WIENER INDEX ON TRACEABLE AND HAMILTONIAN GRAPHS

RUIFANG LIU ${ }^{\boxtimes}$, XUE DU and HUICAI JIA

(Received 7 April 2016; accepted 24 April 2016; first published online 30 August 2016)

Abstract

We give sufficient conditions for a graph to be traceable and Hamiltonian in terms of the Wiener index and the complement of the graph, which correct and extend the result of Yang ['Wiener index and traceable graphs', Bull. Aust. Math. Soc. 88 (2013), 380-383]. We also present sufficient conditions for a bipartite graph to be traceable and Hamiltonian in terms of its Wiener index and quasicomplement. Finally, we give sufficient conditions for a graph or a bipartite graph to be traceable and Hamiltonian in terms of its distance spectral radius.

2010 Mathematics subject classification: primary 05C50.
Keywords and phrases: complement, traceable graph, Hamiltonian graph, quasicomplement, bipartite graph, Wiener index, distance spectral radius.

1. Introduction

All graphs considered here are finite undirected graphs without loops and multiple edges. Let G be a graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$. Let $N_{G}(v)$ denote the neighbour set of v in G. We denote the degree of a vertex v_{i} by d_{i} or $d\left(v_{i}\right)$. Let $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be the degree sequence of the graph G, where $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$. Then $\delta:=d_{1}$ is called the minimum degree. We denote the distance between the vertices v_{i} and v_{j} in G by $d_{G}\left(v_{i}, v_{j}\right)$. The union of simple graphs G and H is the graph $G \cup H$ with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. If G and H are disjoint, we refer to their union as a disjoint union, denoted by $G+H$. The disjoint union of k graphs G is denoted by $k G$. By starting with a disjoint union of two graphs G and H and adding edges joining every vertex of G to every vertex of H, we obtain the join of G and H, denoted by $G \vee H$. Finally, \bar{G} denotes the complement of G.

A path in a graph is called a Hamiltonian path if it visits every vertex precisely once. A graph containing a Hamiltonian path is said to be traceable. A cycle in a

[^0]graph is called a Hamiltonian cycle if it contains all the vertices of a graph. A graph containing a Hamiltonian cycle is called a Hamiltonian graph.

The distance matrix $D=D(G)$ of G has (i, j)-entry, $d_{i j}$, equal to $d_{G}\left(v_{i}, v_{j}\right)$. The Wiener index [9], $W(G)$, of a connected graph G is defined by

$$
W(G)=\sum_{u, v \in V(G)} d_{G}(u, v) .
$$

Let $D_{i}(G)$ and $D_{v}(G)$ denote the sum of row i of $D(G)$ and the row sum of $D(G)$ corresponding to vertex v, respectively. Then

$$
W(G)=\frac{1}{2} \sum_{v \in V(G)} D_{v}(G)=\frac{1}{2} \sum_{i=1}^{n} D_{i}(G) .
$$

The distance spectral radius of G is the largest eigenvalue of $D(G)$, denoted by $\rho(G)$.
The problem of deciding whether a given graph is traceable or Hamiltonian is a very difficult one. Indeed, determining whether a given graph is traceable or Hamiltonian is NP-complete [3]. Many necessary or sufficient conditions have been given for a graph to be traceable or Hamiltonian. Recently, some sufficient spectral conditions involving the Wiener index and distance spectral radius for a graph to be Hamiltonian and traceable have been given in $[4-6,10]$.

In Sections 2-3, we give sufficient conditions for a graph to be traceable and Hamiltonian in terms of the Wiener index and the complement of the graph, which correct and extend the result of Yang [10]. In Section 4, we present sufficient conditions for a bipartite graph to be traceable and Hamiltonian in terms of its Wiener index and quasicomplement. Finally, in Sections 5-6 we give sufficient distance spectral conditions for a graph or a bipartite graph to be traceable and Hamiltonian in terms of its distance spectral radius. Our results extend and improve the results in [4-6, 10].

Notice that $\delta \geq 1$ and $\delta \geq 2$ are trivial necessary conditions on the minimum degree for a graph to be traceable and Hamiltonian, respectively. Hence we take these as standing assumptions throughout this paper.

