
1 A First Example
Optimal Quadratic Control

Our book starts with a motivating chapter to answer the question: Why is it worthwhile to
develop system theory? To do so, we jump fearlessly into the very center of our methods,
using a simple and straightforward example of optimal control. Although optimization is
not our main subject – that is system theory – it provides for one of the main application
areas, namely the optimization of the performance of a dynamical system in a time-variant
environment (think of driving a car or sending a rocket to the moon). The chapter starts
out with a review of the Moore–Penrose pseudo-inverse, which is a central concept of
matrix algebra, used throughout the book. Next it describes a simple case of optimal con-
trol, which is first solved in a global way and then in the much more attractive recursive
way called dynamic programming. The chapter then ends by showing how the method
generalizes to linear, discrete-time, time-variant models.

Menu
Hors d’oeuvre

The Moore–Penrose Inverse

First Course
Discovering the Power of

Dynamic Programming by Rowing

Second Course
The Bellman Problem: Optimal Quadratic Control

of a Linear Dynamical System

Dessert
Notes

1.1 Matrix Algebra Preliminary: The Moore−Penrose Inverse

Solving a system of linear equations Ax = b is perhaps the first motivation for studying
linear algebra. Here, A is a square m×m matrix with scalar entries, b is a given vector
of dimension m, and x is an unknown vector of the same dimension m. When A has
independent columns, these columns span the full real m-dimensional vector space
Rm (or in the complex case Cm), and there exists a unique solution x = A−1b. In this
case, the range of A, as an operator acting on x, is the full space Rm , and there is a

https://doi.org/10.1017/9781009455640.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009455640.003

4 1 A First Example: Optimal Quadratic Control

unique linear combination of columns of A that generates the given b of dimension
m. Many other situations are, of course, conceivable: there may be fewer equations
than unknowns (A has dimensions n × m with n < m) or just more (n > m), and the
equations given may turn out to be contradictory. The result is that an infinite number
of solutions might exist or just no solution at all. Hence, a more general approach is
needed, and it is provided by the Moore–Penrose inverse.

An overdetermined situation (n > m) often arises as a result of many (similar or
different) measurements involving the same unknown quantities in x, and then one
wonders what to do about the resulting incompatibilities (in measurement practice
involving more than one unknown variable, one should use a variety of measure-
ment methods to obtain a nonsingular system of equations with more equations n
than unknowns m). Let us look at such an overdetermined case in more detail.

Typically, when there are too many equations for the unknown quantities, these
equations will be contradictory, and no exact solution for Ax = b will exist. Rather,
for each trial x, there will be an associated error ex = b − Ax, and, assuming all
measurements to be equally important, one may want to find x’s that minimize the
quadratic error e ′xex =

∑
i=1:n[ex]2

i . More generally, one might give weight to the
importance of individual measurements, particularly when they lead to quantities with
different dimensions.

Therefore, we consider the error equation

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

A1,1 · · · A1,m
...

...
...

Am,1 · · · Am,m

...
...

...

An,1 · · · An,m

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x1
...

xm

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

b1
...

bm
...

bn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[ex]1
...

[ex]m
...

[ex]n

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(1.1)

and try to minimize the error ex in the least-squares sense. Matrix A has dimensions
n × m with n ≥ m, and let us assume that the columns of A are linearly independent,
but since n ≥ m, they span only a subspace of dimension m, and not the whole space
Rn to which b belongs, unless n = m.

Using the quadratic norm ‖a‖2 =
√

a ′a for any vector a, we may write

xmin = argminx ‖b − Ax‖2, (1.2)

meaning xmin is an argument x that minimizes the expression (notice: the square root
does not matter for the minimization). We show:

Proposition 1.1 The solution to the minimization problem argminx ‖b − Ax‖2, where
A is an n × m matrix (n ≥ m) with independent columns, is unique and is given by

xmin = A†b, (1.3)

in which A† := (A ′A)−1 A ′.
Moreover, the minimal error vector emin is given by

emin = (I − ΠA)b, (1.4)

https://doi.org/10.1017/9781009455640.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009455640.003

1.1 Matrix Algebra Preliminary: The Moore−Penrose Inverse 5

Ax min

Range of A

emin

Ax
h

b

Figure 1.1 Best linear quadratic approximation.

in which ΠA := AA† is the orthogonal projection on the range of A in Rn , and (I −
AA†) is the projection on the orthogonal complement of the range of A.

Proof
(We follow the traditional orthogonality argument.) For any x of dimension m, Ax
will lie in the linear subspace generated by the columns of A, that is, the range of A.
The best xmin in a least-squares sense will then be such that the least-squares error
emin = b − Axmin is orthogonal on the range space of A. Expressing the orthogonality
of the error vector on the columns of A, we require

A ′(b − Axmin) = 0, (1.5)

and hence xmin = (A ′A)−1 A ′b since A ′A is an m × m nonsingular matrix thanks to
the assumed independence of the columns of A. The solution is unique, because for
any x we have b − Ax = (b − Axmin) + h with h = A(xmin − x) ⊥ emin since emin is
orthogonal to the range of A, see Fig. 1.1 for an illustration, and hence ‖b − Ax‖2 =
‖emin‖2 + h2 > ‖emin‖2 when h /=0.

