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Mycobacterium tuberculosis (Mtb) is ametabolically flexible pathogen that has the
extraordinary ability to sense and adapt to the continuously changing host
environment experienced during decades of persistent infection. Mtb is
continually exposed to endogenous reactive oxygen species (ROS) as part of
normal aerobic respiration, as well as exogenous ROS and reactive nitrogen
species (RNS) generated by the host immune system in response to infection.
The magnitude of tuberculosis (TB) disease is further amplified by exposure to
xenobiotics from the environment such as cigarette smoke and air pollution,
causing disruption of the intracellular prooxidant–antioxidant balance.
Both oxidative and reductive stresses induce redox cascades that alter Mtb
signal transduction, DNA and RNA synthesis, protein synthesis and
antimycobacterial drug resistance. As reviewed in this article, Mtb has evolved
specific mechanisms to protect itself against endogenously produced oxidants,
as well as defend against host and environmental oxidants and reductants
found specifically within the microenvironments of the lung. Maintaining an
appropriate redox balance is critical to the clinical outcome because several
antimycobacterial prodrugs are only effective upon bioreductive activation.
Proper homeostasis of oxido-reductive systems is essential for Mtb survival,
persistence and subsequent reactivation. The progress and remaining
deficiencies in understanding Mtb redox homeostasis are also discussed.

In 1890, Koch stated publicly that he had
discovered the cure for tuberculosis (TB). In

1921, Calmette and Guerin introduced the
vaccine against TB, and between 1944 and 1966,
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streptomycin, isoniazid (INH), ethambutol,
rifampin and pyrazinamide were discovered as
remedies for TB. Yet Mycobacterium tuberculosis
(Mtb), the aetiological agent of TB, is still
responsible for ∼1.7 million deaths each year. In
the majority of affected persons, Mtb enters a
latent or persistent phase during infection
(Fig. 1) associated with a state of drug
unresponsiveness wherein the bacilli are not
killed by currently available antimycobacterial
agents (Refs 1, 2, 3). This situation, together
with the emergence of multi-drug-resistant
(MDR), extensively drug-resistant (XDR) and
super XDR Mtb strains and the synergy with
HIV infection, has created a frightening
scenario. Studies show that malnutrition,
tobacco smoking and indoor air pollution from
solid fuel are the most important risk factors for
TB worldwide, followed by HIV infection,
diabetes and excessive alcohol intake (Fig. 1)
(Ref. 4).This strongly suggests that improved
nutrition and implementation of effective
intervention strategies against tobacco smoke
and indoor air pollution will have global
socioeconomic and public health implications.
Dormancy refers to a physiological state of the

bacillus generally typified by the absence of
replication and the presence of metabolic
shutdown. Latency is a clinical state
characterised by purified protein deriviative
(PPD) skin test responsiveness coincident with a
lack of clinical representation of disease. For a
more in-depth discussion of these terms, see
Refs 5, 6, 7.
More than a hundred years of research has

shown that Mtb is an obligate aerobe, but the
phrase ‘Mtb anaerobic respiration’ is frequently,
albeit incorrectly, used in the TB literature.
Nonetheless, it has been demonstrated that Mtb
can survive in vitro for more than a decade
under apparently anaerobic conditions.
Redox reactions have a key role in aerobic and

anaerobic respiration. Within aerobic microbes,
reactive species or oxidants are more or less
balanced by the presence of antioxidants
(Ref. 8). Mtb, similar to other bacterial species,
has evolved pathways to monitor redox signals
(such as O2, NO and CO) and the alterations in
intra- and extracellular redox states (Refs 2, 9,
10). We will begin this review by describing the
basics of bacterial redox homeostasis and will
then summarise the best-characterised redox
mechanisms used by mycobacteria to sense and

maintain redox homeostasis. A better
understanding of these mechanisms should
open new avenues for the development of
improved diagnostic tools and effective
vaccines, and lead to the identification of new
drug targets.

Maintaining the balance: oxidative stress
and oxidative damage

Oxidative stress can be defined as a disturbance in
the prooxidant–antioxidant balance in favour of
the former, leading to potential injury. Oxidative
damage is characterised as the biomolecular
impairment caused by the attack of reactive
species upon the constituents of living
organisms (Ref. 8). Oxidation can be described
as a gain in oxygen (C+O2→CO2), a loss of
hydrogen or a loss of electrons (Na→Na++ e–

or O2
•–→O2+ e–), whereas reduction is defined

as a loss of O2 (CO2+C→ 2CO), a gain in
hydrogen (C+ 2H2→CH4) or a gain of
electrons (O2+ e–→O2

•–) (Ref. 8). Redox
homeostasis can be defined as a ‘relatively stable
state of equilibrium or a tendency towards such
a state between the different but interdependent
elements or groups of elements of an organism,
population, or group’ (Merriam-Webster). Redox
homeostasis is important to effectively harness
reducing power produced through the
catabolism of various substrates and to utilise
this power in the anabolism of cellular
components such as DNA, lipids and proteins.

Why is Mtb redox balance important?
During the course of infection, Mtb is exposed to
a range of microenvironments that induce novel,
as yet uncharacterised, compensatory metabolic
pathways in an attempt by the bacillus to
maintain balanced oxidation–reduction. It can
be argued that redox imbalance can trigger
mechanisms in the bacillus, which result in
persistence and dormancy. Host-generated
gases, carbon sources and pathological
conditions such as hypoxic granulomas have a
profound effect on bacterial metabolism and
therefore redox balance, which through
unknown mechanisms allow Mtb to successfully
subvert the immune system and cause disease.
These in vivo environmental conditions that
cause intracellular redox imbalance might also
affect antimycobacterial drug efficacy. For
example, INH (Ref. 5), ethionamide (ETA)
(Ref. 6) and PA-824 (a nitroamidazole
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Virulence life cycle of Mycobacterium tuberculosis and progression of TB
Expert Reviews in Molecular Medicine © 2011 Cambridge University Press

Death

50%

95%

Cure

Relapse

Reactivation

Latent TB

5–
10

%

Transmission

Cavitation

Isoniazid
preventive

therapy

Primary infection

Cell-mediated immunity
(T-cell response; CD4+/CD8+cells, TNF-α, IFN-γ,

ROS, RNS)

Risk factors
• HIV infection
• Diabetes
• Genetic factors
• Immunosupression
• Tobacco smoke
• Alcohol consumption
• Indoor air pollution

95%

Figure 1. Virulence life cycle of Mycobacterium tuberculosis and progression of TB. Mtb is transmitted
by aerosol, and in 95% of cases, wherein the tubercle bacilli are inhaled, a primary infection is established.
This is either cleared by the surge of the cell-mediated immunity or contained inside the granuloma in the
form of latent TB, defined by no visible symptom of disease, but persistent, yet dormant, live bacilli within
the host. The progress of TB can be stalled at this stage in some cases by isoniazid preventive therapy. This
state might last for the lifespan of the infected individual, or progress to active TB by reactivation of the
existing infection, with a lifetime risk of 5–10%. This risk of progression is exacerbated by immune-
compromising factors such as HIV-AIDS, diabetes, indoor air pollution and tobacco smoke. Reactivation
of TB is shown to occur at the upper and more oxygenated lobe of the lung, which can be cured by
compliance with drug therapy. However, untreated or poorly treated TB might lead to the formation of
tuberculous lesions in the lung. The development of cavities close to airway spaces allows shedding
(e.g. coughing) of the bacilli through the airway, a stage of transmission. Subsequently, in a cyclic
manner, the TB bacilli are transmitted to other individuals to establish primary infection.
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derivative) (Ref. 7) require bioreductive activation
to exert an antimycobacterial effect. Further
support is provided by studies demonstrating
that an increased NADH/NAD+ ratio leads to
INH resistance (Ref. 11), and that mutations in
the mycothiol biosynthetic pathway affect INH
and ETA efficacy (Ref. 12). The identification of
a link between INH resistance and mutations in
Mtb type II NADH-menaquinone
oxidoreductase (Ndh-2) is consistent with the
present understanding that increased NADH
reduces the frequency of INH-NAD (or ETA-
NAD) adduct formation, which subsequently
decreases its binding to InhA, the known target
of INH (Refs 13, 11). Several studies have
investigated the specific link between redox
potential and nitroimidazole drug efficacy in
other pathogens such as Helicobacter pylori
(Ref. 14), Bacteroides spp. (Ref. 15) and
Trichomonas vaginalis (Ref. 16). However, the
mechanisms that Mtb uses to maintain redox
homeostasis in vivo, and their role in drug
susceptibility, remain unknown. A further
understanding of how host environmental
factors affect Mtb physiology, leading to
perturbation of redox homeostasis might
provide better insight into Mtb persistence and
to the development of successful
antimycobacterial intervention strategies.