2. Corrigendum to [10, Theorem 2.2]

Define the set of exceptional graphs

$$
\begin{aligned}
\mathbb{N P}= & \left\{K_{1} \vee\left(K_{n-3}+2 K_{1}\right), K_{1} \vee\left(K_{1,3}+K_{1}\right), K_{2,4}, K_{2} \vee 4 K_{1},\right. \\
& \left.K_{2} \vee\left(3 K_{1}+K_{2}\right), K_{1} \vee K_{2,5}, K_{3} \vee 5 K_{1}, K_{2} \vee\left(K_{1,4}+K_{1}\right), K_{4} \vee 6 K_{1}\right\} .
\end{aligned}
$$

A sufficient condition for a graph to be traceable is given in [1].
Lemma 2.1 [1, Exercise 18.3.3]. Let G be a nontrivial graph of order n with degree sequence $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, where $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$ and $n \geq 4$. Suppose that there is no integer $k<\frac{1}{2}(n+1)$ such that $d_{k} \leq k-1$ and $d_{n-k+1} \leq n-k-1$. Then G is traceable.

Yang [10] claimed that if G is a connected graph of order $n \geq 4$ and its Wiener index satisfies $W(G) \leq \frac{1}{2}(n+5)(n-2)$, then G is traceable unless

$$
G \in\left\{K_{1} \vee\left(K_{n-3}+2 K_{1}\right), K_{2} \vee\left(3 K_{1}+K_{2}\right), K_{4} \vee 6 K_{1}\right\} .
$$

However, the list of exceptional graphs is incomplete. The following theorem gives the correct result.

Theorem 2.2. Let G be a connected graph of order $n \geq 4$. If

$$
W(G) \leq \frac{(n+5)(n-2)}{2}
$$

then G is traceable unless $G \in \mathbb{N} \mathbb{P}$.
Proof. Suppose that G is a nontraceable connected graph. By Lemma 2.1, there exists an integer $k<\frac{1}{2}(n+1)$ such that $d_{k} \leq k-1$ and $d_{n-k+1} \leq n-k-1$. Since G is connected and $d_{k} \leq k-1$, we have $k \geq 2$. Thus

$$
\begin{aligned}
W(G) & =\frac{1}{2} \sum_{i=1}^{n} D_{i}(G) \geq \frac{1}{2} \sum_{i=1}^{n}\left(d_{i}+2\left(n-1-d_{i}\right)\right)=n(n-1)-\frac{1}{2} \sum_{i=1}^{n} d_{i} \\
& \geq n(n-1)-\frac{1}{2}(k(k-1)+(n-2 k+1)(n-k-1)+(k-1)(n-1)) \\
& =\frac{(n+5)(n-2)}{2}+\frac{(k-2)(2 n-3 k-5)}{2} .
\end{aligned}
$$

Since $W(G) \leq \frac{1}{2}(n+5)(n-2)$, we have $\frac{1}{2}(k-2)(2 n-3 k-5) \leq 0$. Also, if m denotes the number of edges of G, we have $W(G) \geq n(n-1)-\frac{1}{2} \sum_{i=1}^{n} d_{i}=n(n-1)-m$ which implies $m \geq \frac{1}{2}\left(n^{2}-5 n+10\right)$.
Case 1. $\frac{1}{2}(k-2)(2 n-3 k-5)=0$, that is, $k=2$ or $2 n=3 k+5$, and all inequalities in the above argument must be equalities. If $k=2$, then G is a graph with $d_{1}=$ $d_{2}=1, d_{3}=d_{4}=\cdots=d_{n-1}=n-3$ and $d_{n}=n-1$, whence $G=K_{1} \vee\left(K_{n-3}+2 K_{1}\right)$. If $2 n=3 k+5$, then $n<13$ since $k<\frac{1}{2}(n+1)$. Hence $n=7, k=3$ or $n=10$, $k=5$. The corresponding permissible graphic sequences are $(2,2,2,3,3,6,6)$ and $(4,4,4,4,4,4,9,9,9,9)$, which imply $G=K_{2} \vee\left(3 K_{1}+K_{2}\right)$ and $G=K_{4} \vee 6 K_{1}$, respectively.
Case 2. $\frac{1}{2}(k-2)(2 n-3 k-5)<0$, that is $k \geq 3$ and $2 n-3 k-5<0$. In this case, the admissible pairs k, n satisfy $k \geq 3, n \geq 4, n \geq 2 k$ and $2 n-3 k \leq 4$, allowing just two possibilities: $k=3, n=6$ and $k=4, n=8$.

