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Objective. Osteomyelitis (OM) is one of the most risky and challenging diseases. Emerging evidence indicates OM is a risk
factor for increasing incidence of venous thromboembolism (VTE) development. However, the mechanisms have not been
intensively investigated.Methods. .e OM-related dataset GSE30119 and VTE-related datasets GSE19151 and GSE48000 were
downloaded from the Gene Expression Omnibus (GEO) database and analyzed to identify the differentially expressed genes
(DEGs) (OMGs1 and VTEGs1, respectively). Functional enrichment analyses of Gene Ontology (GO) terms were performed.
VTEGs2 and OMGs2 sharing the common GO biological process (GO-BP) ontology between OMGs1 and VTEGs1 were
detected. .e TRRUST database was used to identify the upstream transcription factors (TFs) that regulate VTEGs2 and
OMGs2. .e protein-protein interaction (PPI) network between VTEGs2 and OMGs2 was constructed using the Search Tool
for the Retrieval of Interacting Genes (STRING) database and then visualized in Cytoscape. Topological properties of the PPI
network were calculated by NetworkAnalyzer. .e Molecular Complex Detection (MCODE) plugin was utilized to perform
module analysis and choose the hub modules of the PPI network. Results. A total of 587 OMGs1 and 382 VTEGs1 were
identified from the related dataset, respectively. GO-BP terms of OMGs1 and shared DGEs1 were mainly enriched in the
neutrophil-related immune response process, and the shared GO-BP terms of OMGs1 and VTEGs1 seemed to be focused on
cell activation, immune, defense, and inflammatory response to stress or biotic stimulus. 230 VTEGs2, 333 OMGs2, and 13
shared DEGs2 were detected. 3 TF-target gene pairs (SP1-LSP1, SPI1-FCGR1A, and STAT1-FCGR1A) were identified..e PPI
network contained 1611 interactions among 467 nodes. .e top 10 hub proteins were TP53, IL4, MPO, ELANE, FOS, CD86,
HP, SOCS3, ICAM1, and SNRPG. Several core nodes (such as MPO, ELANE, and CAMP) were essential components of the
neutrophil extracellular traps (NETs) network. Conclusion. .is is the first data-mining study to explore shared signatures
between OM and VTE by the integrated bioinformatic approach, which can help uncover potential biomarkers and therapeutic
targets of OM-related VTE.
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1. Introduction

Venous thromboembolism (VTE), including deep venous
thrombosis (DVT) and pulmonary embolism (PE), is a
common and severe complication of infectious disease.
.is complication should always be considered in patients
who present with a musculoskeletal infection, especially
osteomyelitis (OM) in younger ones [1, 2]. In recent years,
the prevalence of DVT among acute haematogenous os-
teomyelitis (AHO) cases has been reported to be 6–10%
[3, 4]. In Taiwan, the risk of developing DVTwas 2.49-fold
in patients with chronic OM compared with the com-
parison cohort [5].

Previous studies have evaluated the clinical character-
istics of OM among children with and without DVT [3, 4].
Staphylococcus aureus (S. aureus) is the predominant
causative agent for OM [6], and clinical outcomes were
worse in patients caused by methicillin-resistant S. aureus
(MRSA) than in those affected by methicillin-susceptible
S. aureus (MSSA) [7]. In patients with AHO, Virchow’s triad
of hypercoagulability, venous stasis, and injury to the vessel
wall also applies and is thought to trigger thrombosis.
Animal studies have revealed the pathophysiological roles of
various influencing factors, including leukocytes, platelets,
and neutrophil extracellular traps (NETs), on thrombosis
[8]. Besides, there is increasing evidence for an association of
Panton–Valentine leukocidin (PVL)-expressing S. aureus
strains with AHO severity [9]..e possible mechanistic links
between DVT and OM may be platelets activated by PVL-
damaged neutrophils via neutrophil secretion products [9].
However, the mechanisms by which the transcriptomic
response of OM contributes to thrombosis development
remain incompletely understood, although there is in-
creasing evidence suggesting an extensive “cross-talk” be-
tween the inflammatory and coagulation cascades [10], and
these signatures may be useful in the diagnosis of venous
thrombosis.