Next, one checks thatΠA = AA† = A(A ′A)−1 A ′ is indeed an orthogonal projection
operator, for

1. it is a projection operator because Π2
A = ΠA, and

2. it is an orthogonal projection because Π ′A = ΠA

(these being the two necessary and sufficient properties for an operator to be an orthog-
onal projection), and, finally, the range of ΠA is the range of A as well, because, for
any Ax whatever x may be, ΠAAx = A(A ′A)−1 A ′Ax = Ax. (I−ΠA) is then evidently
the projection on the orthogonal complement of the range of A. �

Definition 1.2 Given a matrix A with independent columns, the matrix A† =
(A ′A)−1 A ′ is called the Moore–Penrose inverse of A.

Example Suppose we have two measurements of a quantity x, the first giving x = 9
and the second x = 11. What is the “best” x in the least-squares sense? Writing the

measurements in matrix form gives b− Ax = e with A =

[

1
1

]

and b =

[

9
11

]

. We find

https://doi.org/10.1017/9781009455640.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009455640.003

6 1 A First Example: Optimal Quadratic Control

A ′A = 2 and A† = 1
2

[

1 1
]

, and hence xmin = 10, with emin =

[−1
1

]

and the overall

square-root error being
√

e ′minemin =
√

2 as one would expect. �

This is the basic “geometric” result used in most quadratic optimization problems.
Still, a number of remarks and/or refinements can be made:

1. A ′ is an m × n matrix, so the dimension of A ′b is the same as that of x. ΠA :=
AA† = A(A ′A)−1 A ′ is the orthogonal projection operator on the range of A, and
we often write ̂b := ΠAb. ̂b is the llse or linear least-squares estimate of b in the
range of A.

2. Where the columns of A are not linearly independent, more work has to be done
to solve the minimization problem, which typically will no longer have a unique
solution. We shall treat such cases when they occur.

The QR Solution
The expression A† = A(A ′A)−1 A ′ is unwieldy and certainly not well suited to com-
putations: not only is it largely inefficient, it is also computationally inaccurate – it is
only mathematically satisfying because it is a closed-form solution. An adequate, first-
hand, efficient and accurate solution is provided by the upper QR algorithm applied to
A, which produces a factorization of the form

A =
[

Q1 Q2

]

[

R
0

]

, (1.6)

in which Q =
[

Q1 Q2

]

is an n × n orthogonal matrix and R a nonsingular m × m
upper-triangular matrix. The columns of Q1 form an orthonormal basis for the range
of A, while the columns of Q2 form an orthonormal basis for the kernel of A ′, also
known as the co-kernel of A. When we dispose of such a QR factorization, then we
can immediately write

A† = R−1Q ′1 . (1.7)

Upper QR is not the only possibility for such a result; we could (and will) also use

a lower QR version of the same type of algorithm, writing A =
[

Q1 Q2

]

[

0
L

]

, in

which Q (different from the previous version!) is also an orthogonal matrix and L is a
nonsingular lower triangular matrix. In this latter case, we will still have A† = L−1Q ′2.
Both R and L can be seen as “compressed” versions of the rows of A with a special
(upper or lower) structure.

Remark: upper or lower QR are not the only possibilities to obtain the range basis.
A numerically more refined method is the singular value decomposition – SVD. We
refer to the linear algebra literature for a more extensive explanation.

https://doi.org/10.1017/9781009455640.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009455640.003

1.2 A Toy Example of System Optimization: Row, Row, Row Your Boat 7

0 1 2 3 4

x 1

x 2

x3

x

River width

d1

d0

δ0

δ0

Σ

+ δ1

i 0:3 δi

x2 + δ2

d2

Speed
of the water

Zero effort trajectory

Quadratically
optimal trajectory

Final error x4

∈

Figure 1.2 Optimal cost trajectory to row over a river with variable water speed.

Example In the previous example, we have A =

[

1
1

]

=

⎡

⎢

⎢

⎢

⎢

⎣

1√
2
− 1√

2
1√
2

1√
2

⎤

⎥

⎥

⎥

⎥

⎦

[√
2

0

]

, giving

orthonormal bases for both the range of A and the co-kernel of A, which is the kernel
of A ′.

1.2 A Toy Example of System Optimization: Row, Row, Row Your Boat

Suppose you want to cross a river in a rowing boat. The current in the river has variable
velocities depending on the distance from the shore. You can let your boat drift, and
with careful handling of the rudder or the oars, you can reach the other side without
any effort on your part. However, you will drift too far downstream doing this, so
instead, you would row against the current with the aim of reaching a point on the
other side of the river that is close to the opposite of your starting point. You would
try to do the best possible job by minimizing the effort you have to exert, while trying
to get close to your intended destination.