Suppose $k=4$. Then $d_{5} \leq 3$ and $17 \leq m \leq 18$. From the inequality $d_{6}+d_{7}+d_{8}=$ $2 m-\sum_{1 \leq i \leq 5} d_{i} \geq 19$, we obtain $d_{8}=7$. Also note that $\sum d_{i}=2 m \geq 34$ and $\sum d_{i}$ is even. If $d_{6}=d_{7}=6$ and $d_{8}=7$, then the permissible graphic sequence is $(3,3,3,3,3,6,6,7)$ and hence $G=K_{1} \vee K_{2,5}$. If $d_{6}=5$ and $d_{7}=d_{8}=7$, then the permissible graphic sequence is $(3,3,3,3,3,5,7,7)$ and hence $G=K_{2} \vee\left(K_{1,3}+K_{2}\right)$. If $d_{6}=6$ and $d_{7}=d_{8}=7$, then the permissible graphic sequence is $(2,3,3,3,3,6,7,7)$ and hence
$G=K_{2} \vee\left(K_{1,4}+K_{1}\right)$. If $d_{6}=d_{7}=d_{8}=7$, then the permissible graphic sequence is $(3,3,3,3,3,7,7,7)$ and hence $G=K_{3} \vee 5 K_{1}$.

Finally, suppose $k=3$. Then $d_{4} \leq 2$ and $8 \leq m \leq 9$. From the inequality $d_{5}+d_{6}=$ $2 m-\sum_{1 \leq i \leq 4} d_{i} \geq 8$, we obtain $4 \leq d_{6} \leq 5$. Also note that $\sum d_{i}=2 m \geq 16$ and $\sum d_{i}$ is even. If $d_{5}=d_{6}=4$, then the permissible graphic sequence is $(2,2,2,2,4,4)$ and hence $G=K_{2,4}$. If $d_{5}=4$ and $d_{6}=5$, then the permissible graphic sequence is $(1,2,2,2,4,5)$ and hence $G=K_{1} \vee\left(K_{1,3}+K_{1}\right)$. If $d_{5}=d_{6}=5$, then the permissible graphic sequence is $(2,2,2,2,5,5)$ and hence $G=K_{2} \vee 4 K_{1}$.

Note that $K_{2} \vee\left(K_{1,3}+K_{2}\right)$ is traceable and the other obtained graphs contain no Hamiltonian path. The proof is complete.

3. Wiener index on traceable and Hamiltonian graphs

The following lemma allows us to give a simpler proof of Theorem 2.2.
Lemma 3.1 [8]. Let G be a graph on $n \geq 4$ vertices and m edges with $\delta \geq 1$. If $m \geq\binom{ n-2}{2}+2$, then G is traceable unless $G \in \mathbb{N} \mathbb{P}$.

Second proof of Theorem 2.2. Suppose that G is nontraceable. As noted at the beginning of the proof in Section 2,

$$
m \geq \frac{1}{2}\left(n^{2}-5 n+10\right)=\binom{n-2}{2}+2 .
$$

By Lemma 3.1, we obtain that $G \in \mathbb{N} \mathbb{P}$. By a direct computation, for all $G \in \mathbb{N} \mathbb{P}$, $W(G) \leq \frac{1}{2}(n+5)(n-2)$. This completes the proof of Theorem 2.2.

Theorem 3.2. Let G be a connected graph of order $n \geq 4$. If

$$
W(\bar{G}) \geq \frac{n^{3}-6 n^{2}+19 n-20}{2},
$$

then G is traceable unless $G \in \mathbb{N} \mathbb{P}$.
Proof. Suppose that G is nontraceable. Then

$$
\begin{aligned}
W(\bar{G}) & =\frac{1}{2} \sum_{i=1}^{n} D_{i}(\bar{G}) \leq \frac{1}{2} \sum_{v \in V(G)}\left[d_{\bar{G}}(v)+(n-1)\left(n-1-d_{\bar{G}}(v)\right)\right] \\
& =\frac{1}{2} \sum_{v \in V(G)}\left[(n-1)^{2}+(2-n) d_{\bar{G}}(v)\right] \\
& =\frac{1}{2} n(n-1)^{2}-\frac{n-2}{2} \sum_{v \in V(G)}\left(n-1-d_{G}(v)\right) \\
& =\frac{n(n-1)}{2}+(n-2) m .
\end{aligned}
$$