What is a free radical?
A free radical is any species capable of
independent existence that contains one or more
unpaired electrons (Ref. 8), and is denoted by a
superscript dot after the chemical formula. Free
radicals can be beneficial (e.g. free radicals
produced during phagocytosis) or detrimental
(e.g. generating DNA damage or lipid
peroxidation) to the free-radical-generating host.
Reactive nitrogen species (RNS) refer to radicals
such as NO•, NO2

• and NO3
•, and nonradicals

such as HNO2, NO+, NO−, N2O4, N2O3, NO2
+,

ROONO and RO2ONO. Reactive oxygen species
(ROS) is a collective term that refers to O2

radicals such as O2
•−, HO2

•, HO•, RO2
•, RO• and

CO2
•, and nonradical derivatives of O2 such as

H2O2, ONOO−, ONOOH, ONOOCO2
−, HOCl,

HOBr and O3 (Ref. 8).
Reduction potential is an important

thermodynamic property that allows the
prediction of the course of free radical reactions
(Table 1). Important redox couples such as
NAD+/NADH (E0′ =−316 mV), NADP+/

NADPH (E0′ =−315 mV), FAD/FADH2

(E0′ =−219 mV), ferredoxin (Fdox/Fdred,
E0′ =−398 mV) and GSSG/2GSH [Ehc=
−250 mV (10 mM)] present in cells might
function independently or be linked to other
couples. Using linked sets of redox pairs, the
redox environment can be defined as the
summation of the products of the reduction
potential and reducing capacity of the linked set
of redox couples found in that cellular
compartment (Ref. 17). In living systems, the
reduction potential values predict what is
feasible, but not what necessarily occurs (Ref. 8)
(Table 1). Although a system of more negative
reduction potential (E0′) should reduce one with
a less negative, zero or positive E0′, there exists a
hierarchy of oxidants. For example, the hydroxyl
radical (HO•) will virtually always serve as an
oxidant, whereas NO• or H2O2 can function as
oxidants or reductants depending on whether
they react with molecules of lower or higher
hierarchy (Ref. 18).

Measurement of all linked redox couples within
bacterial cells is impractical and probably
impossible, because some couples remain
unidentified. Thus, quantification of a
representative redox couple is used to infer
changes in the redox environment. For example,
in most bacteria (albeit not mycobacteria) the
GSSG/2GSH couple represents the major
intracellular redox buffer and can therefore be
used to infer the status of the bacterial redox
environment. Using this redox-couple-specific
approach, the intracellular redox potential of
Escherichia coli (E0′ =−220 to −245 mV) (Refs 19,
20) has been determined, which augurs well
with that of a recent noninvasive fluorescent-
based assessment (E0′ =−259 mV) (Ref. 19). The
intracellular redox potential of mycobacteria has
not yet been determined.

Free radicals and microbes
Endogenous oxidative stress arises from the
univalent reduction of O2 by various
components of the electron transport chain
(ETC) under normal aerobic conditions,
resulting in the production of ROS such as
superoxide radicals (O2

•−). The mechanism of
O2-mediated reoxidation of many reduced
electron carriers such as reduced flavins, Fe2+

and NADH has been shown to occur by the
formation of O2

•−. Although O2
•− is less reactive

than HO• and does not react with most
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Table 1. Standard reduction potentials of biologically relevant redox couples

Redox couple Redox potential (mV)
CO2/CO2

•− −1800 Highly reducing
CO2/CO −520
Acetyl-Co/Apyruvate −500
Succinyl-CoA/2-oxoglutarate −491
CO2/HCOO− −421
H+/H2 −414
NAD+/NADH −316
NADP+/NADPH −315
CO2/acetate −291
TrxC [TrxSS/Trx(SH2)] −269
TrxB [TrxSS/Trx(SH2)] −262
TrxA [TrxSS/Trx(SH2)] −248
2H+/2Cys-SH (cystine) −230
FAD+/FADH2 −219
FMN+/FMNH2 −219
Pyruvate, H+/lactate −183
Oxaloacetate, 2H+/malate −166
Menaquinone −74
ESSE/2ESH (ergothioneine) −60
CoQ/CoQ•− −36
Fumarate/succinate +32
Ubiquinone/ubiquinol +45
Fe3+/Fe2+(aq) +110
Ascorbate•−/ascorbate− +282
O2/H2O2 +295
Cytochrome a3 (Fe

3+)/cytochrome a3 (Fe
2+) +350

NO3
−/NO2

− +421
α-Tocopheroxyl•/α-tocopherol +500
O2/H2O +818
RS•/RS− (cysteine) +920
GS•/GS− (glutathione) +920
NO2

•/NO2
− +990

ROO•, H+/ROOH (alkyl peroxyl radical) +1000
HO2

•, H+/H2O2 +1060
ONOO−/NO2

• (aq) +1400
RO•, H+/ROH (aliphatic alkoxyl radical) +1600
NO2

+/NO2
• +1600

CO3
•−, H+/HCO3

− +1780
HO•, H+/H2O +2310 Highly oxidizing

For a given couple, the reduction potential relative to the potential of the standard couple, hydrogen (H+/H2), is
shown. Standard concentrations are 1.0 M for solutes and ions and 1 atm pressure for gases (e.g. H2). The
standard reduction potentials are symbolised by E0. Note that the ‘true’ redox potentials within a cell can differ
dramatically from standard values. The Nernst equation is used to correct E0 values for the effect of temperature

(T) andconcentration:= E0 +−RT
nF

log10 [oxidised]
[reduced]

. Becauseprotons are involved inmany reactions, the values in

the table arecorrected topH7 (E0′ rather thanE0). This is particularly important because the intracellularmicrobial
and host pH probably vary widely during the course of infection. The bottomof the list (more positive) represents
the highly oxidising couples, whereas the top of the list (more negative) represents the highly reducing couples.
Therefore, thehydroxyl radical (HO•) at the bottomof the list is capableof oxidising everythingelse on the list. The
data are largely from Refs 8, 17, 18.
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biological molecules, it readily reacts with NO• to
generate peroxynitrite (ONOO–) (Ref. 8). O2

•– also
oxidises the 4Fe–4S clusters of dehydratases such
as aconitase, leading to enzyme inactivation and
release of Fe2+. The released Fe2+ can then
reduce H2O2 to intracellular HO•. Free Fe2+ is
maintained in reduced form by intracellular
reductants and will continue to reduce H2O2 to
generate HO•. Further, Fe2+ can nonspecially
bind to DNA, proteins and membranes,
facilitating the localised production of HO•,
which may result in oxidative damage to these
molecules (Ref. 8).
Superoxide dismutase (SOD) catalyses the

dismutation reaction between two superoxide
radicals, resulting in the formation of molecular
O2 and H2O2 [equation (1)]:

O•−
2 +O•−

2 + 2H+ → H2O2 +O2 (1)

H2O2 can be detoxified by enzymes such as
catalase and peroxidase as shown in equation
(2), but its production in the presence of metal
ions (such as Fe2+ and Cu+) leads to the
formation of extremely potent oxidant, HO•,
through the Fenton reaction: [equation (3)]:

2H2O2 → 2H2O+O2 (2)

Fe2+ +H2O2 → Fe3+ +HO• +HO− (3)

The superoxide anion generated as an unwanted
byproduct of normal aerobic respiration can
subsequently reduce the metal ion as shown in
equation (4):

Fe3+ +O•−
2 → Fe2+ +O2 (4)

Reactions (3) and (4) combined are known as the
Haber–Weiss reaction [reaction (5)], which was
first described in 1934 (Ref. 21):

O•−
2 +H2O2 → HO• +HO− +O2 (5)

The low reactivity of O2
•− andH2O2 allows them to

diffuse from their site of production, which, on
reaction with free iron or copper ions in the
cellular pool, leads to the generation of HO•. In
E. coli, aerobic respiration leads to the
generation of 0.1–0.2 μM H2O2 (Ref. 22). It is
estimated that the intracellular stoichiometry of
O2

•− to HO• is 2:1. The HO• radical is
particularly unstable and reacts rapidly with

numerous bacterial components such as lipids,
DNA and proteins (Ref. 22) to induce site-
specific lesions. Studies have demonstrated that
Mtb is susceptible to H2O2-induced damage in
vitro (Ref. 23).