The Modeling Phase
We start out by making a simplified model of the situation. Here are the assumptions
(see Fig. 1.2):

• we subdivide the river into four segments enumerated 0:3, each segment having
a uniform (actually average) speed of water v0:3. We let the current flow in the
(vertical) x-direction; the model will easily generalize to more segments;

• the “natural drift” in each segment (i.e., the drift of the boat with no rowing effort
but keeping the boat going to the opposite shore as well as possible) is denoted
by δi , i ∈ 0:3. For example, we assume the natural drift δi to be proportional to

https://doi.org/10.1017/9781009455640.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009455640.003

8 1 A First Example: Optimal Quadratic Control

the current flow vi with some constant, which we have to specify further; we may
assume that the water that pushes on the boat also pushes the boat to the other side
when the rudder and/or oars are correctly set – we only need to assume that we
know the no-effort drift a priori;

• rowing provides for an improvement on the drift of di ≥ 0 in segment i, and the row-
ing effort is pegged at N2

i d2
i for some constant Ni solely dependent on vi , motivated

in the following paragraph.

A motivation to estimate the rowing effort in segment i to be proportional to d2
i is

that two main effects combine to increase di , namely the fact that more force has to
be used by the rower given the local push by the river, and, second, that that force
has to be exercised over a longer relative distance due to the greater drift (energy =
force times distance). That makes the effort in the first instance proportional to d2

i (an
alternative argument is based on a power expansion, the observation that di = 0 means
no effort, and any deviation requires effort.) The proportionality, in turn, is dependent
on the local circumstances, and hence on vi , perhaps proportional (this assumption
is not used, but is not unreasonable). We write this constant, which is positive, as a
square number N2

i , for convenience, as will appear soon.
The total cost to be minimized hence becomes

C4 =

3∑

i=0

N2
i d2

i + M2x2
4, (1.8)

in which the offset at destination x4 is penalized as M2x2
4 for some M , which one may

choose: the larger the M is, the closer to the ultimate goal the rower will end up at.
All the “modeling quantities” Ni and M are assumed known (this is the big “physics
work” to be done before boarding!).

The dynamic model is very simple in this case. We take the position xi , i = 0:3 of
the boat as the state at position i, and its evolution is

xi+1 = xi + δi − di . (1.9)

Notice that the model is not linear: it is affine because of the drift term δi , but we shall
soon see that it can be handled with linear methods just as well.

Our optimization strategy now consists in writing down the complete cost model
for this situation and then performing optimization on it. The cost model has to relate
the control quantities that drive the dynamic model – the di – to their contribution in
the cost function. It will soon appear that it is best to define the components in the cost
model as squares of linear quantities, namely of yi = Nidi for i = 0:3 and y4 = M x4 –
this will make the model linear or affine. Notice that these quantities are function of
either the inputs (the di) or the states, in this case just x4. x4 can be expressed in terms
of the input quantities by integrating the state equations x4 = δt − ∑i=0:3 di , where
δt :=

∑
i=0:3 δi is the total drift (assumed to be known).

Writing this out in matrix language and using the di as controlling inputs, we obtain
the global cost equation

https://doi.org/10.1017/9781009455640.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009455640.003

1.2 A Toy Example of System Optimization: Row, Row, Row Your Boat 9

[

y0:3

y4

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

N0

. . .

N3

−M · · · −M

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

d0
...

d3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
...

0
Mδt

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (1.10)

Defining N := diag[Ni], E = col
[

1 · · · 1
]

a column vector of 1’s, and using
vectors for the other quantities, the equations summarize as

y =

[

N
−ME ′

]

d +

[

0
Mδt

]

(1.11)

and the goal is to find the vector d that minimize C = y ′y.

The Global Solution
As discussed in Section 1.1, the Moore–Penrose inverse produces the solution: in Eq.
(1.11) and referring to the original Moore–Penrose equation Ax − b = ex , d plays the

role of x, y of ex ,

[

N
−ME ′

]

of A and −
[

0
Mδt

]

of b. The Moore–Penrose inverse of

the nonsingular system matrix S :=

[

N
−ME ′

]

is then

S† = (N2 + M2EE ′)−1
[

N −ME
]

(1.12)

and the solution of the optimization problem is given by

̂d0:3 := (N2 + M2EE ′)−1 M2Eδt . (1.13)

This expression can be computed explicitly, using the inversion rule for a low rank
perturbation of a nonsingular matrix (sometimes called the “Sherman–Morrison for-
mula”: suppose that some low-dimensional (rectangular) matrices A and B of same
dimensions are such that I+B ′A is nonsingular, then (I+AB ′)−1 = I−A(I+B ′A)−1B ′

– proof is by direct verification; the simplest case is when A and B are just vectors –
we leave details to the interested reader). The result is

̂di =

�

�

�

�

1
N 2

i

1
M2 +

∑
(

1
N 2

i

)
�

�

�

�

�

δt . (1.14)

This result is a globally computed a priori control (not a state-dependent control),
to be computed before boarding the boat. Notice that ̂di = K 1

