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A FAST ALGORITHM FOR CURVE SINGULARITIES

SHENG-MING M A

We demonstrate a fast algorithm to resolve local singularities of algebraic curves.
The algorithm is based on the monomial transform and is independent of any other
coordinate change. Two new invariants are introduced to gauge the singularities
and sharply control the number of algorithmic steps. Our algorithm is applicable
to both real and complex domains.

1. INTRODUCTION

Resolution of an algebraic curve!s singularity is one of the incipient topics for
algebraic geometry. There are two routine algorithms to resolve curve singularities in
textbooks. Puiseux series ([2, 10]) is an algorithm conceived by Newton along with
his Newton polygon whose geometric property fully characterises the singularity of
its associated curve. This is a fast and powerful algorithm except that the fractional
exponents of the series inevitably lead to excessiveness of multiple root branches and it
is not adapted to algebraic variety of higher dimensions.

The birational transform ([2, 4]) is a modern method introduced by Noether [6]
and is applicable to high-dimensional algebraic varieties. However the algorithm is slow
and has no direct relationship to the curve's Newton polygon. As a result it is difficult
to discern singularity attributes of the curve from the resolution process.

As a substitute for the birational transform, the monomial transform emerged in
the 1970s ([5]) and was employed by Varchenko on oscillatory integrals [1, 9]. The
first resolution algorithm based on it appeared in 1990s by Oka [7]. Nevertheless his
algorithm relies on ambiguous coordinate changes, abstract algebraic attributes and
contradiction by assuming infinite algorithmic steps, which are also the inconveniences
of previous resolution algorithms based on birational transform.

Resorting to two decreasing singularity invariants, we rely on the power of mono-
mial transform itself without additional coordinate change to eliminate ambiguity and
enhance efficiency. In addition, computational implementation of the resolution algo-
rithms ([3, 8]) constitutes another motivation for the author.
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404 S-M. Ma [2]

All our polynomials are in two variables unless stated explicitly. Further, we are
interested in local singularity of a curve at the origin of the (x,y) -plane. In part 2
the perfect Newton polygon consolidates the traditional one so that the induced mono-
mial transforms are bijective regardless of the axes. The partial resolution and partial
reduction in part 3 constitute a resolution step that factorises a polynomial and then
reduces its singularity to a branch point of the origin. In part 4 and part 5 we intro-
duce two singularity invariants, singularity height and singularity index, and prove that
their alternate decreases terminate the algorithm in finite steps whose number can be
sharply estimated by these invariants. We exemplify their usage in Example 4.4 and
Example 5.4.

2. PERFECT NEWTON POLYGON

A positive quadrant with vertex (a,b) is defined as {{x,y) € R2 | x > a,y
^ 6}. Given a polynomial, consider the union of the positive quadrants whose ver-
tices correspond to the exponents of its monomials.

DEFINITION 2.1: The Newton polygon of a polynomial is defined as the convex
hull of the above union of positive quadrants.

The Newton polygon of a monomial xayb is simply the positive quadrant with
vertex (a, b); while the Newton polygon of polynomial x3y + xy3 — 2y4 is {(x, y) £ R2 |
x ^ 0,j/ ^ l,x + y^ 4} .

The boundary of a Newton polygon always contains two noncompact faces that are
either part of or parallel to the two axes. Denote a compact or noncompact face of a
Newton polygon satisfying equation mx + ny = p as [mi + ny — p] with m, n € Nu {0}
and (m, n) = 1 if mn ^ 0.

Suppose {(a,b)} = [mx + ny = p] n [mi + ny = p\ is a vertex of the Newton
polygon. Then we have the following lemma:

LEMMA 2 . 2 . If

then there are a sequence of straight lines rjX + Sjy = Qj ( I ^ J^J ) passing through (a, 6)

such that for 1 ̂  j < J,

(2.2) det(m r i Ude t ( r ' r '+l) =det (
\n sx) \Sj sjij \sj n

PROOF: (2.1) implies that the integer vectors I 1 and I __ I are not a basis of
\n) \n)
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[3] Curve singularities 405

the integer lattice in R 2 . Hence 3 Ai, A2 6 (0,1) and an integer vector I I such that

C) •>•(:)+*©• **•«
(m r\ v , (m m\ , (m fh\

det = A2 det _ < det _ ,
\n sJ \n n) \n n J
(r fh\ % , (m fh\ (m fh\

det _ = Ai det _ < det _ .
\s n) \n n) \n n)

The conclusion of the lemma follows from a decreasing induction on the integer
values of the determinants. D

We name the sequence of straight lines TjX + Sjy = qj (1 < j ^ J) satisfying (2.2)
as a sequence of auxiliary lines at vertex (a, b).