Transcriptional profiles are used increasingly to inves-
tigate the severity, subtype, and pathogenesis of a disease,
which have implications for diagnosis and therapeutic de-
velopment [11–13]. .erefore, blood transcriptional profiles
and host response signatures could serve as biomarkers of
clinical changes in subjects at risk for or diagnosed with
venous thrombosis in OM. To further explore the underlying
pathophysiology, we examined the gene expression alter-
ations involved in OM and venous thrombosis. In this study,
we downloaded the gene expression profiles for OM and
VTE from the Gene Expression Omnibus (GEO) database.
We performed a gene expression analysis using the GEO2R
web tool to identify the differentially expressed genes
(DEGs) of OM and VTE with their respective controls and
subsequently developed Gene Ontology and pathway en-
richment analysis for screening of DEGs with the g:Profiler
toolset. Finally, an integration of the DEGs protein-protein
interaction (PPI) network was constructed and the module
analysis was performed. .e identified hub genes might play
important roles in the process of venous thrombosis which
developed from OM. Overall, our findings will hopefully
deepen the understanding of the relationships between OM

and VTE. A flowchart summarizing this study is shown in
Figure 1.

2. Materials and Methods

2.1. Data Acquisition and Processing. Gene expression
datasets related to OM and VTE were obtained from the GEO
database of NCBI (https://www.ncbi.nlm.nih.gov/geo/) [14].
.e keywords “osteomyelitis” and “venous thromboembo-
lism” with “Homo sapiens” or “human” were employed to
mine the dataset. Finally, 3 datasets were selected from
published studies and downloaded from the GEO database,
including GSE30119 for OM and GSE19151 and GSE48000
for VTE. .e related information of these datasets is given in
Table 1. .ese blood samples were further divided into dif-
ferent groups according to the diseases source. DEGs were
screened using transcription profile data of whole blood
samples. All data were normalized and log (base 2)
transformed.

2.2. Identification of DEGs. According to the recurrence or
degree of risk, VTE patients in the two datasets GSE19151 and
GSE48000 were grouped and compared with the healthy
controls, respectively. .e patients with S. aureus OM in the
dataset GSE30119 were compared with healthy controls.
GEO2R web tool (https://www.ncbi.nlm.nih.gov/geo/geo2r/)
[18] using the GEOquery and limma R packages from the
Bioconductor project was utilized to compare the differences
in gene expression between two or more groups of samples in
a GEOdataset (Table 1) and identify DEGs associated with the
diverse experimental conditions. .e adjusted P values were
used to decrease the false positive rate using the Benjamini
and Hochberg false discovery rate method by default. .e
threshold value for identifying DEGs was set as adjusted P

value< 0.05 and |log2(fold change)|≥ 1. .e results of the
pairwise comparisons were summarized for subsequent
analysis.

2.3. Venn Diagram Analysis of DEGs. We used an online
integrative tool Venny (http://bioinfogp.cnb.csic.es/tools/
venny/index.html) to analyze the similarities and differ-
ences of DEGs in the three datasets, GSE30119, GSE19151,
and GSE48000. .e identified DEGs of the two datasets
associated with VTE were merged, whereas DEGs which
were observed in opposite expression directions were dis-
carded. Afterward, two specific clusters of DEGs were de-
fined as OM-related DEGs (OMGs1, obtained from
GSE30119) and VTE-related DEGs (VTEGs1, obtained from
GSE19151 and GSE48000), respectively. Additionally, the
intersections of OMGs1 and VTEGs1 were defined as shared
DGEs1.

2.4. Functional and Pathway Enrichment Analyses of DEGs.
To discern the implication of specific clusters and shared
DEGs on OM and VTE, we used the g:Profiler (https://biit.
cs.ut.ee/gprofiler/) [19] toolset to perform Gene Oncology
(GO) terms and pathway enrichment analysis. .e shared

2 Genetics Research

https://doi.org/10.1155/2022/5672384 Published online by Cambridge University Press

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
http://bioinfogp.cnb.csic.es/tools/venny/index.html
http://bioinfogp.cnb.csic.es/tools/venny/index.html
https://biit.cs.ut.ee/gprofiler/
https://biit.cs.ut.ee/gprofiler/
https://doi.org/10.1155/2022/5672384


biological process ontology (GO-BP) was identified based on
overlapping GO term IDs between functional enrichment
analysis results of OMGs1 and VTEGs1. .e DEGs enclosed
by all GO-BP terms shared between OMGs1 and VTEGs1
were defined as DEGs2 (VTEGs2 and OMGs2, respectively)
and used to predict the significant pathways and ensuing
crosstalk between these pathways. Additionally, the inter-
sections of OMGs2 and VTEGs2, suggested the potential
mechanism of patients with OM in whom VTE developed,
were defined as shared DGEs2..e Benjamini andHochberg
false discovery rate method was used to correct the P value.
An adjusted P value< 0.05 was considered to have statistical
significance and to achieve significant enrichment.