N 2
i

with constant K =
δt(

1
M2 +

∑ 1
N2
i

) , so and assuming all Ni equal, the optimal efforts N2
i
̂d2
i to be spent at each

step are equal (which is not unreasonable altogether: you distribute the energy to be
exerted evenly over the sections – a pretty generally valid “principle” in optimization
theory; notice also that in the limiting case M → ∞,

∑
̂di = δt , forcing the rower to

get at the destination point exactly).

https://doi.org/10.1017/9781009455640.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009455640.003

10 1 A First Example: Optimal Quadratic Control

Dynamic Programming
The global character of this solution can easily be seen as a problem: there is no
adaptivity. Many things can happen when one is plodding in the river, and it pays
to figure out a recursive solution that can adapt to the perspective from a local state
of affairs, reached somewhere in the middle of the river. It turns out that the global
solution can be converted to a local solution, by making the controls a function of the
local state. But there is another advantage to a local solution (given the validity of the
model of course): at any local position only information on the cost of the next move
is needed to determine the optimal local move. The reduction to minimal sufficient
information is what makes the recursive computation attractive and efficient. This we
derive now. It is known as dynamic programming or dynamic optimization.

Let us therefore see how to do the local recursive optimization and derive the control
law at stage k, which we shall see to be just a function of the local state xk . The prin-
ciple of dynamic optimization, or Bellman principle, is based on the observation that:

once a state xk has been reached, the cost must be optimal from that point on up to the final
state, for if it were not so, there could be a lower total cost obtained by a modification of the
final part of the trajectory. It follows that the optimal cost to reach the destination starting at a
state xk depends exclusively on that state xk , that is, all dependence on past history or controls
d0:k−1 go via the state xk , which also determines what the optimal future controls are
supposed to be.

An important consequence of the principle is that local optimization can be done,
provided one disposes of an expression for the cost of the trajectory following the cur-
rent step, expressed in terms of the next state.

Concretely:
Suppose you have reached state xk and you are ready to determine the optimal
control ̂dk to move to state xk+1 (using the state evolution equation, in this case
xk+1 = xk + δk − dk). What you need is the expression for the optimal cost of the
trajectory starting at xk+1, which by assumption depends only on xk+1: ̂Ck+1(xk+1).
You have to determine

̂dk = argmindk

(
N2
k d2

k +
̂Ck+1(xk + δk − dk)

)
, (1.15)

which optimizes the cost from xk on. Notice that ̂dk depends solely on the state xk ,
since xk+1 depends on xk , so we should actually write ̂dk (xk). The minimum in the
expression is the optimal cost from xk on. It is

̂Ck (xk) = N2
k
̂dk (xk)2 + ̂Ck+1(xk + δk − ̂dk (xk)). (1.16)

So, knowing ̂Ck+1, one can determine the optimal local control ̂dk , and the cost infor-
mation needed for the step starting at xk−1. This is the minimal sufficient information
needed at step k: ̂Ck+1, which has to be determined as a function of xk+1 by a backward
recursion from the end point.

The key to dynamic optimization is therefore the recursive determination of the
optimal cost ̂Ck (xk) to reach the destination after having reached the state xk and this
to be done with a backward recursion, for all relevant k.

https://doi.org/10.1017/9781009455640.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009455640.003

1.2 A Toy Example of System Optimization: Row, Row, Row Your Boat 11

Let n be the index of the last stage for more generality (in this case, n = 3); then the
dynamic programming equation (or Bellman equation) starts at n with ̂Cn+1(xn+1) =
M2x2

n+1, the cost of the deviation from the final goal, and then recurses back to k = 0,
producing a control that is solely dependent on the xk reached at each stage k, provided
the physical model does not change from the original assumptions. If, after reaching
xk , one suddenly realizes that the model is not any more valid, then one would have
to redo the backward recursive calculation using a new model, but of course only up
to stage k, and derive a new control law, valid from stage k on.

Conclusion: for the optimization at stage k, what you need is

1. the optimal cost ̂Ck+1(xk+1) for each relevant xk+1, and
2. the cost model at stage k, which is a function (still to be determined) of the

effect produced by the choice of the optimal local control dk and the optimal cost
̂Ck+1(xk+1) you will incur when transiting from xk+1 to xn+1. Let us now see how
this works out for our case.

The Local Cost Model
The main difficulty in dynamic programming is finding an expression for the cost
̂Ck (xk), and this for each k. It turns out that, in the case of a linear or affine state
cost model and a quadratic cost function, there is a simple solution to this problem.
Concerning the optimal cost ̂Ck (xk) for any k, we observe that

1. the cost is minimally zero when xk = −δt,k , where δt,k =
∑n

k=i δi , because in that
case we reach the ideal destination xn+1 = 0 with zero effort (all di: = 0, for i ≥ k),
and

2. the optimal cost expression in function of any xi will likely be a quadratic expres-
sion (we shall prove this hypothesis recursively), has to be positive for all values of
xi , and has the correct minimum value zero when no cost is incurred. Assuming all
this, the optimal cost then necessarily has the form

̂Ci (xi) = Y 2
i−1(xi + δt, i)

2, (1.17)

with Yi−1 being a new coefficient to be determined recursively (the choice for the index
i−1 in Yi−1 instead of i is historical and motivated by the position of Yi in the local cost
model – see below). The proposed choice is quadratic in xi and is zero for xi = −δt, i
as is satisfied by Eq. (1.17).