O2
•– in aqueous solution can react as a reductant

wherein it donates an electron to cytochrome c,
and can also serve as an oxidant with ascorbic
acid (AH2) (Ref. 8):

Cyt c (Fe3+)+O•−
2 → O2 + Cyt c (Fe2+) (6)

AH2 +O•−
2 → A•− +H2O2 (7)

O2
•– can also interact with NADH bound to the

active site of lactate dehydrogenase and possibly
other enzymes to generate a NAD• radical;
however, it does not oxidise free NADPH or
NADH (Ref. 8).

Free radicals and the host
Mtb is a slow-growing bacillus transmitted by the
respiratory route. The infection initiates on
ingestion of the bacilli by alveolar
macrophages. On phagocytosis of Mtb, lung
macrophages and neutrophils produce large
quantities of ROS and RNS. NADPH oxidase
catalyses the one-electron reduction of O2 using
NADPH as electron donor, generating O2

•–, as
depicted in the following (reviewed in Refs 24,
25, 26, 27):

2O2 +NADPH → O•−
2 +NADP+ +H+ (8)

Superoxide generated in the above reaction can
be converted to H2O2 by SOD as described in
equation (1).

A highly reactive hypochlorite ion (ClO–) could
be generated by myeloperoxidase, which
catalyses the oxidation of chlorine, resulting in
the formation of ClO− according to the
reaction below [equation (9)] (Ref. 28).
Hypochlorite is an extremely reactive oxidant
and can lead to oxidative damage of lipids,
proteins and DNA:

Cl− +H2O2 → ClO− +H2O (9)

O2
•− also acts as a precursor of several other ROS

(Refs 29, 30, 31) and RNS (Refs 32, 33, 34). In
response to mycobacterial infection, another
major antimicrobial pathway that acts through
inducible NO synthase is activated, leading to
increased production of NO (Refs 35, 36)
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(reaction (10)):

L−arginine+NADPH+H++O2 → L-citrulline

+NADP++H2O+NO• (10)

NO is produced in parallel with O2
•− and they

both react with each other to produce highly
reactive OONO−. In addition to the generation
of OONO−, NO also leads to the generation of
NO−,•NO2, NO2

−, N2O3, N2O4, S-nitrosothiols
and dinitrosyl-iron complexes (Refs 37, 38),
which are all effective in killing bacteria (Ref. 39).
To dissect the role of ROS in TB, different

murine knockout models lacking active
NADPH oxidase components have been
generated and compared with the wild-type
strain for their capability to control the
growth of Mtb. These experiments produced
conflicting data among different laboratories.
Two independent studies (Refs 40, 41) showed
that Mtb growth was enhanced in the absence
of active NOX (NADPH oxidase), whereas
another study found no difference between
Phox−/– and wild-type mice in their ability to
control Mtb infection (Ref. 42).
Several murine studies (Refs 35, 43, 44, 45, 46)

have shown that inducible NO synthase (iNOS
or NOS2) produces NO, which is capable of
killing mycobacteria. Furthermore, iNOS-
deficient mice were demonstrated to be highly
susceptible to TB infection (Refs 42, 47, 48), and
NO was shown to be crucial in maintaining a
latent TB infection in mice (Ref. 49). Clinical
evidence in support of a role for NO in TB
includes studies indicating increased iNOS
protein and mRNA levels in bronchoalveolar
lavage specimens from active pulmonary
TB patients (Ref. 45), single-nucleotide
polymorphism variations of NOS2A (Ref. 50),
and increased exhaled NO and NO2

− in patients
with active pulmonary TB (Refs 43, 51).

Mtb physiology and the intracellular redox
state

Mtb is a prototrophic, obligate aerobe that cannot
replicate in the absence of O2. However, the
tubercle bacillus has an uncanny ability to
survive extended periods of anaerobiosis even
though classic manometric studies showed that
several days of anaerobic exposure completely
stalled bacterial respiration and the ability to
grow on laboratory media (Ref. 52). In recent

years, research into the mechanisms associated
with the bacilli adaptive response to
anaerobiosis has received much attention
primarily because TB granulomas were shown
to be hypoxic (Ref. 53), and because all current
antimycobacterial drugs are ineffective against
nonreplicating Mtb present in hypoxic
granulomas. Thus, a more thorough
understanding of Mtb redox physiology is
critical to TB control.

Aerobic respiration is one of the most
widespread bioenergetic pathways in microbial
biology. Oxidation of a typical carbohydrate
such as glucose can be divided into three
separate phases: (1) a catabolic pathway (e.g.
glycolysis) that breaks down glucose to
pyruvate; (2) the TCA cycle, which oxidises
organic molecules to CO2 and H2O, ATP and
reduced coenzymes; and (3) oxidative
phosphorylation, during which reduced
coenzymes are oxidised and their electrons and
protons establish a proton motive force across
the membrane. Electrons are channelled
(through NADH and FADH2) to the ETC, which
sequentially oxidises and reduces multiple redox
centres before reducing O2 to H2O, and
producing ATP. The respiratory metabolism is
complex and regulated by many endogenous
and exogenous (host) factors, including the
carbon source, pH, O2 (and ROS), NO (and
RNS), CO, CO2, etc. (Ref. 54).

The central role that redox reactions have in
maintaining metabolic processes makes them
essential to mycobacterial persistence.
Unfortunately, the mechanisms used by Mtb to
maintain redox homeostasis during active disease,
persistence and reactivation are poorly
understood and warrant further investigation. It is
unknown how Mtb simultaneously regulates
metabolic and signalling events in endogenous
cellular compartments (e.g. the reducing
environment of the cytoplasm and the oxidised
periplasmic space and outer cell surface).
Likewise, it is poorly understood how the
bacterium senses and responds to the diverse
environments encountered in vivo, for example in
different organs or in different regions of the same
organ (e.g. the naturalO2 gradientswithin the lung).

Important physiological players: gases
and ATP
Mtb resideswithin a hypoxicmicroenvironment in
the lungs (Ref. 55). However, aerobic and

expert reviews
http://www.expertreviews.org/ in molecular medicine

7
Accession information: doi:10.1017/S1462399411002079; Vol. 13; e39; December 2011

© Cambridge University Press 2011. Re-use permitted under a Creative Commons Licence – by-nc-sa.

R
ed

o
x
ho

m
eo

st
as

is
in

m
yc

o
b
ac

te
ri
a:

th
e
ke

y
to

tu
b
er
cu

lo
si
s
co

nt
ro
l?

https://doi.org/10.1017/S1462399411002079 Published online by Cambridge University Press

https://doi.org/10.1017/S1462399411002079


anaerobic microenvironments almost certainly
exist, which in theory can explain the capacity of
dormant bacilli to survive chemotherapy.
Aerobic respiratory systems produce energy that
comes from the movement of electrons from
oxidisable organic substrates to O2. Components
of the ETC contain redox centres [redox-active
prosthetic groups such as FMN, haem and
iron–sulfur clusters (Fe–S)], with progressively
greater affinities for electrons (from lower to
higher standard reduction potentials). In
general, these redox centres are very susceptible
to host-generated ROS and RNS, which typically
bind to or oxidise the prosthetic groups to affect
protein activity, and therefore respiration. In
agreement with the known mode of action of
NO, which targets components of the
respiratory chain, studies have shown that NO
inhibits Mtb respiration. In fact, NO and lack of
O2 synergistically block respiration (Ref. 56).
Lack of O2 causes a loss of energy, which
destroys the ordered state (life) of a cell, leading
to its death. However, evidence suggests that
Mtb has the extraordinary capacity to decrease
respiration to a low, albeit not zero, level, and
still remain viable (Ref. 52). Although nitrate
(NO3

−) prolongs the survival of Mtb under
anaerobic growth conditions as demonstrated in
vitro (Refs 57, 58), active replication was not
promoted. By contrast, the M. tuberculosis
narGHJI operon was capable of complementing
a nar E. coli mutant, which acquired the ability
to actively replicate anaerobically only in the
presence of nitrate (Ref. 59). Therefore, because
NO3

−was unable to stimulate replication of Mtb
under anaerobic conditions, this compound
cannot be regarded as a terminal electron
acceptor. Furthermore, it suggests that the
reduction of NO3

−could be redox balancing, or it
might help provide energy under anaerobic
conditions.
Consistent with the consequences of respiratory

inhibition, ATP decreases to 25% of aerobic levels
during hypoxic growth of Mtb (Ref. 60). A recent
study has shown that Mtb maintains a fully
energised cytoplasmic membrane to preserve
ATP homeostasis during hypoxia without the
use of alternate terminal electron acceptors
(NO3

−, fumarate, etc.) for respiration (Ref. 61).
This suggests that Mtb retains a low level of
metabolic activity to sustain an energised
membrane even in the absence of respiration
during hypoxic persistence.