Since $W(\bar{G}) \geq \frac{1}{2}\left(n^{3}-6 n^{2}+19 n-20\right)$,

$$
m \geq \frac{n^{3}-6 n^{2}+19 n-20-n(n-1)}{2(n-2)}=\binom{n-2}{2}+2
$$

Again, by Lemma 3.1, $G \in \mathbb{N} \mathbb{P}$. By a direct computation, in all cases with $G \in \mathbb{N} \mathbb{P}$, $W(\bar{G}) \geq \frac{1}{2}\left(n^{3}-6 n^{2}+19 n-20\right)$. Hence G is traceable unless $G \in \mathbb{N} \mathbb{P}$.

Define the set of exceptional graphs

$$
\begin{aligned}
\mathbb{N C}=\{ & K_{2} \vee\left(K_{n-4}+2 K_{1}\right), K_{3} \vee 4 K_{1}, K_{2} \vee\left(K_{1,3}+K_{1}\right), K_{1} \vee K_{2,4}, \\
& \left.K_{3} \vee\left(K_{2}+3 K_{1}\right), K_{4} \vee 5 K_{1}, K_{3} \vee\left(K_{1,4}+K_{1}\right), K_{2} \vee K_{2,5}, K_{5} \vee 6 K_{1}\right\} .
\end{aligned}
$$

Lemma 3.3 [8]. Let G be a graph on $n \geq 5$ vertices and m edges with $\delta \geq 2$. If $m \geq\binom{ n-2}{2}+4$, then G contains a Hamiltonian cycle unless $G \in \mathbb{N C}$.
Theorem 3.4. Let G be a graph with $n \geq 5$ vertices and m edges and with $\delta \geq 2$. If

$$
W(G) \leq \frac{n^{2}+3 n-14}{2}
$$

then G is Hamiltonian unless $G \in \mathbb{N C}$.
Proof. Suppose that G is non-Hamiltonian. As in the second proof of Theorem 2.2,

$$
W(G)=\frac{1}{2} \sum_{i=1}^{n} D_{i}(G) \geq n(n-1)-m .
$$

Since $W(G) \leq \frac{1}{2}\left(n^{2}+3 n-14\right)$,

$$
m \geq n(n-1)-\frac{n^{2}+3 n-14}{2}=\binom{n-2}{2}+4
$$

By Lemma 3.3, we have $G \in \mathbb{N C}$. By a direct computation, $W(G) \leq \frac{1}{2}\left(n^{2}+3 n-14\right)$ for all $G \in \mathbb{N C}$. Hence G is Hamiltonian unless $G \in \mathbb{N C}$.

Theorem 3.5. Let G be a graph with $n \geq 5$ vertices and m edges and with $\delta \geq 2$. If

$$
W(\bar{G}) \geq \frac{n^{3}-6 n^{2}+23 n-28}{2}
$$

then G is Hamiltonian unless $G \in \mathbb{N C}$.
Proof. Suppose that G is non-Hamiltonian. Then

$$
W(\bar{G})=\frac{1}{2} \sum_{i=1}^{n} D_{i}(\bar{G}) \leq \frac{n(n-1)}{2}+(n-2) m .
$$

Since $W(\bar{G}) \geq \frac{1}{2}\left(n^{3}-6 n^{2}+23 n-28\right)$,

$$
m \geq \frac{n^{3}-6 n^{2}+23 n-28-n(n-1)}{2(n-2)}=\binom{n-2}{2}+4
$$

By Lemma 3.3, $G \in \mathbb{N}$ C. By a direct verification, $W(\bar{G}) \geq \frac{1}{2}\left(n^{3}-6 n^{2}+23 n-28\right)$ for all $G \in \mathbb{N}$ C. Hence G is Hamiltonian unless $G \in \mathbb{N C}$.

4. Wiener index on traceable and Hamiltonian bipartite graphs

Let $G=G[X, Y]$ be a bipartite graph where $|X|=|Y|=n \geq 2$. The bipartite graph $G^{*}=G^{*}[X, Y]$, called the quasicomplement of G, is constructed as follows: $V\left(G^{*}\right)=$ $V(G)$ and $x y \in E\left(G^{*}\right)$ if and only if $x y \notin E(G)$ for $x \in X, y \in Y$.