2.5. Identification of Transcription Factors (TFs) &at Are
Significantly Associated with the DEGs. To link gene ex-
pression signatures to upstream cell signaling networks, we

used Transcriptional Regulatory Relationships Unraveled by
Sentence-based Text mining (TRRUST) (https://www.
grnpedia.org/trrust/) [20] to identify the upstream TFs
that regulate VTEGs2 and OMGs2. .e shared TF-target
gene pairs of VTEGs2 and OMGs2 may be involved in a
common pathway.

2.6. PPI Network and Module Analysis. .e Search Tool for
the Retrieval of Interacting Genes Database (STRING)
(https://www.string-db.org/) [21] was used to expose the
protein-protein interaction (PPI) information among
VTEGs2 and OMGs2 at the protein level. Afterward, the
network was recreated and visualized using Cytoscape
(http://www.cytoscape.org/) [22], based on the coexpression
graph of the PPI network. Topological properties (such as
degree of distribution, betweenness centrality, and closeness
centrality) of the constructed PPI network were calculated

Table 1: Published datasets related to OM and VTE used in this study.

Accession Platform No. of
control No. of disease Sample

source Reference

GSE30119 GPL6947: Illumina HumanHT-12 V3.0
Expression BeadChip 44 healthy 57 osteomyelitis (4 emboli, 4 DVT) Whole

blood [15]

GSE19151 GPL571: [HG-U133A_2] Affymetrix Human
Genome U133A 2.0 Array 63 healthy 32 single VTE; 38 recurrent VTE Whole

blood [16]

GSE48000 GPL10558: Illumina HumanHT-12 V4.0
Expression BeadChip 25 healthy 40 high-risk VTE; 33 moderate-risk

VTE; 34 low-risk VTE
Whole
blood [17]

GEO VTEOM

GEO2R~Data 
processing VTEGs1OMGs1

g:Profiler~enrichment 
analysis

Shared GO-BP terms VTEGs2OMGs2

TRRUST~upstream
TFs identified

Shared TF-target 
gene pairs

STRING~PPI network 
constructed

Cytoscape~Topological
properties analysis

MCODE~modules
analysis

Hub proteins & 
pathways

Venn Diagram
Analysis

Shared-DEGs2

verification

Figure 1: A flowchart of the present study.
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by NetworkAnalyzer in Cytoscape. Nodes with a higher
degree based on the number of edges (interactions) between
various nodes (proteins) were regarded as hub proteins. .e
Molecular Complex Detection (MCODE) [23] plugin of
Cytoscape was utilized to perform module analysis and
choose hub modules of the PPI network with a degree
cutoff� 2, node score cutoff� 0.2, k-core≥ 2, and max.
depth� 100.

3. Results

3.1. Identification of DEGs. Comparisons between differ-
entially gene expression between two or more groups of
samples from 1 OM dataset (GSE30119) and 2 VTE datasets
(GSE19151 and GSE48000) were performed using the
GEO2R web tool, respectively, and mRNAs with an ad-
justed P value < 0.05 and |log2(fold change)| ≥ 1 were
identified as DEGs. Two specific clusters of DEGs are
shown in Figure 2. A total of 587 OMGs1 were identified in
GSE30119. A total of 382 VTEGs1 were identified in VTE-
related datasets, including 186 in GSE19151 and 206 in
GSE48000. Furthermore, 27 shared DGEs1 that overlap
OMGs1 and VTEGs1 were screened out, with 2 genes
(LSP1 and PADI4) found to be observed in opposite ex-
pression directions. After applying functional annotation
with the Gene Ontology database to find terms associated
with the development of VTE in OM patients, 230 VTEGs2
and 333 OMGs2 sharing the common biological process
ontology were detected and used for further analysis
(Figures 3(d) and 4(a)). Afterward, Venn diagram analysis
of VTEGs2 and OMGs2 was performed and 13 shared
DGEs2 were detected (Figures 4(a)-4(b)). .ere were 11
upregulated DEGs and 1 downregulated DEG in shared
DGEs2, with 1 gene (LSP1) found to be observed in op-
posite expression directions (Figure 4(c)).