Redox couples and electron transfer in Mtb
The NAD+/NADH coenzyme system is required
for catabolism, whereas the NADP+/NADPH
system is required for anabolism. NAD+ is an
efficient electron sink and hence is used as a
cofactor in several oxidising reactions. A
constant level of NADH is maintained during
various phases of growth in vitro, whereas the
concentration of NAD+ is variable and is a
major contributor to a change in NADH/NAD+

ratio. In Mtb, the ratio of NADH/NAD+ is
typically ∼1:3 to 1:10 (Refs 61, 62, 63), but a
higher ratio of Mtb NADH/NAD+ is generated
during the transition from aerobic to anaerobic
mycobacterial growth, owing to depletion of
the NAD+ pool, and is maintained by type II
NADH dehydrogenase (Ref. 61). Although
NAD+ has an important role as an electron sink,
NADPH acts as a major electron donor in many
reductive reactions. Hence the NADPH/NADP+

ratio is an indicator of reductive energy
available to a cell. The concentration of the
NADH/NAD+ couple is submillimolar and is
often higher than the phosphorylated form. In
Mtb, the ratios of NAD+/NADP+, NADPH/
NADH, NADP+/NADPH and NAD+/NADH
are 1.95, 2.25, 2.39 and 10.5, respectively (Ref. 62).

Being an obligate aerobe,Mtb has to regenerate
NAD+ because the respiratory chain is
downregulated in the absence of O2 as terminal
electron acceptor. An unexpected finding in the
anaerobic model for in vitro dormancy was that
the Mtb NAD+ and NADH levels were only
approximately 50% of the aerobic levels
when O2 was consumed, whereas the NAD+/
NADH ratio was similar to that in aerobic
conditions (Ref. 60). These findings suggest that
Mtb has evolved an as yet unidentified
mechanism to survive severe hypoxia and
regenerate NAD+. Three plausible mechanisms
that might allow regeneration of NAD+ from
NADH under hypoxic or nitrosative stress
conditions exist: (1) nitrate reduction (narGHJI;
Rv1161–1164) that catalyses the reduction of
NO3

− to NO2
−; (2) triacylglycerol (TAG)

anabolism (Ref. 64); or (3) electron bifurcation
mechanisms by which two electrons bifurcate to
a high and low potential pathway (Ref. 65). A
recent in vivo study has shown that Mtb
generates massive quantities of NAD(P)H in
infected mouse lungs (Ref. 63) and therefore
experiences significant reductive stress (see also
Ref. 54 for a review). This finding again raises
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the issue of how reducing equivalents are
regenerated to produce NAD(P)+.

The carbon oxidation state
In vivo sources of energy include carbohydrates,
organic acids, amino acids, nucleic acid
precursors and fatty acids (Ref. 66). Several
recent and historic studies have demonstrated
that fatty acids are potential in vivo carbon
sources for Mtb (Ref. 67). Isocitrate lyase (Icl), an
enzyme from the glyoxylate cycle, has been
shown to have an important role in fatty acid
carbon utilisation in vivo (Ref. 68). Fatty acid
utilisation has a profound effect on the amount
of reducing equivalents produced [e.g.
NAD(P+)H]. For example, palmitate and oleate
have highly reduced carbon oxidation states
(COS values) of −28 and −30, respectively,
compared with other fatty acid precursors such
as propionate (COS=−1) and valerate
(COS=−6) and carbohydrates such as
glucose (COS= 0). Subsequent β-oxidation of
palmitate generates 106 units of ATP, whereas
oxidation of glucose produces only 38 ATP
molecules. The β-oxidation of fatty acids yields
one NADH and one FADH2 molecule for every
acetyl-CoA generated. Clearly, the ‘type’ of in
vivo carbon source (most likely a mixture) has a
profound effect on the energetics of the
microbial cell, for example the amount of
NAD(P)H to be recycled to maintain redox
balance.

Redox balance and excretion
During aerobic respiration, the electrondonor (e.g.
organic substrates such as glucose) undergoes net
oxidation whereas the external electron acceptor
(e.g. O2) is reduced to form a balanced
oxidation–reduction process. Thus, the oxidation
of the substrate is balanced by the reduction of
the electron acceptor. E. coli regenerates NAD+

under anaerobic conditions with the excretion of
metabolic intermediates such as formate, ethanol
and succinate (Ref. 69). By contrast, historical
studies have shown that Mtb generates alkaline
supernatants as opposed to acidic supernatants
produced by other bacteria (Ref. 70). The lack of
secreted acid intermediates suggests that
carbohydrates are completely oxidised by Mtb
and that unknown mechanisms are responsible
for the generation of NAD+ under hypoxic
(dormant) conditions in which the TCA cycle is
nonfunctional.

Mtbmachinery that maintains intracellular
redox homeostasis

Mycothiol
Although mycobacteria contain redox couples
such as thioredoxin [TrxSS/Trx(SH)2], NADH/
NAD+ and NADPH/NADP+, the conventional
redox couple glutathione (GSSG/2GSH) is
absent in mycobacteria. Rather, mycobacteria
contain oxidised–reduced mycothiol (MSSM/
2MSH) in millimolar quantities as the major
redox buffer.

Mycothiol is a low-molecular-weight thiol
produced by many members of the
actinomycetes, including mycobacteria. It
functions like glutathione, the archetypal redox
buffer, which is not produced by mycobacteria
(Ref. 71). The reduction potential of
MSSM–2MSH has not yet been determined, and
studies are restricted to examining MSSM/
2MSH ratios. Oxidised mycothiol is reduced by
the FAD-binding mycothione reductase using
NADPH as cofactor, which is indicated in
equation (11) (Refs 72, 73):

NADPH+H+ +MSSM → 2MSH+NADP+

(11)

Another low-molecular-weight thiol produced by
mycobacteria is ergothioneine (ERGox/ERGred;
E0′ =−60 mV) (Ref. 74). However, little is
known about the role of this uncharacterised
thiol in mycobacteria, but it has been shown to
protect mammalian cells from oxidative stress
(Refs 75, 76).

MSH consists of myo-inositol linked to
glucosamine, which is in turn ligated to a
cysteine residue with an acetylated amino group
(Refs 77, 78, 79). There are five steps in MSH
biosynthesis; the first is catalysed by a glycosyl-
transferase encoded by mshA (Ref. 80), which
fuses 1L-myo-inositol-1-phosphate (derived
from glucose-6-phosphate) and UDP-N-
acetylglucosamine (Ref. 81). The resulting
N-acetylglucosaminylinositol phosphate [1-O-(2-
acetamido-2-deoxy-α-D-glucopyranosyl)-D-myo-
inositol 3-phosphate] is then dephosphorylated by
MshA2 (its gene has not yet been identified)
(Ref. 81) and deacetylated by MshB (Ref. 82).
This glucosaminylinositol [1-O-(2-amino-1-
deoxy-α-D-glucopyranosyl)-D-myo-inositol] is
then ligated to the cysteine carboxyl group
through MshC in an ATP-dependent reaction
(Ref. 83). Finally, an acetyl group is added to the
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amino group of cysteine by an acetyltransferase
encoded by mshD (Ref. 84). Published data
strongly suggest that MSH has a pivotal role in
maintaining the redox balance of mycobacterial
cells. Evidence for this includes the sensitivity of
various MSH mutants to oxidative stress caused
by H2O2, cumene hydroperoxide and O2