DEFINITION 2.3: A Newton polygon with auxiliary lines added to each vertex is a
perfect Newton polygon.

Lemma 2.2 indicates that we can always refine a Newton polygon into a perfect
Newton polygon. Referring to each compact or noncompact face and each auxiliary
line of a perfect Newton polygon simply as a face hereafter, we sort and enumerate all
faces of a perfect Newton polygon in increasing order of their slopes and denote them
as LK = [mKx + nKy = pK] respectively (1 ^ K < p). Lemma 2.2 indicates that two
adjacent faces LK and LK+\ of the perfect Newton polygon satisfy:

(2.3) (
\ nK nK+i

for 1 ^ K < p . In particular we have L\ = [x = Pi] and Lp = [y = pp].

Consider the perfect Newton polygon of a generic polynomial P(x, y) with p > 2.
Let {(aK,bK)} — LKC\LK+i be one of its vertices. We reorganise P(x,y) by separating
the monomials of LK and LK+i from other ones as follows:

(2.4) P(x,y) = cKxa«yb« +
(a,0)€LKULK+i ((5,7)

with (a,/3) ^ (aK,bK) and (<5,7) $ LKULK+1.

It is apparent that V{a,0) € LK, 3lap € NU {0} such that a = aK - njap and
0 = bK + rnKlQp. By (2.3) one instantly has:

(2.5) mK+ia + nK+i0 - pK+i = lap , (a,0)&LK.

Similarly for V(a,fi) 6 LK+i, 3lap € NU {0}, such that a = aK + nK+Jap,

(3 — bK - mK+Ja/3, and

(2.6) mKa + nK/3 - pK = lap , (a, /?) € LK+1.
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406 S-M. Ma [4]

3. PARTIAL RESOLUTION AND PARTIAL REDUCTION

Based on two adjacent faces LK and LK+i of a perfect Newton polygon as above,
consider a monomial transform TK from the (XK,YK)-plane to the (x,y)-plane:

To obtain 7J,"1, we assume xy ^ 0 and resort to (2.3). Thus if we exclude all the
axes, TK is bijective.

Each TK factorises P(x,y) in (2.4) into P(x,y) = X^Y^K+1PX(XK,YK) with:

(3.2) Pl{XK,YK) = cK+ J2
(a,0)£LK

CA Xm>zS+nK'1~p*Y™K+li+nK+11~PK+1

here la$ and T,ap are as in (2.5) and (2.6) respectively. Due to the convexity of Newton
polygon, mK6 + nKy - pK, mK+1<5 + nK + 17 - pK+l > 0 since (S, 7) £ LK U LK +i.

DEFINITION 3.1: Define Pi(XK,yK) as a partial transform of P{x,y) and the
above factorisation via a monomial transform as a partial resolution of singularity.

Each pair of adjacent faces of a perfect Newton polygon induces a monomial trans-
form and thus a partial resolution.

DEFINITION 3.2: A proper polynomial is a univariate polynomial that consists of
all the univariate terms in a partial transform including the constant term.

In the partial transform (3.2), the proper polynomial in Y is factorised as:

(3.3) c+ J2 c«fiYl'"'

where for simplicity we disposed of the subscript K. Q{Y) is a nonzero coefficient

on the complex domain, or a product of indecomposable quadratic polynomials and

a nonzero coefficient on the real domain; r, is a root of the proper polynomial. The

proper polynomial in X is c + Yl capXlaP = Q{X) Y\t (X - s<) •.

Hereafter by an integral point we refer to a point corresponding to a monomial in
the polynomial P(x, y). Denote the number of integral points on LK as NK that is also
the number of terms in the proper polynomial (3.3). Then

(3.4) hj + l$NK.
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[5] Curve singularities 407

DEFINITION 3.3: Each root r,- of the proper polynomial in Y corresponds to a
point (0, TJ) on the (X,Y) -plane at which the partial transform is singular. Define
(0, Tj) as a branch point of the origin (0,0) on the (x, y)-pla.ne. The same for {sit0).