3.2. Functional Annotation of DEGs. To gain more bio-
logical insight, we performed GO enrichment analysis
using the g:Profiler toolset. As shown in Figure 3, the
activity of neutrophils has attracted widespread attention
among biological processes. With respect to OMGs1, the
following GO-BP terms were significantly enriched:
neutrophil activation, neutrophil degranulation, neutro-
phil-mediated immune response, and defense response to
the bacterium (Figure 3(a)). Highly similar results of
enrichment analysis were also presented in shared DGEs1
(Figure 3(c)). .ere suggested a significant correlation
with the biological process of neutrophils and the process
of VTE which developed in OM patients. In addition,
VTEGs1 were mainly enriched in the viral gene expres-
sion, nuclear-transcribed mRNA catabolic process, pro-
tein targeting to membrane, and protein localization to
the endoplasmic reticulum (Figure 3(b)). .e shared GO-
BP terms of OMGs1 and VTEGs1 seemed to be focused on
cell activation, immune defense, and inflammatory re-
sponse to stress or biotic stimuli (Figure 3(d)). .ese
results showed that DEGs were mainly enriched in host
immune defense processes such as neutrophil activation
and degranulation to resist bacterial invasion or other
stress.

3.3. Identification of TF-Target Gene Pairs. In the TRRUST
database, 36 and 43 upstream TFs were detected to regulate
VTEGs2 and OMGs2, respectively. A total of 13 shared
upstream TFs were E2F1, GATA1, JUN, NFKB1, RELA,
RUNX1, SIRT1, SP1, SPI1, STAT1, STAT3, TP53, and YY1,
and these data are given in Table 2. Furthermore, 3 TF-
target gene pairs may share a common pathway, consisting
of SP1-LSP1, SPI1-FCGR1A, and STAT1-FCGR1A. In-
terestingly, only one TF-target gene pair has a P value less
than 0.05.

GSE30119
Healthy vs S.aureus Osteomyelitis

GSE19151
Healthy vs

Single/Recurrent VTE

GSE48000
Healthy vs

Low/Moderate/High Risk VTE

560

4

6

11 12

165 184

Shared-DEGs1

VTEGs1

OMGs1

Figure 2: A Venn plot of OMGs1 and VTEGs1. Heart-shaped dotted line represents the shared DGEs1.
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3.4. Hub Proteins and Module Screening of the PPI Network.
A PPI network was utilized to visualize protein-protein
interactions involved in the development of VTE in OM
patients, and then, potential hub genes between VTEGs2 and
OMGs2 were detected. Nodes that did not interact with
other nodes were excluded. .ere were a total of 1611 in-
teractions among 467 nodes (Figure 5(a)). .e genes with
the highest degree (>30) of interactions within the network
were TP53, IL4, MPO, ELANE, FOS, and CD86 (Table 3). To
screen significant modules in the PPI network, the MCODE
plugin was used in Cytoscape, and the module analysis
results are given in Table 4. Top 3 of the 16 modules were
illustrated (Figures 5(b), 5(c), 5(d)). .e top 5 proteins with
higher node degrees in module 1 were ELANE (degree� 32),
HP (degree� 29), ORM2 (degree� 25), ARG1 (degree� 25),
and CAMP (degree� 24) (Figure 5(b)). .e top 5 proteins in
module 2 were SOCS3 (degree� 27), RBX1 (degree� 25),
UBE2D1 (degree� 24), RPS15A (degree� 22), and RPS17
(degree� 21) (Figure 5(c)). Additionally, the top 5 proteins
in module 3 were SNRPG (degree� 26), NDUFA4
(degree� 20), SNRPD2 (degree� 19), COX7C (degree� 19),
and HINT1 (degree� 19) (Figure 5(d)). Interestingly, we
found that 4 shared DGEs2 were included in these 16
modules, consisting of SLPI (module 1, degree� 17), TCN1

(module 1, degree� 14), CREG1 (module 4, degree� 11),
and FCGR1A (module 16, degree� 19) (Table 4).

4. Discussion

As a fatal disease caused by serious musculoskeletal infec-
tion, VTE needs to arouse the attention of clinical staff. It has
been reported that children with OM may have increased
susceptibility to VTE in previous epidemiologic studies
[3–5]. Unfortunately, the transcriptional signatures between
VTE and OM have not been intensively investigated. .e
main objective of this study was to focus on revealing the
underlying pathophysiology association between VTE and
OM.