With this hypothesis, the (Bellman) dynamic programming equation at stage k
becomes

̂d(xk) = argmindk

[

N2
k d2

k + Y 2
k (xk + δt,k − dk)2

]

. (1.18)

Noticing that xk+1 + δt,k+1 = xk + δk − dk + δt,k+1 = xk + δt,k − dk , where all δt
are the properties of the river and hence known a priori, and introducing the optimal
̂d(xk) found in the local cost expression, we should find

̂Ck (xk) !=! Y 2
k−1(xk + δt,k)2 (1.19)

for a new Yk−1.

https://doi.org/10.1017/9781009455640.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009455640.003

12 1 A First Example: Optimal Quadratic Control

xk xk+1

dk

δk

+

+

δt,k +1

δt,k+ –

–

∗Nk

Nkdk dkYk x()k

Figure 1.3 The local cost model for our rowing situation: the total cost starting with xk is the
quadratic norm of the output vector in the local model.

Equation (1.18) defines the optimization, and Eq. (1.19) says that the expression
we guessed for ̂Ck+1(xk+1) is reproduced for any ̂Ck (xk), thereby determining Yk−1

recursively (still to be proven: see the following remark).

Remark: The introduction of a recursive expression for ̂Ck is necessary. One cannot
just add local quadratic costs, because it is not true that (

∑
(δk −dk))2 =

∑
(δk −dk)2!

This illustrates the difficulty of general dynamic programming: one either has to guess
the form of the recursive optimal cost function somehow, or else figure out some other
method to find ̂Ck recursively in a meaningful way. In the quadratic cost case, as
defined for an affine or linear model, it is easy to make the guess. One then shows
correctness by recursive verification. This does not work for general norms, although
even in such cases, dynamic programming remains interesting, at the cost of a more
complex optimization strategy.

The local cost model at stage k, using the proposed cost expression, is shown in
Figure 1.3. This cost model is affine, with steering (input) vector dk and the cost vector
expressed in terms of the present state xk , the control dk , and the known quantities, is
then

[

Yk (xk+1 + δt,k+1)
Nkdk

]

=

[

Yk (xk + δt,k)
0

]

+

[−Yk
Nk

]

dk . (1.20)

Using the Moore–Penrose inverse, it follows that

̂dk = −
[−Yk

Nk

]† [
Yk (xk + δt,k)

0

]

=
Y 2
k

N2
k
+ Y 2

k

(xk + δt,k). (1.21)

https://doi.org/10.1017/9781009455640.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009455640.003

1.2 A Toy Example of System Optimization: Row, Row, Row Your Boat 13

This is an affine control, partly proportional to xk , with a constant plus an a priori
known driving term δt,k . For the cost, we find, after a small calculation,

̂Ck (xk) =
N2
k
Y 2
k

N2
k
+ Y 2

k

(xk + δt,k)2, (1.22)

thereby proving the recursive hypothesis, with Yk−1 =
NkYk√

N 2
k
+Y 2

k

. Of course, the cost

at n (which initializes the recursion) is simply Y 2
n x2

n+1 = M2x2
n+1, and it cannot be

optimized, since the other shore has been reached.

The (Lower) QR Way
A slightly different viewpoint, which will prove very effective in larger problems,
works with orthogonalization and is, in the present case, particularly simple. For the
cost vector (let us call it yk , with the quadratic cost y ′

k
yk), we have

yk :=

[

Yk (xk+1 + δt,k+1)
Nkdk

]

=

[

Yk −Yk
0 Nk

] [

xk + δt,k
dk

]

, (1.23)

where dk is the driving term. A lower QR factorization on the “system matrix”
produces

[

Yk −Yk
0 Nk

]

= Qk

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

YkNk√

Y 2
k
+N 2

k

0

−Y 2
k√

Y 2
k
+N 2

k

√

Y 2
k
+ N2

k

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (1.24)

with Qk =
1√

Y 2
k
+N 2

k

[

Nk −Yk
Yk Nk

]

being a single rotation in this case. (The lower QR

factorization first starts with compressing the last column downward, in this case rotat-

ing

[−Yk
Nk

]

to
⎡

⎢

⎢

⎢

⎢

⎣

0
√

Y 2
k
+ N2

k

⎤

⎥

⎥

⎥

⎥

⎦

, and next moves to what remains of the next to last

column, which in this case does not need any further compression as it is already a
single scalar.)