To address the singularity of the partial transform Pi(X, Y) in (3.2) at the branch
point (0 , r , ) , we substitute the factorisation (3.3) into P\{X, Y) and transform it into
P^X, Y - rj) = P,(X, (Y - rj) + TJ) .

DEFINITION 3.4: Define P\{X, Y — TJ) as a reduced transform at branch point
(0, Tj) and its derivation as a partial reduction of singularity to branch point (0, rj).

We build the perfect Newton polygon of Pi(X, Y - Tj) at the origin (0,0) of the
(X, Y — r,)-plane in the same way as for P(x,y) in part 2, based on which the partial
resolutions in part 3 can be repeated. We still parameterise these partial resolutions by
the same subscript K.

4. SINGULARITY HEIGHT

With partial resolution and partial reduction repeated at each new branch point,
the branch points form a tree whose root is the origin of the (x, y) -plane. The subscript
K as in part 3 parameterises different tree branches that are on the same level and from
a common branch point. The difference between this tree and a regular one is that each
value of K further branches out to different branch points.

Following the above procedure we choose a branch on each level of the tree to
obtain a path from its root to one of its last branch points. Henceforth we use a
subscript t to parameterise different levels of the tree on a path. And the composition
of monomial transforms on a path factorises the polynomial P(x, y) into a product

t i

n X^Y^PtiXt^t) with Pt bearing the same form as Pi in (3.2). We prove later
t=i

that for any path in the tree, 3N e N such that PN(X, Y) = [Y - r(X)]hE{X, Y - r)
with E(X, Y - r) nonsingular satisfying E(0,0)^0. r(X) is either a convergent series
with r(0) / O o r a constant r ^ 0. h ^ 0.

The procedure of moving from one branch point to the next on a path is denned
as a resolution step that includes a partial resolution and a partial reduction.

We disregard the roots of a proper polynomial in Y that corresponds to the first
face L\ of the Newton polygon with (a,/3) e L\ in (3.3). In fact, (3.1) would imply
that Ti{0,rj) = (0,rj) 7̂  (0,0). Similarly we disregard the proper polynomial in X
corresponding to the last face Lp of the Newton polygon.

A partial transform is nonsingular if its proper polynomials either have no roots
as Q(Y) in (3.3) or can be disregarded as above.

DEFINITION 4.1: Define the singularity height of a branch point as the multiplicity
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408 S-M. Ma [6]

of the corresponding root of proper polynomial. It is also an attribute of the reduced
transform at the branch point.

DEFINITION 4.2: A degenerate transform is defined as a reduced transform with a
single compact face of perfect power whose exponent equals the singularity height.

The paradigm of a degenerate transform with n, h 6 N and 6,7 G N U {0} is:

+ £ c5X
s(Y-ry(4.1) (Y - r - riX

nf + £ c57X
s(Y-ry.

6+ny>nh

We obtain another paradigm of a degenerate transform by exchanging Y and X

and substituting s for r in (4.1).

If a reduced transform has singularity height h, then (0, h) is the initial vertex of

its Newton polygon and each compact face with N integral points satisfies:

(4.2) N^h+l.

Similar to (3.4), a partial resolution to the above reduced transform involving the
above compact face with N integral points induces an inequality:

(4.3) h' + l^N,

where h' represents the singularity height of each branch point derived from the ensuing
partial transform.

(4.2) and (4.3) imply that the singularity height is decreasing: h' 4. h.

LEMMA 4 . 3 . If a reduced transform is neither degenerate nor nonsingular, then
the singularity height strictly decreases after a resolution step. After finite resolution
steps we shall obtain a transform that is either degenerate or nonsingular.

PROOF: A reduced transform with singularity height h — 1 is degenerate. Hence
to prove the lemma it suffices to prove the first conclusion.

For a reduced transform of singularity height h whose Newton polygon has either
multiple compact faces or a single compact face L = [mX + n(Y — r) = p] with m > 1,
(4.2) is a strict inequality and hence the singularity height strictly decreases.