In the present study, we integrated 2 expression profiles
from VTE patients and 1 expression profile from OM pa-
tients to identify genes that may play a crucial role in the
onset and development of VTE in OM patients. First, 382
VTEGs1 and 587 OMGs1 were identified in VTE and OM
patients, respectively. Following these, DEGs1 were evalu-
ated by functional enrichment analysis to get insight into the
biological significance in the pathogenesis. It is reported that
blood coagulation was overexpressed in patients with
osteoarticular infections [15, 24]. Here, our research showed
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Figure 3: Results of the GO-BP terms enrichment analyses for (a) OMGs1, (b) VTEGs1, and (c) shared DGEs1 and (d) shared GO-BP
enrichment of VTEGs1 and OMGs.
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VTE
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ABLIM1 -1.137 -1.351
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CREG1 1.1271 1.2108

FCGR1A 1.0668 1.3718
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Figure 4:.e DEGs2 enclosed by all sharing GO-BP terms. (a) A Venn plot of OMGs2 and VTEGs2. (b) PPI network of the shared DGEs2.
(c) Fold change of the shared DGEs2.

Table 2: .e list of TF-target gene pairs of VTEGs2 and OMGs2.

Shared
TFs

VTEGs2 OMGs2

No. Target genes P

value
Q

value No. Target genes P value Q value

E2F1 2 TP53, NRIP1 0.483 0.497 5 CDKN1C, PPARG, RRM2, IL23A, PCSK6 0.0863 0.124
GATA1 4 MPL, DICER1, HBE1, GYPB 0.005 0.0245 3 PRG2, ALAS2, FCER1A 0.0778 0.115
JUN 3 CSTA, NAMPT, TP53 0.269 0.312 3 IL23A, CTGF, PLAU 0.485 0.496

NFKB1 5 CD3G, NAMPT, BCL2A1,
ICAM1, TP53 0.304 0.332 12

PTGES, TFF3, COL1A2, SOCS3, PLAU,
HOXA9, CR2, HPSE, CD86, IL4, OLFM4,

IL23A
0.00727 0.0347

RELA 5 BCL2A1, TRIB3, ICAM1,
NAMPT, TP53 0.299 0.332 11

TFF3, COL1A2, IL4, IL23A, CD86,
PTGES, PLAU, OLFM4, HPSE, CR2,

SOCS3
0.0172 0.0674

RUNX1 2 PIK3CD, MPL 0.0841 0.121 3 MPO, ELANE, BPI 0.0325 0.0874
SIRT1 3 HBE1, ICAM1, TP53 0.0202 0.0519 2 PPARG, COL1A2 0.205 0.242

SP1 9
CYP1B1, ICAM1, LSP1, FBLN1,
CD151, ATP2A3, MCTS1, DCK,

FOS
0.119 0.153 9 MMRN1, MPO, LSP1, MME, CTGF,

ITGB3, PLAU, PTGES, LTF 0.443 0.464

SPI1 3 FCGR1A, ACP5, BCL6 0.0391 0.0741 8 FCER1A, ELANE, BPI, P2RY10, CTSG,
FCGR1A, PRG2, MME

1.19E-
05 0.000512

STAT1 3 TP53, ICAM1, FCGR1A 0.0815 0.121 4 CD86, FCGR1A, IL1R1, SOCS3 0.0597 0.112
STAT3 4 FOS, ICAM1, BCL6, TP53 0.0936 0.13 4 PROS1, CTGF, HP, SOCS3 0.237 0.262
TP53 2 TP53, PMAIP1 0.592 0.592 3 PAX5, NLRC4, VCAN 0.549 0.549
YY1 3 TP53, COX7C, HBE1 0.0979 0.131 4 COL1A2, DNAJB4, FCER1A, IL4 0.0754 0.115
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that OMGs1 and shared DGEs1 were mainly enriched in
some neutrophils-related pathways, such as neutrophil ac-
tivation, neutrophil degranulation, neutrophil-mediated
immune response, and defense response to the bacterium.
Moreover, the shared GO-BP terms of OMGs1 and VTEGs1
seemed to be focused on cell activation, immune defense,
and inflammatory response to stress or biotic stimuli. .ese
results indicated that the activity of neutrophils and the
immune response to bacterial invasion may explain the
molecular mechanisms of VTE developed in OM patients to
some extent. After that, 230 VTEGs2 and 333 OMGs2
sharing the common biological process ontology were de-
tected by comparing GO-BP terms of VTEGs1 and OMGs1.
Additionally, 13 shared DGEs2 that overlap OMGs2 and
VTEGs2 were identified for further analysis.