•−

(Refs 85, 86, 87, 88). Inactivation of mshA1 in
Mtb and Mycobacteruim smegmatis (Msm) results
in loss of the production of mycothiol and its
intermediates (Ref. 89). Msm and Mtb mutants
of mshB accumulated the MshB substrate N-
acetylglucosaminylinositol and were capable of
producing low levels of MSH, which is probably
due to the presence of an unidentified enzyme
with overlapping function (Refs 86, 90). By
contrast, in Msm mutants, the loss of MshC
activity completely blocks the production of
MSH and causes increased levels of
glucosaminylinositol (Ref. 87). Mtb mutants
lacking mshC are not viable (Ref. 86), suggesting
that mycothiol is necessary for Mtb survival;
however, MSH-deficient mshA1 mutants have
been recovered in various Mtb strains (Ref. 89).
mshD mutants of Mtb and Msm produce low
levels of MSH and high levels of its immediate
precursor, as well as two novel thiols (Refs 85,
91). As stated previously, increased sensitivity to
oxidative stress is a common characteristic of the
mycothiol mutants. Msm mutants independently
disrupted in the four known mycothiol
synthesis genes and the Mtb mshD mutant are
more sensitive to H2O2 compared with the wild
type (Refs 85, 88, 92). Additionally, increased
sensitivity to cumene hydroperoxide was
demonstrated for the Mtb mshD mutant
(Ref. 86), whereas the Msm mycothiol mutants,
compared with Mtb, are less resistant than the
wild type to plumbagin, a superoxide generator
(Refs 87, 88). Many of the mycothiol mutants are
also more resistant to the prodrugs INH and
ETA (Refs 80, 88, 90, 92).

Thioredoxin (Trx)
Trx is a small redox protein with two redox-active
Cys residues in its active site. It is a superior thiol
reductant that binds proteins and reduces
disulfide bonds by a thiol-exchange reaction
through the two Cys residues to generate a
disulfide or dithiol. This results in oxidised Trx
[equation (10)], which is then reduced by the
FAD-containing enzyme Trx reductase (TrxR)
that extracts electrons from NADPH (Ref. 93)

[equation (13)]:

Trx-(SH)2 + protein → Trx-S2
+ protein-(SH)2 (12)

NADPH+H+ +Trx-S2 →
TrxR

NADP+ +Trx-(SH)2
(13)

NADPH, TrxR and Trx comprise the thioredoxin
system that is universally conserved. Trx is
responsible for maintaining a reducing
intracellular environment, regenerating the
reduced forms of methionine sulfoxide
reductase and peroxiredoxins, the redox
regulation of enzymes and regulatory proteins
by oxidoreduction and the detoxification of ROS
(Refs 94, 95, 96). Mtb contains three types of Trx
proteins, TrxA, TrxB and TrxC, with mid-point
redox potentials of −248, −262 and −269 mV,
respectively, along with one TrxR (Ref. 94). Trx
and TrxR have also been shown to reduce H2O2

and dinitrobenzenes (Ref. 97).
A particularly interesting function of E. coli Trx,

and probably also ofMtb Trx, is the reduction of a
unique disulfide bond in ribonucleotide reductase
(RNR), which allows RNR to reduce
ribonucleotides to deoxyribonucleotides that
feed into subsequent reactions (Ref. 98).
Intriguingly, several E. coli thioredoxin and
glutaredoxin double mutants were shown to be
nonviable under aerobic conditions, but were
rescued by DTT (a thiol-specific reductant) or
anaerobiosis (Ref. 99).

TheMtb sigH (σH)mutant was found to bemore
susceptible to disulfide stress generated by
diamide (a thiol-specific oxidant) and
plumbagin (Refs 100, 101), suggesting that σH

has a central role in protection against oxidative
stress. The Mtb σH mutant was found to be
attenuated for virulence in mice (Ref. 102), and
microarray analysis has shown that σH regulates
trxB, trx1 and thiX (a hypothetical trx)
expression. Mtb sigH exists in an operon with an
antisigma factor rshA (Ref. 103). Dissociation of
the σH and RshA interaction by oxidation allows
expression of the trx and trxR genes and the σH

operon (Ref. 103).

The Dsb disulfide oxidoreductases
Disulfide bond formation is a two-electron
oxidation event in which two Cys residues
(2RSH) are covalently bonded (RS–SR). Two
protons and two electrons are released during
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this process, as shown below:

RSH+ RSH → RS-SR+ 2H+ + 2e− (14)

Disulfide bond formation inside a cell is a rapid
process, whereas in vitro conditions might
require hours or days for the reaction to proceed.
Dsb proteins are thioredoxin-like proteins that
promote rapid disulfide formation and folding of
periplasmic or secreted proteins. Although many
Dsb proteins have been characterised, most in
E. coli, only three Dsb homologues, DsbE (Ref. 104),
DsbF (Ref. 105) and the transmembrane protein
DsbD (Ref. 104), are present in Mtb.

Catalase peroxidase
Catalase peroxidases (Kat) are enzyme systems
that efficiently protect the bacterium from ROS
damage (Refs 106, 107, 108) and are used to
detoxify H2O2. Mtb harbours one catalase, KatG
(Ref. 109), that shows catalase, peroxidase and
peroxinitritase activity. KatG has been
demonstrated to be a virulence factor (Ref. 110)
that mediates resistance against the prodrug
INH. Additionally, clinical Mtb strains resistant
or sensitive to INH that were exposed to the
drug show higher levels of AhpC (alkyl
hydroperoxide reductases) (Ref. 111), a member
of the peroxiredoxin family.

Alkyl hydroperoxide reductases
Reaction of peroxides with cellular components
such as lipids could lead to the generation of
highly reactive alkyl hydroperoxides.
Mycobacteria use a nonhaem peroxiredoxin
called alkyl hydroperoxidase (AhpC) to detoxify
by reduction such organic peroxides into less
reactive alcohol derivatives (Ref. 112).
Peroxiredoxins typically use two redox-active
Cys residues to reduce their substrates; however,
mycobacterial AhpC contains three Cys residues
that are directly involved in this catalysis. AhpC
was demonstrated to confer protection against
both oxidative and nitrosative stress (Ref. 113).
Mtb Trx and TrxR are not capable of reducing
AhpC (Ref. 97); AhpD, which is reduced by
dihydrolipoamide and dihydrolipoamide
dehydrogenase (Lpd) (Ref. 114), is needed for
the physiological reduction of AhpC. AhpC is
linked to dihydrolipoamide dehydrogenase
(Lpd) and dihydrolipoamide succinyltransferase
(SucB) through AhpD, which acts as an adapter
protein (Ref. 114). Lpd is a component of three

major enzymatic complexes: the pyruvate
dehydrogenase complex, the branched amino
acid dehydrogenase complex and the
peroxynitrate reductase complex. Thus, the
peroxidase activity is uniquely linked to
the metabolic state of Mtb. More recently,
another peroxiredoxin system, thioredoxin
reductase (TPx), was shown to be highly
effective in protecting Mtb against oxidative and
nitrosative stress (Refs 95, 115). The TPx system
depends on TrxR, TrxB and TrxC for its activity
and was recently shown to be involved in
virulence (Ref. 116).

Superoxide dismutases
SODs are metalloproteins produced by
prokaryotes and eukaryotes to detoxify
superoxide radicals. They catalyse the
dismutation of O2

•− into H2O2 and molecular
oxygen. Mtb contains two SODs, an iron-
containing SOD called SodA or FeSOD
(Ref. 117) and a Cu- and Zn-containing SOD
called SodC or CuZnSOD (Ref. 118). SodA is
constitutively expressed under normal
conditions and is demonstrated to be a major
secretory protein of Mtb that lacks a clearly
defined signal peptide sequence (Refs 117, 118).
Its expression is enhanced by H2O2 exposure
and on nutrient starvation (Ref. 119). An
antisense approach has successfully been used
to show that SodA protects Mtb against
superoxide in vitro (Ref. 120), whereas another
study has demonstrated the role of MtbSodC in
protection against ROS (Ref. 121).

Methionine sulfoxide reductases
MSRs use NADPH, Trx and TrxR as the system to
reduce methionine sulfoxide to methionine and to
protect bacteria against ROS and RNS (Ref. 122).
Usually bacteria contain two MSRs, one active
on both free and peptidyl methionine-(S)-
sulfoxide, and one or more MSRs active on
peptidyl, but not free, methionine-(R)-sulfoxide
(Ref. 123). Few studies on MSRs in Mtb have
been reported. However, recent studies have
shown that Mtb produces two MSRs, MsrA and
MsrB, which are both required for protection
against ROS and RNS (Ref. 124).