When m = 1, the single compact face L — [X + n (F - r) — nh] is a perfect power
if and only if the proper polynomial of its partial transform is a perfect power under
the monomial transform X — X\ and Y — T — X"Yi. And the proper polynomial is a
perfect power if and only if (3.4) or (4.3) is an equality. D

EXAMPLE 4.4. The perfect Newton polygon of P(x, y) = xy3-2x2y2+x3y-x6 has five
faces enumerated in increasing order of their slopes: two noncompact faces L\ = [x = 1]
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[7] Curve singularities 409

and L5 = [y — 0], two compact faces L2 = [x + y = 4] and L4 = [x + Zy = 6], and one
auxiliary line L3 = [x + 2y = 5].

Each two adjacent pair LK and LK+\ induces a monomial transform 7^ as in

(3.1) with 1 < K ^ 4. Consider T2 with x = XY and y = XY2, under which

P(z ,y) = X4Y5PX(X,Y) and the partial transform Px = Y2 - 2Y + 1 - X 2 Y . The

proper polynomial Y2 - 2Y + 1 = (Y - I ) 2 leads to a branch point (0,1) at which the

reduced transform PX{X, Y - 1) = (Y - I)2 - X2 - X2{Y - 1).

The Newton polygon of Pi is perfect with singularity height h = 2. It has three

faces Li = [x —• 0], L2 — [x + y = 2] and L3 = [y = 0]. Pick a partial resolution

X = XM and Y-\ = YX based on Lx and L 2 . Then PX(X,Y - 1) = - y ^ P a ^ , ^ )

with P2 = X2 - 1 + X2Yi. A partial reduction at branch point (1,0) yields a reduced

transform P2(XX - 1, Yx) = 2(XX -l) + Y1 + 2{XX - l)Yi + (Xx - 1)2(1 + Yx) whose

singularity height equals h = 1. P2 is a degenerate transform.

After another partial resolution X\ - 1 = X2Y2 and Yx = Y2, P2(XX — l,Yi)

= 2y2P3(X2) y2) with P3 = X2 + 1/2 + ^ 2 y 2 + X|y2( l + y2)/2. Invoking Weierstrass

Preparation Theorem, P3 = fx 2 + l / 2 + £ cQy2
Q)£(X2 + 1/2, y2) with E(0,0) ± 0.

5. SINGULARITY INDEX

Consider the degenerate transform (4.1). After a partial resolution X — Xx and

Y - r = XXY\, its partial transform

(5.1) (Y1-r1)
h+

S+n~i>nh

has a proper polynomial of perfect power.

When h = 1, the exponents <5 + n-y - nh > 0 imply the factorisation of (5.1) as:

(5.2) (yx - n + Y^ CC,X?)E(XU YX - n)

according to Weierstrass Preparation Theorem. Here £(0,0) ^ 0 and the series

X^ is convergent in a nonempty convergence interval. This also explains the

last partial resolution of the degenerate transform P2 in Example 4.4.

Suppose the singularity height h > 1 hereafter. We organise the partial transform

(5.1) into a polynomial in Yx — T\:

h

(5.3) (Y, - ri)
h[1 + RoiXuY!)] + 5](Yi - r^RjiX^y2)
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410 S-M. Ma [8]

such that each monomial pair in Rj (l^j^h) has no factor Y\ — ri and we say that Rj

is clean of factor Y\ — r\.

From 6 + 717 — nh > 0 in (5.1), it is easily seen that X\ \ Rj, that is, Rj(0,Yi)

= 0 (o^j^/i) • Thus we have the following definition:

D E F I N I T I O N 5.1: Define Rj (o^^/i) ^ a remnant and the index of Rj ^ 0 (l^j^h)

as dj = min{(a / j ) | c X f y ^ € % a € N,/3 € {0} UN} £ Q; dj = 00 when i i , = 0.

We say that the partial transform (5.3) is ready if 3 i 7̂  j (l-gt.^h) such that di j± dj.