It is well known that TFs, specific to binding to its target
gene, exert facilitative or inhibitory roles in gene expression,

showing an important part in the multitude of biological
processes involved in diseases [20]. In this study, based on
the Venn diagram analysis method, 13 shared upstream TFs
of VTEGs2 and OMGs2 were screened out. It is suggested
that 3 TF-target gene pairs, consisting of SP1-LSP1, SPI1-
FCGR1A, and STAT1-FCGR1A, may reveal the potential
pathogenesis link between VTE and OM. Finally, in the PPI
network analysis, TP53, IL4, MPO, ELANE, FOS, CD86, HP,
SOCS3, ICAM1, and SNRPG were the top 10 hub proteins
with the highest connectivity within the network. Significant
modules were further detected in the PPI network, and some
specific nodes with the highest connectivity (i.e., ELANE,
HP, SOCS3, and SNRPG) were also identified in the top 3
modules. Particularly, 4 shared DGEs2 (SLPI, TCN1,
CREG1, and FCGR1A) were found in the 16 modules.

OM, especially haematogenous OM, can cause an exces-
sive inflammatory response in blood vessels and coagulation

(a) (b) (c)

(d)

Figure 5: Analysis of the PPI network of DEGs2. (a) PPI network of OMGs2 and VTEGs2. (b) Module 1 of the PPI network of DEGs2.
(c) Module 2 of the PPI network of DEGs2. (d) Module 3 of the PPI network of DEGs2..e node sizes correspond to the degree of the node,
while the node color denotes betweenness centrality.
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Table 3: .e top 30 hub proteins identified in the topological analysis of the PPI network of DEGs2.

No. Gene Degree Betweenness centrality Closeness centrality
1 TP53 74 0.34740282 0.43589744
2 IL4 39 0.0760529 0.38442211
3 MPO 38 0.05899592 0.37996689
4 ELANE 32 0.02590356 0.35253456
5 FOS 31 0.0748293 0.38059701
6 CD86 31 0.03757972 0.34330591
7 HP 29 0.04561475 0.36
8 SOCS3 27 0.03327054 0.36113297
9 ICAM1 27 0.02949815 0.37135922
10 SNRPG 26 0.02319152 0.29105897
11 ORM2 25 0.00924872 0.30722892
12 RBX1 25 0.02116545 0.33874539
13 ARG1 25 0.01228008 0.32438163
14 FPR2 24 0.0214619 0.31808732
15 UBE2D1 24 0.02571099 0.33675715
16 CAMP 24 0.00896381 0.32233146
17 BPI 23 0.00389229 0.29708738
18 RPS15A 22 0.00569474 0.28456293
19 DEFA4 22 0.00259991 0.29708738
20 RPS17 21 0.004417 0.28125
21 RPS21 21 0.00432586 0.28039096
22 RPL31 21 0.00408646 0.28021978
23 MAPK14 21 0.04653847 0.3538936
24 CTSG 21 0.0063411 0.29708738
25 CD79A 21 0.01986526 0.34253731
26 PLAU 21 0.04559923 0.35334873
27 RPL39 20 0.01096077 0.29254302
28 ORM1 20 0.00663223 0.29404228
29 NDUFA4 20 0.02048315 0.29479769
30 LTF 20 0.00846729 0.29517685

Table 4: .e module analysis results with MCODE of the PPI network of DEGs2.

Module Score
(density∗#nodes) Nodes Edges Node IDs

1 13.308 27 173
CYSTM1, PLAU, LTF, ADAM8, TCN1, DEFA4, OLFM4, CD177, BPI, STOM, GPR84,
CLEC5A, FPR2, CAMP, PLD1, HP, MCEMP1, ORM2, ARG1, ORM1, HPSE, FOLR3,

SNAP23, ELANE, SLPI, SLC11A1, ATP8B4

2 10.19 22 107
RBX1, PLEC, COX7A2, UBE2D1, RPS17, RPS15A, RPL23, RPL36A, UFL1, RPS7, RSL24D1,
RPL39, RPL21, RPS21, UBE2D2, ANAPC11, RPL31, RNF217, PFDN5, SOCS3, TCEB2,