Truncated haemoglobins
Truncated haemoglobins (trHbs) are small haem-
binding globin proteins related to, but smaller
than, haemoglobin and myoglobin (Refs 125,
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126). trHbs are traditionally divided into three
classes based on their sequence similarity: group
I (trHbN), group II (trHbO) and group III
(trHbP). trHbs differ significantly in their
sequences and could be substantially different in
function, ranging from transport or storage of
oxygen to detoxification of ROS and RNS. Mtb
has two trHbs: trHbN and trHbO. trHbO has
high affinity for O2 because of a high association
constant and a low dissociation constant. trHbO
can also react with H2O2 and NO, suggesting a
role in detoxification of these two compounds
(Ref. 127). trHbN was also shown to have potent
NO oxidising activity (Ref. 128).

The environment of the lung
The human lung is the primary organ involved in
uptake of atmospheric O2 and is therefore
naturally susceptible to oxidative damage
because of its function. ROS production in the
lung is further enhanced on exposure to
exogenous oxidants such as tobacco smoke,
diesel exhaust, ozone and nitrogen oxides.
Antioxidants of the lungs include GSH,
ascorbate, β-carotene, albumin-SH, mucus, uric
acid, SODs, catalases and peroxidases
(Ref. 129).The high concentration of GSH in the
extracellular lining fluid (>400 μM) suggests
that glutathione is a vital component of the
defence mechanism against oxidant damage
(Ref. 130). Not surprisingly, cigarette smoke was
shown to significantly affect Cys/CySS and
GSSG/2GSH ratios, suggesting an imbalance in
thiol homeostasis (Ref. 130).

Hypoxia in the lung
It is widely accepted that oxygen depletion
facilitates entry of Mtb into the nonreplicating
persistent state. Within the lung, regional
differences exist in ventilation and perfusion,
and in the degree of blood oxygenation. In a
seminal study using resected lung tissue, lesions
classified as ‘open’ (oxygen rich) were found to
contain actively growing, predominantly drug-
resistant bacteria, whereas bacilli isolated from
‘closed’ (oxygen poor) lesions showed delayed
growth and were drug sensitive (Ref. 131). This
observation suggests that Mtb drug resistance
could be due to the physiological heterogeneity
of the bacilli caused by regional differences in
O2 levels. In agreement with this is the recent
evidence suggesting that granulomas can be
caseous, non-necrotising or fibrotic, sometimes

within the same individual (Ref. 55), which is
also supported by in vitro studies demonstrating
that anaerobically exposedMtb is a poor target for
antimycobacterial drugs (Ref. 132).

High O2 tension exists in the upper lung,
whereas the ventral lung experiences low O2

tension (Refs 133, 134). Consistent with anatomy
and function, the partial O2 pressure (pO2) of
atmospheric O2 (∼150–160 mmHg) drops in the
lungs (60–150 mmHg), spleen (∼16 mmHg
demonstrated in rats) and thymus (10 mmHg)
(Refs 53, 57, 135, 136). The diffusion distance of
O2 is ∼100–200 μm, resulting in a pO2 of zero
within this distance from blood vessels. Using
redox-active dyes that are reduced at pO2 lower
than 10 mmHg, studies in guinea pigs and
monkeys have shown that the granulomas are
indeed hypoxic (Ref. 53). Notably, Mtb is an
obligate aerobe but has evolved as yet
undefined mechanisms to survive within this
hypoxic and perhaps anaerobic environment.
Furthermore, O2 is a highly diffusible gas, and
despite the remarkable difference in pO2

pressure between the granuloma (1.59 mmHg)
and adjacent tissue (Refs 57, 53), it is not yet
known how this pressure differential is
maintained (Fig. 2).

The Mtb diet in the lung
The precise mechanism of nutrient acquisition by
whichMtb senses nutrient availability and adjusts
its metabolism in response to different carbon
sources in vivo has not yet been elucidated. An
additional level of complexity is added by the
fact that nutrient availability and utilisation
might change over the course of infection: for
example, intracellular bacilli versus the late
stages of infection where tissue has undergone
caseation and liquefaction. Nonetheless, several
studies suggest that host fatty acids might serve
as the carbon and energy source in vivo
(Refs 137, 138). The identification and current
studies on Icl (Ref. 68), the fatty acid regulator
KstR (Ref. 139) and an intracellular redox
sensor, WhiB3, which controls the switchover
from glucose to fatty acids (Refs 10, 140, 141),
should give important information on how a
persistent infection is established using fatty
acids as a source of carbon.

The amount of fattyacids and lipids available for
Mtb growth in vivo (g/l) considerably exceeds that
of obtainable carbohydrates (Ref. 66). Lipids can be
oxidised by β-oxidation to yield valuable ATP and
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Effect of exogenous environmental and endogenous host redox factors on the 
pathogenesis of TB
Expert Reviews in Molecular Medicine © 2011 Cambridge University Press

pO2 =
150–180 mmHg
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+
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Mtb in lesion-free tissue

Fibrotic
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Non-necrotising
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• Tobacco smoke,
• Indoor air pollution

(producing CO2, CO, NO, HCN, H2S,
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aldehydes and organic radicals)
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• Gradients of O2, NO, CO, 
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Figure 2. Effect of exogenous environmental and endogenous host redox factors on the
pathogenesis of TB. Infectious Mycobacterium tuberculosis (Mtb) bacilli are inhaled as aerosols from
the atmosphere and phagocytosed by alveolar macrophages in the lung. A localised proinflammatory
immune response causes the recruitment of mononuclear cells, leading to the establishment of a
granuloma. However, Mtb cells are also present in lesion-free tissue. During the course of infection,
caseous (typically hypoxic), fibrotic and non-necrotic granulomas can develop. The containment of Mtb
by these granulomas never operates in isolation, and can fail as a consequence of malnutrition,
diabetes, indoor air pollution, tobacco smoke and HIV infection, which are major risk factors for TB.
Thus, any condition that weakens the immune status (in particular, a decrease in the function of CD4+ T
cells) of the host can lead to TB. Exogenous environmental pollutants, which consist largely of redox-
active molecules, not only affect the host immune response, but also target the infecting bacilli.
Exposure to these environmental agents, production of host redox molecules such as O2

•−, NO,
ONOO−, etc. that are generated during the oxidative burst, and the pathological and physiological host
responses induced on infection (e.g. hypoxic granuloma, dysregulated host lipid production) can
collectively cause an imbalance in Mtb redox homeostasis, leading to oxidative stress or damage.
Conversely, exogenous factors and the dysregulation of endogenous host redox factors might lead to
the establishment of Mtb infection, maintaining a persistent state or allowing the bacillus to emerge
from persistence. Dormant Mtb cells residing inside hypoxic granulomas are resistant to current
antimycobacterial drugs and therefore have substantial implications on therapeutic intervention
strategies. Moreover, the dynamic physiology and structure of the lung further complicate the situation
because no two regions inside the lungs are similar in terms of their architecture and oxygen tension.
This also makes it extremely difficult to study the progression of TB using animal models. Inside the
lung, Mtb cells are exposed during transmission to a range of oxygen levels that varies from 150 to
180 mmHg in the upper respiratory tract to 1.9 mmHg within the granuloma, compared with pO2 levels
of healthy lungs (∼59 mmHg). In addition, host pH and the type of in vivo carbon source, along with its
concentration, will also have an impact on Mtb redox homeostasis. Nonetheless, it is still not clear how
exposure of Mtb to these exogenous and endogenous redox molecules affects Mtb physiology and
redox homeostasis in vivo to favour disease.
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acetyl-CoA.Because theCOSof fattyacids is highly
reduced, substantial quantities of reducing
equivalents [NAD(P)H] will be generated during
β-oxidation, which must be dissipated to
maintain intracellular equilibrium. This begs the
question: does Mtb experience ‘reductive stress’
(Ref. 54) during its in vivo growth, and if so,
how is that stress dissipated? The serendipitous
discovery that Mtb NAD(P)+/NAD(P)H present
in infected lungs of mice predominantly exists in
the reduced [NAD(P)H] state (Ref. 63) provides
strong evidence that Mtb experiences substantial
reductive stress during infection (for a review,
see Ref. 54). Furthermore, recent findings have
suggested a role for Mtb WhiB3 in the
modulation and dissipation of reductive stress
(Ref. 140), which implicates host fatty acids as a
source of reductive stress, and perhaps a signal
acting synergistically with hypoxia, NO and CO
to modify the course of infection. Recently, Mtb
TAG, which is under control of the Dos
dormancy regulon and WhiB3, was suggested to
be a source of carbon and energy when the
bacilli emerge from a latent state (Ref. 64).
Finally, studies have shown that cholesterol can
also be used as a carbon source during infection
(Ref. 142).