Let $G[X, Y]$ be a traceable bipartite graph. Then $|X|=|Y|$ or $|X|=|Y|+1$. These two types will be discussed separately.
Lemma 4.1 [7]. Let $G=G[X, Y]$ be a bipartite graph with $\delta \geq 1$ and m edges where $|X|=|Y|=n \geq 3$. If $m \geq n^{2}-2 n+3$, then G is traceable .

Theorem 4.2. Let $G=G[X, Y]$ be a bipartite graph with $\delta \geq 1$ and m edges where $|X|=|Y|=n \geq 3$. If

$$
W(G) \leq 3 n^{2}+2 n-6,
$$

then G is traceable.
Proof. Let G be a graph satisfying the condition in Theorem 4.2. Then

$$
\begin{aligned}
W(G) & =\frac{1}{2} \sum_{i=1}^{2 n} D_{i}(G) \geq \frac{1}{2} \sum_{i=1}^{2 n}\left(d_{i}+3\left(n-d_{i}\right)+2(n-1)\right) \\
& =3 n^{2}-\sum_{i=1}^{2 n} d_{i}+2 n(n-1)=3 n^{2}-2 m+2 n(n-1)=5 n^{2}-2 n-2 m .
\end{aligned}
$$

Since $W(G) \leq 3 n^{2}+2 n-6$, we have $m \geq \frac{1}{2}\left(5 n^{2}-2 n-\left(3 n^{2}+2 n-6\right)\right)=n^{2}-2 n+3$ and, according to Lemma $4.1, G$ is traceable.

Theorem 4.3. Let $G=G[X, Y]$ be a bipartite graph with $\delta \geq 1$ and m edges, where $|X|=|Y|=n \geq 3$. If

$$
W\left(G^{*}\right) \geq 4 n^{3}-9 n^{2}+12 n-6,
$$

then G is traceable.
Proof. Let G^{*} be the quasicomplement of G. Then

$$
\begin{aligned}
W\left(G^{*}\right) & =\frac{1}{2} \sum_{i=1}^{2 n} D_{i}\left(G^{*}\right) \leq \frac{1}{2} \sum_{v \in V(G)}\left[d_{G^{*}}(v)+(2 n-1)\left(n-d_{G^{*}}(v)\right)+(2 n-2)(n-1)\right] \\
& =\frac{1}{2} \sum_{v \in V(G)}\left[n(2 n-1)+(2-2 n) d_{G^{*}}(v)\right]+n(2 n-2)(n-1) \\
& =n^{2}(2 n-1)-(n-1) \sum_{v \in V(G)}\left(n-d_{G}(v)\right)+n(2 n-2)(n-1) \\
& =n^{2}+n(2 n-2)(n-1)+2(n-1) m .
\end{aligned}
$$

Since $W\left(G^{*}\right) \geq 4 n^{3}-9 n^{2}+12 n-6$, we have

$$
m \geq \frac{2 n^{3}-6 n^{2}+10 n-6}{2(n-1)}=n^{2}-2 n+3 .
$$

By Lemma 4.1, G is traceable.

Let $p \geq n-1$. Let $K_{p, n-2}+4 e$ be a bipartite graph obtained from $K_{p, n-2}$ by adding two vertices which are adjacent to two common vertices with degree $n-2$ in $K_{p, n-2}$.
Lemma 4.4 [7]. Let $G=G[X, Y]$ be a bipartite graph with $\delta \geq 2$ and m edges where $|X|=|Y|=n \geq 4$. If $m \geq n^{2}-2 n+4$, then G is Hamiltonian unless $G=K_{n, n-2}+4 e$.

Next we consider the other type with $|X|=|Y|+1$. Let $G[X, Y]$ be a bipartite graph where $|X|=n+1$ and $|Y|=n \geq 2$. Denote by δ_{X} and δ_{Y} the minimum degrees of vertices in X and Y, respectively. Note that $\delta_{X} \geq 1$ and $\delta_{Y} \geq 2$ are the trivial necessary conditions for G to be traceable. Let $G[X, Y+v]$ be the bipartite graph obtained from $G[X, Y]$ by adding a vertex v which is adjacent to every vertex in X. It is easy to see that $G[X, Y]$ is traceable if and only if $G[X, Y+v]$ is Hamiltonian.

