+ € [—T, T]. Note that we obtained two factors of u — v thanks
to the double difference structure of (8.51). (By writing the double differences
of the multilinear terms of the jth generation in a telescoping sum, we obtain
O(j?) many terms. This loss of O(j?) does not cause any issue in view of the
fast decay in j in the multilinear estimates in Section 8.3.) Then, by first choosing
K = K(r) > 0 sufficiently large and then choosing T = T(K) = T(() > 0
sufficiently small, we conclude that

‘ / I(t") dt’
0

fort € [-T, T]. This completes the proof of Proposition 7.2.

< ! 2
< leu = vlle, ms

REMARK 8.20. Integrating (7.1) from O to ¢, we obtain the identity:
llu(t) = v(@) 17

= / {(qu(t,) - Iuv(t/)) - (qu(t,) - Ivv(t,))}dt,
0

+/ Z(n)zs(Gm(u)(n, 1) = Gu(W)(n, 1)U, —v,)v,(t") dt’,
0 hez

(8.61)

where G () (n,t) = [U,(t)|* — [1,(0)|* as in (1.14). In view of (7.2), (8.53),
(8.54), (8.58), and (8.59), we see that both the first and second terms on the right-
hand side of (8.61) can be expressed as a sum of infinite series consisting of
multilinear terms of increasing degrees. Furthermore, thanks to the multilinearity
of the summands, we can extract two factors of (the Fourier coefficient of) u — v
in both the first and second terms on the right-hand side of (8.61).

In this paper, we established spatial multilinear estimates (for fixed ¢) and
showed that these multilinear terms are summable, provided s > —%. This allows
us to obtain the enhanced uniqueness in Theorem 1.5. It may be of interest to
establish space—time estimates on these multilinear terms (arising from the energy
of the difference of two solutions in the E* (7T )-norm rather than the Cr H*-norm),
namely in terms of the F**(T)-norm as in Section 5, possibly allowing us to go
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below s = — % We point out that the argument in [14] may be of use in estimating
multilinear terms of (arbitrarily) large degrees.

REMARK 8.21. If we proceed with an energy estimate in the spirit of
Proposition 5.2 in Section 5 (but without symmetrization) in terms of the
F**(T)-norm, we can establish the following energy bound; let s € (—%, 0) and
o = —8s/3 + ¢ as in (4.12). Then, there exists 6 > 0 such that

T
‘ f I(¢) dt
0

for any T € (0, 1]. By combining with the linear and nonlinear estimates
(Lemma 2.5 and Proposition 4.1), the energy estimate (8.62) yields uniqueness

for s > —=, not sufficient for Theorem 1.5.

0 2 2 2
ST (”u”F-»‘-u(T) + ”v“F.\ya(T))”u - U”F‘w(r) (8.62)
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