RNF130

3 5.833 13 35 GPR183, GPR18, COX7C, CCR9, ANXA1, C5, DRD3, SLIRP, HINT1, NDUFA4, SNRPD2,
SNRPG, SUCNR1

4 5.5 9 22 S100A12, CTSA, DEFA1B, SDCBP, MPO, CREG1, DEFA1, DEFA3, RNASE3
5 5 5 10 GAS6, PROS1, SERPING1, MMRN1, F5

6 4.471 18 38 VCAN, IL1R1, HIST2H2AC, BCL6, IGFBP7, CD79A, MME, FOS, ICAM1, HIST2H2AA3,
PDLIM7, FSTL1, MAPK14, PPARG, CR2, PRSS23, PAX5, BARD1

7 4 4 6 CEP83, TCTN3, TMEM67, ODF2
8 4 4 6 CD86, HLA-DQB1, CD3G, CD3D
9 3.333 4 5 NDUFA5, UQCR11, UQCRB, C14orf2

10 3.182 23 35
CACNA1E, COL17A1, CACNB2, COLGALT2, C1QB, GRAP2, MYL4, SNCA, GAB2, HBE1,
P2RY10, HMBS, AHSP, MB, RASGRP4, GYPB, SIGLEC1, ALAS2, NTSR1, PLOD2, PIK3CD,

IL4, CACNG6
11 3 3 3 LSR, PEX3, APOBR
12 3 3 3 KLRF1, KIR2DL1, KIR3DL2
13 3 3 3 MRPL48, GADD45GIP1, MRPS31
14 3 3 3 STRBP, THAP4, ZCCHC10
15 3 3 3 IRX3, HOXA9, HOXA10

16 2.857 15 20 IL6ST, TRIM17, IL23A, H2AFJ, HIST1H1C, ANPEP, CALD1, TP53,
TRAT1, FCGR1B, ITGB3, FCGR1A, HIST2H3C, COL1A2, STAT6
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disorders modulated by various microorganisms [25, 26].
S. aureus is the predominant causative pathogen of OM [27].
Surface proteins and exotoxins of S. aureus can trigger
thrombosis through effects on the coagulation pathway and on
anticoagulation factors. Additionally, S. aureus can activate
endothelial surfaces and platelets. It has been reported that
some exotoxins such as PVL expressed by S. aureus can
contribute to leukocyte lysis and additional damage to en-
dothelial surfaces [9, 28]. During S. aureus infection, platelets
amplify the recruitment and activation of innate immune cells
at the site of infection and help eliminate pathogens. In some
cases, these mechanisms can lead to thromboinflammation,
leading to severe organ dysfunction. .ese events can lead to
microthrombosis and DVT. Neutrophils act as the first line of
defense in the process of acute infection. .ey can protect the
human body from various pathogens through antibacterial
mechanisms such as phagocytosis, degranulation, and the
production of reactive oxygen species (ROS). According to
recent research, neutrophils can also exert their innate im-
mune function by forming a special structure called NETs
[29–31]. Our previous study also suggested that NETs may
play a crucial role in the immune response of patients withOM
during the S. aureus infection process [24]. In this study, some
core nodes (such as MPO, ELANE, and CAMP) were essential
components of the NETs network structure. Emerging re-
search focused on how NETs affect platelet function, partic-
ularly in the setting of infection and inflammation [32–34]. In
patients with sepsis, systemic inflammation primed neutro-
phils to release NETs, which promoted thrombin generation
through platelet-dependent and platelet-independent mech-
anisms, with the increased risk of VTE [35, 36]..eremay also
be a similar underlyingmechanism between S. aureusOMand
the development of DVT in the extremities. In addition, early
markers detection and targeted intervention may minimize
this effect in the inflammatory process of thrombosis in pa-
tients with OM.