Mtb redox-sensing mechanisms: model
paradigms

Although Mtb contains 11 paired two-component
signalling systems and ∼180 regulatory proteins,
only a few proteins have been shown to directly
react with NO, CO or O2, and the downstream
effects of these interactions are mostly
unexplored. Nonetheless, in recent years the
DosR–S/T two-component haem sensor system
and the intracellular WhiB Fe–S cluster family of
proteins, particularly WhiB3 (Refs 9, 10), have
emerged as model signalling pathways that
specifically respond to these gases.

The DosR/S/T dormancy regulon
The DosR/S/T (Dos) dormancy system [first
reported as the DevR/S system (Ref. 143)] is a
‘three-component’ system capable of integrating
two haem histidine kinase sensors (DosS and
DosT) with a single response regulator, DosR.
The Dos system has been implicated in virulence
and is probably the most characterised system in
Mtb. An identical overlap exists between the
gene expression profiles of Mtb cells treated with
NO or CO, and when cultured under low O2

conditions (Wayne model for in vitro dormancy)
(Refs 9, 144, 145, 146). The Dos regulon
comprises ∼47 genes thought to have crucial
roles in the metabolic shift of Mtb to the
persistent state (Refs 60, 147). Several of these
genes are speculated to have a role in adaptation
to hypoxic stress, such as acr (rv2031c; chaperone
function), narX (rv1736c; unknown function),
nark2 (rv1737c; nitrate/nitrite transport), fdxA
(rv2007c; ferredoxin), nrdZ (rv0570; ribonuclease
reductase), tgs1 (rv3130; triglyceride synthase)
and Mtb orthologues of the universal stress
protein family (rv1996, rv2005c, rv2028c, rv2623,
rv2624c, rv3134c) (Ref. 148).

A key finding was the discovery that DosS and
DosTare haem proteins that can be oxidised by O2

or can directly bind NO and/or O2 through their
haem irons (Refs 9, 149, 150). The discovery that
CO directly binds the haem irons of DosS and
DosT, induces the Dos dormancy regulon
(Refs 144, 146), and is produced at the site of
Mtb infection has profound implications for the
importance of CO generated by host haem
oxygenase I (HO-1) in Mtb pathogenesis. A role
for environmental CO in TB was described as
early as 1923 (Ref. 151) and has been recently
discussed in more detail (Ref. 152). The
induction of the identical genetic expression
profile in response to three diatomic gases (O2,
NO and CO) is an unparalleled finding in
bacteriology, and suggests that Mtb has evolved
an exquisite sensory system to allow the bacilli
to continuously monitor and counter the effects
of host NO, CO and O2 levels during the course
of infection (Fig. 3).

The survival of Mtb under hypoxic conditions
depends on many factors in general and
oxidative phosphorylation in particular. By
contrast, it was shown that the NAD+/NADH
ratio in the hypoxic Wayne model remained
comparable to aerobic cultured cells (Ref. 60).
This is an unusual finding because this ratio in
bacteria typically decreases with a diminished
O2 concentration. As expected, ATP levels
decrease under hypoxia (Ref. 60), but are then
maintained at a constant low level. Any further
reduction in the ATP levels led to rapid death of
Mtb (Ref. 61).

Although the clinical role and significance of
the Dos regulon in human TB is yet to be
established, an indication of its clinical relevance
emerges by its ∼50-fold overexpression in Mtb
Beijing (W2) clinical strains (Ref. 153) and the
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strong immune responsiveness of latently infected
patients to the DosR regulon antigens (Refs 154,
155). In addition, the Dos regulon genes have

been shown to be upregulated in sputum
(Ref. 156) and in adipose tissue (Ref. 157) of
Mtb-infected individuals.

Mycobacterial mechanisms of sensing and countering endogenous or exogenous stress
Expert Reviews in Molecular Medicine © 2011 Cambridge University Press
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Figure 3. Mycobacterial mechanisms of sensing and countering endogenous or exogenous stress. The
host generates free radicals, non-free-radical molecules and numerous gases as a mechanism to counterMtb
infection. These molecules target mycobacterial DNA, proteins and lipids, may alterMtb gene expression, and
change the overall metabolic profile or peptide pool. Free radicals can react with prosthetic groups such as
Fe–S clusters or haem groups of the respiratory complexes. Mtb responds to these free radical stresses by
adjusting its energy metabolism, physiological response and signal transduction cascade. Most of the
radical-mediated damage is countered by detoxification processes comprising (a) enzymes such as
catalase, superoxide dismutase and alkyl hydroperoxide, (b) redox buffering systems (thioredoxins,
mycothiol, ergothioneine and protein thiols) and (c) truncated haemoglobins and cofactors (NAD+, FAD+

and coenzyme A). Mtb also possesses sensing mechanisms to detect environmental gases such as
gradients of O2, NO and alterations in its intracellular redox state to allow its survival. Well-studied
examples are the Dos dormancy regulon and the WhiB3 redox sensor. The Dos regulon senses O2, NO and
CO through the DosS and DosT haem proteins. The signal is relayed to DosR, which leads to the induction
of the 48-member Dos dormancy regulon that includes genes involved in energy production, dissipating
reducing equivalents and assimilation of storage lipids, which is thought to facilitate mycobacterial
persistence. WhiB3 functions as a regulator of cellular metabolism, which responds to O2 and NO through
its Fe–S cluster and integrates it with intermediary metabolic pathways. WhiB3 is an intracellular redox
regulator that dissipates reductive stress generated by utilisation of host fatty acids through β-oxidation.
Through the transcriptional activation of genes involved in lipid anabolism, WhiB3 is thought to direct
reducing equivalents into the production of cell wall components and virulence lipids such as sulfolipids,
phthiocerol dimycocerosates, polyacyltrehaloses and DAT. Under certain conditions, WhiB3 regulates the
production and accumulation of triacylglycerol, indicating a link with the Dos dormancy signalling pathway.
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WhiB3 and redox homeostasis
It is known that Mtb survives a constant threat of
redox stress either as a consequence of its aerobic
metabolism or as infliction by the host to prevent
the establishment of a successful infection. The
nondividing persistent state of Mtb is
attributable mainly to hypoxia, wherein
mycobacteria adapt to low oxygen pressures by
transcriptional regulatory networks that function
to maintain redox homeostasis. Identification of
such mechanisms allowing mycobacteria to
counter oxidoreductive stress during infection,
latency and reactivation is central to the
development of effective intervention strategies.
The WhiB-like proteins are found in

actinomycetes, and virtually all members of this
family contain four conserved Cys residues that
coordinate the Fe–S cluster. WhiB orthologues
have been implicated in sporulation in
Streptomyces coelicolor (Ref. 158), in pathogenesis
and cell division in mycobacteria (Refs 140, 141,
159, 160), in oxidative stress in Corynebacterium
glutamicum (Ref. 161), and in antibiotic
resistance in mycobacteria and streptomyces
(Ref. 162). However, the mechanistic basis for
how these WhiB homologues sense and respond
to endogenous and exogenous signals to exert
their effect is not known. A comprehensive
study examining the expression profiles of all
seven Mtb whiB genes (whiB1–whiB7) after
exposure to antibiotic and in vitro stress
conditions provides insight into the biological
function of the WhiB family (Ref. 163).
Mtb WhiB3, a homologue of a putative

sporulation transcription factor in Streptomyces,
has a role in virulence in mice and guinea pigs
(Ref. 141), and was shown to contain a (4Fe–4S)
cluster that directly associates with NO and is
degraded by O2 (Ref. 10). It was also proposed
that Mtb WhiB3 senses changes in the
intracellular redox environment associated with
O2 depletion and the metabolic switchover to
the preferred in vivo carbon source, fatty acids
(Ref. 10). Several lines of evidence (Refs 10, 140)
suggest that WhiB3 is involved in maintaining
redox homeostasis through its 4Fe–4S cluster by
regulating catabolic metabolism and polyketide
biosynthesis in Mtb. This has important
implications for understanding how Mtb persists
within the host, because it is widely accepted
that fatty acids serve as a major source of carbon
and energy in chronic infection. It was also
shown that WhiB3 induces a metabolic shift that

differentially modulates the assimilation of
propionate into the complex virulence
polyketides polyacyltrehaloses, sulfolipids,
phthiocerol dimycocerosates and the storage
lipid TAG in defined oxidising and reducing
environments (Ref. 140) (Fig. 3). What seems to
be emerging is a link between Mtb virulence
lipid production and the response to
oxidoreductive stress (Ref. 10). Because TAG
production, which is under conditional WhiB3
control, is also induced on exposure to NO, CO
and hypoxia through the Dos dormancy system
(Refs 147, 164, 165), these data establish a novel
link between an intracellular (WhiB3) and
extracellular (Dos) signalling pathway.