Let $K_{n, n-1}+2 e$ be a graph obtained from $K_{n, n-1}$ by adding two vertices which are adjacent to a common vertex with degree $n-1$.

Theorem 4.5. Let $G=G[X, Y]$ be a bipartite graph with $\delta_{X} \geq 1$ and $\delta_{Y} \geq 2$ where $|X|=n+1$ and $|Y|=n \geq 3$. If

$$
W(G) \leq 3 n^{2}+5 n-4,
$$

then G is traceable unless $G \in\left\{K_{n+1, n-2}+4 e, K_{n, n-1}+2 e\right\}$.
Proof. Let G be a bipartite graph satisfying the conditions in Theorem 4.5.

$$
\begin{aligned}
W(G) & =\frac{1}{2} \sum_{v \in V(G)} D_{v}(G) \\
& \geq \frac{1}{2}\left[\sum_{i=1}^{n+1}\left(d_{i}+3\left(n-d_{i}\right)+2 n\right)+\sum_{j=1}^{n}\left(d_{j}+3\left(n+1-d_{j}\right)+2(n-1)\right)\right] \\
& =\frac{1}{2}\left[5 n(n+1)-2 \sum_{i=1}^{n+1} d_{i}+n(5 n+1)-2 \sum_{j=1}^{n} d_{j}\right] \\
& =5 n^{2}+3 n-\sum_{v \in V(G)} d_{G}(v)=5 n^{2}+3 n-2 m .
\end{aligned}
$$

From $W(G) \leq 3 n^{2}+5 n-4$ we have $m \geq n^{2}-n+2$. Since $d(v)=n+1$ in $G[X, Y+v]$,

$$
m(G[X, Y+v])=m+(n+1) \geq n^{2}+3=(n+1)^{2}-2(n+1)+4
$$

By Lemma 4.4, $G[X, Y+v]$ is Hamiltonian or $G[X, Y+v]=K_{n+1, n-1}+4 e$. Hence $G[X, Y]$ is traceable or $G \in\left\{K_{n+1, n-2}+4 e, K_{n, n-1}+2 e\right\}$.

Theorem 4.6. Let $G=G[X, Y]$ be a bipartite graph with $\delta_{X} \geq 1$ and $\delta_{Y} \geq 2$ where $|X|=n+1$ and $|Y|=n \geq 3$. If

$$
W\left(G^{*}\right) \geq 4 n^{3}-4 n^{2}+8 n-4
$$

then G is traceable unless $G \in\left\{K_{n+1, n-2}+4 e, K_{n, n-1}+2 e\right\}$.

Proof. Let G^{*} be the quasicomplement of G. Then

$$
\begin{aligned}
W\left(G^{*}\right)= & \frac{1}{2} \sum_{v \in V(G)} D_{v}\left(G^{*}\right) \\
\leq & \frac{1}{2}\left[\sum_{i=1}^{n+1}\left(d_{G^{*}}\left(v_{i}\right)+(2 n-1)\left(n-d_{G^{*}}\left(v_{i}\right)\right)+2 n^{2}\right)\right. \\
& \left.+\sum_{j=1}^{n}\left(d_{G^{*}}\left(u_{j}\right)+(2 n-1)\left(n+1-d_{G^{*}}\left(u_{j}\right)\right)+(2 n-2)(n-1)\right)\right] \\
= & 4 n^{3}-(n-1) \sum_{i=1}^{n+1} d_{G^{*}}\left(v_{i}\right)-(n-1) \sum_{j=1}^{n} d_{G^{*}}\left(u_{j}\right) \\
= & 2 n^{3}+2 n+2(n-1) m
\end{aligned}
$$

by substituting $d_{G^{*}}\left(v_{i}\right)=n-d_{G}\left(v_{i}\right)$ and $d_{G^{*}}\left(u_{j}\right)=n+1-d_{G}\left(u_{j}\right)$. By hypothesis, $W\left(G^{*}\right) \geq 4 n^{3}-4 n^{2}+8 n-4$ so $m \geq n^{2}-n+2$. Since $d(v)=n+1$ in $G[X, Y+v]$,

$$
m(G[X, Y+v])=m+(n+1) \geq n^{2}+3=(n+1)^{2}-2(n+1)+4 .
$$

By Lemma 4.4, $G[X, Y+v]$ is Hamiltonian or $G[X, Y+v]=K_{n+1, n-1}+4 e$. Hence $G[X, Y]$ is traceable or $G \in\left\{K_{n+1, n-2}+4 e, K_{n, n-1}+2 e\right\}$.