If (5.3) is ready, it is easily seen that the singularity height strictly decreases after

another resolution step. If (5.3) is not ready, let dj = n € ^(i^j^h)- We complete the

perfect power of (Y\ — r{)h to obtain:

(5.4) ( )
j=0

with i?o = J?o and it is evident that X\ \ R'j

Now let 0 = 1 in (5.4) with discussion of other cases postponed

Expand each factor (yi - ri)fc ( i ^ h ) in (5.4) as [(Yi - rx -
so as to have a polynomial in Y\ — T\ — r2X^Yi:

(5.5) ^ (n - n - ra-XrYi)*-^*!, Yi)
i=o

such that Rj (i^j^/i) is clean of factor Yj - r\ and Ro(O, Yi) = 1. The factor Yi - rx

— r2A""Yi will be referred to as a series factor henceforth.
A possible simplification of the above expansion occurs when 3a(1^Q^/l_j) such

that (1 - r 2X")a I R'j (i^j<h) m (5-4). In this case we begin our expansion with the
identity (Y1 - ri)

a(l - r2X?)a = [(Yx - n - r2X^) + nr2X?}a.

Notice from the above expansion that X\ \ Rj(i^j^.h)- Thus Definition 5.1 still
applies to (5.5). Momentarily suppose the partial transform (5.5) is ready.

DEFINITION 5.2: With dj being the index of the remnant Rj(i^j^.h), define d
= mini^j^h{dj} as the singularity index of the partial transform (5.5). If dj = d,
define the monomial in Rj with exponent dj in X\ as an index term.

If d ^ n, then the reduced transform of (5.5) is not a degenerate transform and
thus the singularity height strictly decreases after another resolution step. In fact, we
can write (5.5) in a recursive form Ph defined as follows:

(5.6) Pj - (Yx - n
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[9] Curve singularities 411

When dj = d ^ n , the single compact face of the reduced transform of Pj is determined
by (Y\ — T\ — r2X™Y\)3 + Rj and is not a perfect power. Thus the reduced transform
of Pj is not degenerate.

The following discussions are under the assumption that d > n.

After another t resolution steps with monomial transforms Xs = Xs+i and Ys

- r i r j " 1 = X£+1Ys+i (lsjs^t) > w e define the index of a generic monomial c{Yt+i - r i r | ) 7

X?+1Yf+1 in the ensuing partial transform as a + n-y. It is easily seen that along with
resolution steps the series factor has constant index n . The definition can be explained
by the fact that the index of Ys - rir^1 = X"+ 1YS + 1 is exactly the exponent of
Xs+i (l^s^t) m the n e x t resolution step. Hence a natural cancellation rule is that two
monomials should not cancel with each other if they have different indices. Geometri-
cally the index a + nj of the monomial c(Yt+i - rir2)'1-^t+i m t n e reduced transform
indicates that the monomial lies on the line x + ny = a + n-y parallel to the single
compact face of the Newton polygon.

PROPOSITION 5 . 3 . Along with resolution steps, the singularity index d of a
partial transform (5.5) strictly decreases to the index n of its series factor such that

PROOF: Suppose cX^Yf € Rj (l^j^h) is a n index term. During partial reduction

to branch point (0, r{), it generates a univariate monomial cX^rf as the new index

term that does not cancel with any other monomial in the reduced transform of Rj

since Rj is clean of factor Y\ — r\.

For 1 ^ k < j ^ h, the new index term cXf'rf cannot be nullified by -cXfrf in

the reduced transform of (Y\ — T\ — r2X"Yi)*~ Rk. The reason is that the two mono-

mials will have different indices after another resolution step since the series factor has

constant index n along with resolution steps. Hence according to the above cancellation

rule the new index term should not be nullified.

For 1 ^ j < k ^ ft, cXfr^(Y\ - ri)k~^ cannot be nullified by monomials in the

reduced transform of Rk • Otherwise the reduced transform of Rk would have index at

most [dj + n{k — j))/k < d, contradicting the singularity index being d.

After the monomial transform X\ = X-i and Y\ — T\ = X%Y2, a monomial

dX%(YL - r j ) 7 in the reduced transform of Rj is transformed to dX^+^'^Y? with

a decrease of n(j — 7) in the exponent of Xi = Xi\ whereas the index term cX^r^

is transformed to CX2 ~ r\ with a maximum decrease of nj ^ n(j — 7) in the expo-

nent. Hence there is no cancellation for cX\ ~ r\ after the above monomial trans-

form. Further, the maximum decrease nj itself is proportional to j , which ensures that

cX^d~n)jrf is still an index term.