Future challenges and conclusions
Redox reactions in themicrobial cell have key roles
in intracellular and extracellular signalling, DNA,
RNA and protein synthesis, energy production
and metabolic homeostasis. However, to date,
we lack knowledge on the intracellular Mtb
redox environment, the identity of all main
redox couples and buffers, the behaviour of
these redox couples under different
environmental conditions, and the mechanisms
of sustained redox homeostasis in Mtb. In
particular, a fundamental challenge in the
oxidative stress biology of Mtb is to understand
how carbonyl, nitrosative and oxidative stress
modulate Mtb pathogenesis. Using genome-
wide tools, it is important to refine our
understanding of the Mtb ‘redoxome’. It should
be possible to generate numerical indicators of
the intracellular Mtb redox environment, the
redox state of each redox pair, and determine
how these indicators change on exposure to
various environmental signals, particularly NO,
O2 and CO. Noninvasive technology such as the
redox-sensitive green fluorescent protein
(Ref. 166) can serve as a novel tool to explore
global intracellular redox status and should be
exploited to examine these changes in Mtb
during infection. An important issue is the
identification of the major redox couples and
buffers in Mtb, and to ascertain their roles in
pathogenesis and drug resistance. Is
MSSM/2MSH the major redox buffer in Mtb?
What is the function of ERGox/ERGred in redox
homeostasis? Presently, the ERGox/ERGred redox
couple is an understudied system, but it might
have important implications for maintaining
redox homeostasis and in disease progression.
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Another particularly interesting and
unexplored area is the link between redox
homeostasis and drug efficacy. For example, the
identity of redox couples that participate in the
bioreductive activation of antimycobacterial
prodrugs (e.g. INH, ETH and PA-824) and an
understanding of the underlying mechanisms
involved will have a major impact on drug
development strategies. Although some progress
has been made in this field (Ref. 7), our
knowledge remains sparse. Proper treatment of
latent Mtb infection requires a more precise
understanding of the true physiological status of
Mtb within the microenvironment of the host,
for example the granuloma. Lase-capture
microdissection combined with mass
spectroscopy and RNA amplification strategies
could be exploited to quantitatively catalogue
host and bacterial proteins, lipids and
metabolites within granulomas. This would help
to define what a true dormant bacillus is, and
how we differentiate ‘dead’ from ‘live’ dormant
bacilli. Recently, progress has been made in this
regard, and stochastic Mtb phenotypes have
been identified as a possible mycobacterial
strategy to rapidly adjust to changing in vivo
conditions (Ref. 167).
A fundamentally important subject to be

addressed is the extent of Mtb respiration within
a hypoxic granuloma. Do fully anaerobic
granulomas exist? Identification of the terminal
electron acceptors used, and determination of
the mechanisms of NAD(P)+ regeneration used
under hypoxic (and perhaps anaerobic)
conditions are crucial to understanding TB
pathogenesis. An attractive hypothesis is that
Mtb resides within a spectrum of aerobic,
hypoxic and anaerobic microenvironments in
the lungs (Ref. 55), which in theory can explain
the capacity of dormant bacilli to survive
chemotherapy. Other important areas to study
include the mechanisms of how pO2 levels are
maintained in these microenvironments and the
independent or combined roles of NO, CO and
O2 in Mtb persistence.
Although it is likely that the preferred in vivo

carbon source for Mtb includes fatty acids or
cholesterol, conclusive experimental evidence
in vivo is still lacking. The use of labelled fatty
acids in in vivo studies should allow us to
identify metabolic pathways that are specifically
geared towards in vivo growth and survival.
Similar studies will also shed light on Mtb

reductive stress (Ref. 54) in vivo, and whether it
impacts the course of human TB. Furthermore,
the role of H2 as an energy source has been
reported for other infectious agents (Ref. 168), but
is an unexplored area for Mtb pathogenesis.
Interestingly, because the oxidation of H2

generates protons, some bacteria use it to dispose
of excess reducing equivalents (Ref. 169). Study of
the impact of complex host risk factors for TB
such as tobacco smoke, indoor air pollution,
malnutrition and diabetes on the bacilli by
exploiting metabolomics, proteomics and
microarray analyses will have broad public health
and socioeconomic implications.

In conclusion, a fundamental challenge faced
by investigators is the translation of their
combined research findings into novel in vitro
and in vivo experimental tools and ultimately
into successful TB intervention and control
strategies. This will dictate the success of
ongoing and future efforts to combat the
unrelenting threat of TB.
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Further reading

Farhana, A. et al. (2010) Reductive stress in microbes: implications for understanding Mycobacterium
tuberculosis disease and persistence. Advances in Microbial Physiology 57, 43-117.

This is a comprehensive review paper that describes the role of reductive stress in mycobacteria.

den Hengst, C.D. and Buttner, M.J. (2008) Redox control in actinobacteria. Biochimica et Biophysica Acta 1780,
1201-1216.

This review paper explores the mechanisms of redox control in actinobacteria with special emphasis on
mycobacteria.

Jaeger, T. (2007) Peroxiredoxin systems in mycobacteria. Sub-cellular Biochemistry 44, 207-217.

This thorough review describes the role of peroxiredoxin-type peroxidases in TB pathogenesis and in drug
action.

(continued on next page)
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Further reading (continued)

Fan, F. et al. (2009) Structures and mechanisms of the mycothiol biosynthetic enzymes. Current Opinion in
Chemical Biology 13, 451-459.

This outstanding review describes the chemical basis and mechanism of action of mycothiol biosynthetic
enzymes.

Singh, A. et al. (2009)Mycobacterium tuberculosisWhiB3 maintains redox homeostasis by regulating virulence
lipid anabolism to modulate macrophage response. PLoS Pathogens 5, e1000545

This article describes the role of the M. tuberculosis intracellular redox sensor WhiB3 in the redox-mediated
regulation of complex virulence lipids. The concept of reductive stress emerged from these findings.

Kumar, A. et al. (2008) Heme oxygenase-1-derived carbon monoxide induces theMycobacterium tuberculosis
dormancy regulon. Journal of Biological Chemistry 283, 18032–18039

This article demonstrates that haem oxygenase (HO-1)-derived CO produced by macrophages is primarily
sensed byDosS, and to a lesser extent by DosT, to induce theMtbDos dormancy program. The identification
of host-generated CO as a third in vitro dormancy signal is a major contribution towards understanding the
mechanism of signal sensing and represents a hitherto unexplored area of mycobacterial research.

Singh, A. et al. (2007)Mycobacterium tuberculosisWhiB3 responds to O2 and nitric oxide via its [4Fe-4S] cluster
and is essential for nutrient starvation survival. Proceedings of the National Academy of Sciences of the
United States of America 104, 11562-11567

This article links mycobacterial metabolism with the redox signalling molecules NO and O2 through the M.
tuberculosis WhiB3 [4Fe–4S] cluster. Importantly, WhiB3 was shown to function as an intracellular redox
sensor involved in the metabolic switchover to the preferred in vivo carbon source, fatty acids.

Kumar, A. et al. (2007) Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor.
Proceedings of the National Academy of Sciences of the United States of America 104, 11568–11573

This is the first report demonstrating that the M. tuberculosis haem proteins DosS and DosT sense CO. The
paper also describes the mechanisms of how O2, NO and CO affects DosS and DosT autokinase activity.

Features associated with this article

Figures
Figure 1. Virulence life cycle of Mycobacterium tuberculosis and progression of TB.
Figure 2. Effect of exogenous environmental and endogenous host redox factors on the pathogenesis of TB.
Figure 3. Mycobacterial mechanisms of sensing and countering endogenous or exogenous stress.

Table
Table 1. Standard reduction potentials of biologically relevant redox couples.
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