Surprisingly perhaps, the R-factor contains the result directly! To see this, let ck :=
Q ′

k
yk be the rotated cost vector over Q ′

k
; then c ′

k
ck = y ′

k
yk (i.e., the quadratic cost is

preserved after rotation), and

[

ck,1
ck,2

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

YkNk√

Y 2
k
+N 2

k

0

−Y 2
k√

Y 2
k
+N 2

k

√

Y 2
k
+ N2

k

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[

xk + δt,k
dk

]

, (1.25)

while the quadratic cost is now written as c2
k,1 + c2

k,2. Remembering that xk is given
at the beginning of each recursion, we see that ck,1 is fixed, and the minimal cost is
obtained by making ck,2 = 0, which as an optimal driving input gives

̂dk =
Y 2
k

Y 2
k
+ N2

k

(xk + δt,k), (1.26)

https://doi.org/10.1017/9781009455640.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009455640.003

14 1 A First Example: Optimal Quadratic Control

and the corresponding cost is ̂Ck (xk) = c2
k,1 =

Y 2
k
N 2

k

Y 2
k
+N 2

k

(xk + δt,k)2 as announced and

as derived before.

Remarks
• The solution presented in Eq. (1.26) is a feedback law: it gives the required control

in function of the state reached; see Fig. 1.4.
• The simplicity of the recursive solution should be obvious, but it requires some

additional modeling effort to obtain it. It also has the great advantage that the opti-
mization criteria may be modified adaptively as one proceeds (e.g., when one gets
better estimates of the properties of the river, the boat, and/or of future costs). This
is an issue we shall not address here but which may come up when we discuss
optimization problems in later chapters.

• If one has to reach the exact destination (xn+1 = 0), then one may let M tend to
infinity, with some care. This will not lead to much change in the derivation, except
at the last stretch. It is a good exercise to perform!

• From the control formula, it is clear that the effort to be made at any stage k has N2
k

in the denominator, meaning that the stronger the current, the less one should row
against it. The wisdom to profit, mostly from the least resistance or the low hanging
fruit, turns out to be a pretty general result. The general physical principle of “least
action” has some of this flavor as well.

• It should be clear that the Moore–Penrose inverse method only works on linear or
affine models and costs of quadratic type. With a different overall cost function or
nonlinear model, the whole procedure becomes considerably more complex, but the
principle of dynamic programming will still apply, at the cost of added numerical
complexity.

• Our example was restricted to n = 3, but the treatment is sufficiently general (pro-
vided the model is valid, of course) and could also be utilized for a continuous-time

xk

xk t,k
d̂k Y 2

k

Y 2
k

N2
k

xk+1

+
+()= δ

Figure 1.4 The optimal control feedback law.

https://doi.org/10.1017/9781009455640.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009455640.003

1.3 The General Linear Model for Optimal Quadratic Control 15

u begin

B begin

uk u end

Bend

A end

Bk
Akxk xk+1 xendx begin

Figure 1.5 Signal flow model of the state evolution considered in the linear tracking model. At
index k, xk+1 = Ak xk + Bkuk .

situation after discretization or, conversely, to derive the continuous-time treatment
from the discretized, which is what is often done in the literature.

• It is easy to see that the recursive solution gives the same result as the global one. A
good exercise!

1.3 The General Linear Model for Optimal Quadratic Control

Given the insights we have developed in our toy example, it is not difficult to derive
the matrix algebra for the classical problem of optimal quadratic state control of a
linear dynamical system, as originally proposed by Bellman [13], usually done for the
continuous-time case, but done here for the discrete-time case. The goal is to show (1)
how the conversion from a physical system environment to matrix algebra is done, and
(2) how an upper or lower QR factorization greatly simplifies the procedure, thanks
to orthogonalization. It also provides a good example of an important general method
we shall develop later: inner–outer factorization.

We assume that the dynamics of our discrete-time system are represented by a real
state vector xk of dimension ηk , which is a function of a time index k (an integer)
and characterizes the state of the system at the time instant k. Let the system be driven
by an input uk at index k, where uk is a vector of dimension mk , and let us assume
(inspired by the example) that the evolution of the state of the system from the time
point k to the time point k + 1 is given by the linear (time-variant) state equations

xk+1 = Ak xk + Bkuk , (1.27)

in which Ak is an ηk+1×ηk matrix and Bk is an ηk+1×mk matrix. A simple signal flow
diagram as shown in Fig. 1.5 is often used to represent such a model. (In Appendix,
we present the “Functional Data Model” we typically use to represent computations
graphically. It allows for an easy transformation of numerical computations into a
hardware architecture or a computer program.)

Let us assume for illustrative purposes that our system starts at index 0 with a given
initial state x0 and that we wish to control the evolution of our system in the interval
[0,n+1], where n is the index of the final stage, so as to minimize a positive quadratic
cost function keeping states and inputs small, by putting quadratically increasing costs
on their values.

https://doi.org/10.1017/9781009455640.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009455640.003

16 1 A First Example: Optimal Quadratic Control

For simplicity and in order to represent a quadratic cost adequately, we write the
cost of a state xk as x ′

k
M ′

k
Mk xk , in which Mk is a matrix of appropriate dimensions

and the prime indicates real or complex conjugation, making x ′
k

a row vector. (Often
the cost is defined by a strictly positive definite matrix Ck , and one may take Mk =

C1/2
k

or just a Cholesky factor, but Ck may be nonstrictly positive definite and Mk

may be a rectangular factor accordingly.) Similarly, we write the cost of an input uk as
u ′
k

N ′
k

Nkuk , and we assume Nk to be a square, nonsingular matrix (so that arbitrarily
large inputs will not be possible).