We conclude that a resolution step strictly reduces singularity index from d to
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d-n. For Vi e Q, denote \x\ = {m € Z | 0 ̂  m-x < 1}. After [d/n] - 1 resolution
steps the singularity index, denoted as d, satisfies d < n. D

When d < n, with essentially the same argument as (5.6), we can show that the
singularity height strictly decreases after another resolution step.

If the partial transform (5.5) is not ready, we continue to complete perfect power
like (5.4) and expand like (5.5) to either make it ready, or proceed to obtain a perfect
power in the end with a generic form:

(5.7)

where R~o{0, Y:) = 1 and 0 <E N U {0}.

We can also regard the polynomial inside the perfect power of (5.7) as a generic
form of the series factor in (5.5) that accounts for the cases /3 = 0 or /3 > 1 in (5.4).
It is not difficult to verify that this generic form makes no essential difference from the
above discussions on (5.5).

EXAMPLE 5.4. Consider a degenerate transform (Y - 1 - X)2+X{Y - 1 - X) [2(Y - 1)

+ X3{1 + X)] + X2{Y - I)2 with singularity height ft = 2 at branch point (0,1).

After the partial resolution X = Xi and Y — 1 = X{Yi, we organise the ensuing
partial transform into a polynomial in Yi - 1 to obtain {Yi - 1) + {Yi - l)i?1(X1, Yi)
+R2{Xi,Yi) with Ri = 2XiYi+Xf{l + Xi) and R2 = X2Y?. The indices of Rj ( i = l i 2 )

are di = d2 — 1 and the partial transform is not ready.

By completing perfect square we obtain (Yx - 1 + XiYi)2 + {Yi - l)X3(1 + Xi)

= (Yi - 1 + Xi Yi)2 + {Yi-l + X1Yi)Rx+R2 with the series factor Yi - 1 + XXYX and
the remnants Ri = X3 and R2 = — X*. Here we used the identity {Yi - 1)(1 + Xi)

= (Yi — 1 + XiYi)-Xi. The remnants have indices di — 3 and d2 = 2. The singularity
index is d = d2 = 2 with the index term being —X*, which should not cancel with the
X* in the reduced transform of {Yi — 1 + X\Y{)Ri.

The partial resolution with monomial transform Xi = X2 and Yi — 1 — X2Y2

yields the partial transform (Y2 + 1 + X2Y2)
2 + (Y2 + 1 + A"2Y2).Ri + R2 with rem-

nants i?i = X\ and R2 = —X\. The singularity index is reduced to d = d2 = 1
that is equal to the index of the series factor. Thus its reduced transform (Y2 -I-1)2

- 2X2{Y2 + 1) - Xi + X2{Y2 + 1) [2(Y2 + 1)-X2 + X2{Y2 + 1 + X2)) at branch point
(0,-1) has two compact faces L2 = [x + y = 2] and L3 = [x + 2y = 3] and is not
degenerate. Its singularity height equals ft = 2.

By Lemma 4.3, the singularity height strictly decreases to ft = 1 after another
resolution step. Consider, for example, the monomial transform X2 = X3Y3 and Y2
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[11] Curve singularities 413

+ 1 = X3Y3 based on L2 and L3. In this case we have partial transform Y3 — 2 - X3
Weierstrass Preparation Theorem can be applied as in (5.2).

6. CONCLUSION

THEOREM 6 . 1 . After finite resolution steps whose number can be sharply esti-

mated by singularity height and singularity index, the partial transform of a polynomial

becomes either a nonsingular transform or perfect power of a partial transform whose

proper polynomial is linear as in (5.7).

It is easily seen that the theorem follows from an alternate decreasing induction
on singularity height and singularity index. The conclusion also holds for birational
transforms since a monomial transform is a composition of birational transforms.

The partial transform inside the perfect power in (5.7) can be factorised as (5.2).

We conclude by posing the obvious question of generalising this algorithm to higher
dimensions, which might elucidate Hironaka's resolution theorem. As for the invariants
introduced here, the singularity height and the singularity index, their counterparts in
higher dimensions and positive characteristic fields and connections to the classical ones
like Puiseux pair and Milnor number will be interesting.
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