Nowadays, TFs are becoming attractive biomarkers in
complex diseases including infectious diseases. Among the
identified regulatory TFs, Sp1 participated in the hypoxia-
induced upregulation of VWF [37]. Increasing evidence
indicates that the interaction between NETs and VWF
contributes to arterial and venous thrombosis as well as
inflammation [34]. As a target gene of SP1, endothelial LSP1
is recruited into the cytoskeleton during inflammation and
plays an important role in the formation of endothelial
dome, thereby regulating the transendothelial migration of
neutrophils [38]. .e haematopoietic transcription factor
SPI1/PU.1 may be specifically involved in the differentiation
or activation of macrophages or B cells. Moreover, SPI1 was
able to restrain neutrophil defense by broadly inhibiting the
accessibility of enhancers via the recruitment of histone
deacetylase 1 [39]. STAT1 can be phosphorylated by re-
ceptor-associated kinases and then shapes’ cell viability in
response to different cell stimuli and pathogens. .e acti-
vation of STAT1 inhibits angiogenesis [40], which may be
involved in the inflammatory process of thrombosis in in-
fectious diseases. FCGR1A is the common downstream
target gene of SPI1 and STAT1. FCGR1A, also known as
CD64, as an important immune-related protein, is closely

related to various inflammatory processes. In posttraumatic
OM patients, immunocompetent cells, predominantly
highly activated polymorphonuclear neutrophils, as char-
acterized by low expression of CD62L and high expression of
the adhesion protein CD18, of the high-affinity IgG receptor
CD64 and of the LPS receptor CD14, were recruited into the
site of infection [41].

Additionally, other hub proteins may also play a crucial
role in the pathogenesis of VTE in patients with OM. TP53,
the top hub gene of our study, is a critical tumor suppressor
and a key regulator in numerous cellular functions, which
maintains critical functions in immunity, inflammation, and
tissue repair [42]. Intriguingly, TP53 may participate in the
host-virus interactions that could characterize shared bio-
logical mechanisms between acute respiratory distress syn-
drome (ARDS) and VTE in severe COVID-19 patients [43]. A
similar host-bacterial interaction may also be reflected be-
tween OM and VTE. IL4 is directly involved in the bone
desorption and osteoclast activity regulation that occur in
OM. .e association between IL4 gene polymorphisms
(-1098-G/T and -590-C/T) and chronic OM was previously
observed [44]. However, IL4 was not significantly elevated in a
mouse model of fracture fixation with S. aureusOM [45]..e
possible links between inflammation-related genetic variants
(including IL4) and VTE established the fundamental role of
genetic background in predisposition to VTE and several
inflammation-related conditions [46]. HP, one of the acute-
phase reactants, can stimulate inflammatory bone loss and its
phenotype 2-2 has been reported to be a risk factor for
spontaneous VTE [47]. SOCS3 was reported to be a key player
in bone-associated inflammatory responses, which acted as
the cytokine-inducible negative regulator of cytokine sig-
naling [48]. .e FOS proteins have been implicated as
regulators of cell proliferation, differentiation, and transfor-
mation. .e c-Fos gene has been put forward as a new factor
in the progression and severity of atherosclerosis [49]. CD86
plays an important role in immune responses as a cos-
timulatory molecule on antigen presenting cells. .e gene
polymorphisms of CD86 may be related to the risk of sepsis
with contradictory results in different studies [50, 51]. Un-
fortunately, there is no relevant research report on FOS or
CD86 in the pathogenesis of OM or VTE.

.is study has several limitations. Although followed the
same analysis strategy and threshold for DEGs screening, the
number of differential genes shared by the GSE19151 and
GSE48000 datasets obtained in the end was small due to the
inconsistency of the inclusion criteria and sequencing
platform. .e DEGs from these two datasets were included
in the subsequent analysis, which can provide us with more
possibilities, but they were not differentially expressed at the
same time. More external datasets were needed to verify the
results of the study. In addition, further experimental in-
vestigations are warranted to decipher the roles of these hub
genes in the development of VTE in OM patients.

5. Conclusions

In this study, we reported for the first time the identification
of the DEGs and activated signaling pathways between OM
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and VTE by the integrated bioinformatic approach. Our
results finally identified a new set of novel biomarkers and
important molecular targets, including 3 TF-target gene
pairs (SP1-LSP1, SPI1-FCGR1A, and STAT1-FCGR1A), 3
structural proteins of NETs (MPO, ELANE, and CAMP),
and 6 other hub proteins (TP53, IL4, HP, SOCS3, FOS, and
CD86), which might play essential biological roles during
the progression of VTE in OM patients. In addition, the
enriched neutrophils-related pathways (neutrophil activa-
tion, degranulation, and immune response to bacteria) could
advance our understanding of the development of OM
towards VTE and indicate new avenues to develop therapies
for VTE. However, more research, especially experimental
research, will be indispensable for the further clinical ap-
plication of these biomarkers.
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