Dynamic Programming
The problem of optimal quadratic control in the given set up is solved by dynamic
programming. The basic idea of dynamic programming is: once the system reaches
the state xk at the time index k, the trajectory has to be optimal from there on; for, if
that were not the case, there would be a better overall trajectory just by replacing the
segment from the current position k to the end with a less costly path. This means,
in particular, that all optimal inputs and costs, when started from xk at the time index
k, are only dependent on xk and not directly on previous states; previous states will
influence xk , but can only influence later quantities via xk , given the model, of course.
To put it differently, all the future inputs have to be chosen so as to optimize the
trajectory from the index k on and hence are only dependent on xk and the model
from that point in time on. Let us now prove the following recursive hypothesis for the
quadratic cost case and linear system model:

The total optimal cost starting from any xk in the remaining interval [k,n+
1] is given by a quadratic form ̂Ck (xk) := x ′

k
Y ′
k−1Yk−1xk , in which Yk−1 is

a (to be computed recursively) ηk×ηk matrix.

The recursive hypothesis will be verified if (1) it is valid at the end point k = n+1 and
(2) when valid for k + 1 it is valid for k:

1. The first statement is true because at the end point n + 1 the cost is
x ′
n+1 M ′

n+1 Mn+1xn+1, so Yn = Mn+1.
2. The second statement is to be derived now.

Key to the derivation is the determination of the cost model: put the “square roots”
Yk xk+1, Mk xk and Nkuk of the cost terms as outputs in the cost model, so that the cost
equals their total square norm and the model itself is linear. Next, assume recursively
that the optimal cost, from k + 1 on, and for any xk+1, is given by x ′

k+1Y ′
k

Yk xk+1, the
cost model at k (shown in Fig. 1.6) gives, after the multiplication of the first block row
with Yk ,

yk =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Yk xk+1

Mk xk
Nkuk

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Yk Ak

Mk

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

xk +

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Yk Bk

0
Nk

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

uk =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Yk Ak Yk Bk

Mk 0
0 Nk

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[

xk
uk

]

, (1.28)

and the optimization problem specializes to the following: find the uk that minimizes
the cost y ′

k
yk = x ′

k+1Y ′
k

Yk xk+1 + x ′
k

M ′
k

Mk xk + u ′
k

N ′
k

Nkuk , for given xk .

https://doi.org/10.1017/9781009455640.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009455640.003

1.3 The General Linear Model for Optimal Quadratic Control 17

Yk x

uk

xk+ 1

k+ 1

Bk

Nk Yk
Mk

Ak

Nkuk
Mk xk

xk

Figure 1.6 The full local cost model for optimal quadratic control, including cost outputs.

Notice: In this phase of the recursion, xk is the only remaining “variable,” whereas
the others, namely uk and xk+1, will be “optimized out” as a function of xk .

(Lower) QR Orthogonalization
The propagation of the cost function is now easily found using orthogonalization
of the system matrix. Following the tradition in the literature, we use a lower QR
factorization of the “system matrix” in Eq. (1.28), to produce the block decomposition

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Yk Ak Yk Bk

Mk 0
0 Nk

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= Qk

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0
Yk−1 0
Co,k Do,k

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (1.29)

in which

1. Qk is an orthogonal (or, in the complex case, unitary) matrix that produces the block
staircase in the right factor;

2. Do,k is square invertible, thanks to the assumption that Nk is square invertible (it is
not hard to show this);

3. Yk−1 is, by construction, in the “row echelon form”: it has independent rows and
hence is right invertible (flat), which makes it of minimal dimension;

4. all Qk ,Yk−1,Co,k and Do,k are new matrices computed from the entries in the
system matrix and whose meaning will soon be clear.

The orthogonal transformation matrix Q ′
k

transforms the cost vector yk to ck =
Q ′

k
yk in three orthogonal components, each with its own significance:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ck,1
ck,2
ck,3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

:= Q ′k

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Yk xk+1

Mk xk
Nkuk

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0
Yk−1 0
Co,k Do,k

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[

xk
uk

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
Yk−1xk

Co,k xk + Do,kuk

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(1.30)
valid for any input uk . It immediately follows from QkQ ′

k
= I that the quadratic cost

y ′
k
yk = c ′

k
ck generated by xk and uk can now be expressed as

y ′k yk = ‖Yk−1xk ‖2 + ‖(Co,k xk + Do,kuk)‖2, (1.31)

https://doi.org/10.1017/9781009455640.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009455640.003

18 1 A First Example: Optimal Quadratic Control

x0

I An

Bn

N0

A0

B0 · · ·

Fn = D –– – 1
o,n Co,nF0 = D –1

o,0Co,0

Figure 1.7 The optimal dynamic (i.e., state-dependent) Bellman controller.

in which Do,k is square invertible. It follows that, given xk , the cost is minimized by
choosing the optimal

ûk := −D−1
o,kCo,k xk , (1.32)

whereupon the minimal cost follows:

̂Ck (xk) = ‖Yk−1xk ‖2 = x ′kY ′k−1Yk−1xk , (1.33)

which had to be shown. �
The computation of new matrices from a given matrix, as is done in Eq. (1.29), has

been termed array processing in the literature, because it is a computation on a given
matrix that generates new matrices as a result. It is sometimes called a “square-root
method” because it works directly on the data given rather than on the quadratic form
that represents their cost.

In conclusion, we can state that a simple QR factorization gives the complete recur-
sive solution of the quadratic tracking problem, whereby the orthogonal Q-factor filters
the input data to produce both the optimal control and the new global cost function,
all in function of the actual state xk . Formula (1.32) shows that the optimal control
consists of a simple state feedback. This realization is shown in Fig. 1.7.

1.4 A Question to Be Researched

Thinking about optimizing the behavior of a system evolving in time, under what
conditions would dynamic programming be possible? Or, expressed negatively, when
is dynamic programming definitely not possible?

1.5 Notes

1. One of the original motivations for considering a quadratic optimization model
was the Apollo mission: How to get a rocket to the moon with minimal expendi-
ture of fuel? It takes, of course, some work to reduce the Apollo mission problem
to the simple model presented by discrete-time linear model in this book. One
must first find a potentially optimal trajectory that respects gravity laws and that
requires a minimal nominal amount of fuel to reach the goal within a domain of

https://doi.org/10.1017/9781009455640.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009455640.003

1.5 Notes 19

feasibility defined by various limits in time and fuel needed. Once settled on such
an optimal trajectory, the control problem is to keep the rocket close to the optimal
trajectory with minimal expenditure of fuel, even though various inaccuracies may
have occurred producing (stochastic) deviations. This is achieved by controlling
the deviation of the state from the desired optimal and using the control to bring
the rocket closer to the nominal optimal trajectory without spending too much fuel.
When sufficiently small, the deviation of the state will satisfy a linear differential
model derived from the optimal trajectory. After discretization, a model of the type
given above is obtained. We leave the study of discretizations to the appropriate
literature.

2. Dynamic programming is only one example of the use of system theory. There are
many more examples, several of which will be discussed in the following chap-
ters, and many more have to be relegated to further treatments. State estimation
(Kalman filtering), control theory, system modeling and model reduction, approx-
imation and interpolation of matrices, efficient computations with some types of
structured matrix, and data filter design all rely on system-theoretic concepts. The
value of dynamic programming as a prime example is the intimate connection it
exhibits between the dynamic model and the recursion that leads to the optimal
control. Further instructive examples of optimization problems on systems can be
found in the book of Luenberger [50]. A classical textbook on linear optimization
is due to Anderson and Moore [3].

3. There is a host of methods one can use to orthogonalize a set of commensurable
vectors, to wit:

1. global multidimensional rotations (to be preferred) or Householder transforma-
tions;

2. Gram–Schmidt orthogonalization;
3. bi-orthogonalization using hyperbolic transformations [18, 22].

These methods are discussed in further chapters, when they come up, and in many
textbooks on linear algebra.

4. The functional representation and data model used in this chapter, and described in
the Appendix, was proposed and analyzed in [6]. It allows for an unbiased transfor-
mation of mathematical operations to a computer architecture at the functional and
data transfer levels. It hides organizational details such as the conditional sequenc-
ing of functions, the partitioning, and storage and transfer of data in such a way that
this information can easily be generated from the data model when architectural
decisions like the localization of data in memories and the assignment of functions
to processors has been made (such design phases will not concern us in this book).
In particular, the model easily accommodates hierarchical representations and par-
allel processing. In this book, we shall only worry about practical implementation
aspects as far as numerical properties (numerical accuracy and complexity) are
concerned.

5. It is not easy to find a simple direct example for a deterministic quadratic optimiza-
tion problem on a linear model. Most such problems are of the type “tracking a

https://doi.org/10.1017/9781009455640.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009455640.003

20 1 A First Example: Optimal Quadratic Control

nonlinear trajectory to counteract stochastic disturbances.” In most practical exam-
ples of tracking with a linear model, the model has an extra disturbing noise term,
which has to be controlled. Using the time-variant linear model found by differen-
tiating a nonlinear trajectory, adding noise terms and using average quantities, one
can, without too much effort, extend the model used in this chapter to handle the
more general case.

6. Quite a few famous algorithms that go by specific names are, in fact, examples of
dynamic programming. Take for example the famous Viterbi algorithm to decode
a bitstream that has been coded with a convolutional code. This is an excellent
example of the use of dynamic programming in a p-adic number system.

https://doi.org/10.1017/9781009455640.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009455640.003