Theorem 4.7. Let $G=G[X, Y]$ be a bipartite graph with $\delta \geq 2$ and m edges where $|X|=|Y|=n \geq 4$. If

$$
W(G) \leq 3 n^{2}+2 n-8
$$

then G is Hamiltonian unless $G=K_{n, n-2}+4 e$.
Proof. Suppose that G is non-Hamiltonian. As in Theorem 4.2,

$$
W(G)=\frac{1}{2} \sum_{i=1}^{2 n} D_{i}(G) \geq 5 n^{2}-2 n-2 m
$$

Since $W(G) \leq 3 n^{2}+2 n-8$, we have $m \geq \frac{1}{2}\left(5 n^{2}-2 n-\left(3 n^{2}+2 n-8\right)\right)=n^{2}-2 n+4$ and, from Lemma 4.4, $G=K_{n, n-2}+4 e$.

Theorem 4.8. Let $G=G[X, Y]$ be a bipartite graph with $\delta \geq 2$ and m edges where $|X|=|Y|=n \geq 4$. If

$$
W\left(G^{*}\right) \geq 4 n^{3}-9 n^{2}+14 n-8
$$

then G is Hamiltonian unless $G=K_{n, n-2}+4 e$.
Proof. Suppose that G is non-Hamiltonian. As in Theorem 4.3,

$$
W\left(G^{*}\right)=\frac{1}{2} \sum_{v \in V(G)} D_{v}\left(G^{*}\right) \leq n^{2}+n(2 n-2)(n-1)+2(n-1) m .
$$

Since $W\left(G^{*}\right) \geq 4 n^{3}-9 n^{2}+14 n-8$,

$$
m \geq \frac{n^{3}-3 n^{2}+6 n-4}{n-1}=n^{2}-2 n+4
$$

By Lemma 4.4, $G=K_{n, n-2}+4 e$.

5. Distance spectral radius on traceable and Hamiltonian graphs

Lemma 5.1 [2]. Let G be a graph on n vertices. Then

$$
\rho(G) \geq \frac{2 W(G)}{n}
$$

and the equality holds if and only if G is distance regular, that is, the row sums of $D(G)$ are all equal.

Theorem 5.2. Let G be a connected graph of order $n \geq 4$. If

$$
\rho(G) \leq n+3-\frac{10}{n}
$$

then G is traceable unless $G=K_{2} \vee 4 K_{1}$.
Proof. Assume that G is nontraceable. By Lemma 5.1,

$$
\rho(G) \geq \frac{2 W(G)}{n} \geq \frac{2}{n}[n(n-1)-m]=2(n-1)-\frac{2}{n} m .
$$

Since $\rho(G) \leq n+3-10 / n$, we have $m \geq\binom{ n-2}{2}+2$ and, by Lemma 3.1, $G \in \mathbb{N} \mathbb{P}$.
The largest zero root of the equation $\lambda^{3}-(n-2) \lambda^{2}-(7 n-17) \lambda+10-4 n=0$ is $\rho\left(K_{1} \vee\left(K_{n-3}+2 K_{1}\right)\right)$. Since

$$
f(n)=\left(n+3-\frac{10}{n}\right)^{3}-(n-2)\left(n+3-\frac{10}{n}\right)^{2}-(7 n-17)\left(n+3-\frac{10}{n}\right)+10-4 n
$$

is a decreasing function of $n(n \geq 5), f(n) \leq f(5)<0$. Hence $\rho\left(K_{1} \vee\left(K_{n-3}+2 K_{1}\right)\right)>$ $n+3-10 / n$ for $n \geq 5$. From Table 1, we see that $G=K_{2} \vee 4 K_{1}$.

Theorem 5.3. Let G be a graph on $n \geq 5$ vertices and m edges with $\delta \geq 2$. If

$$
\rho(G) \leq n+3-\frac{14}{n}
$$

then G is Hamiltonian unless $G=K_{3} \vee 4 K_{1}$.
Proof. Suppose that G is non-Hamiltonian. By Lemma 5.1, we have

$$
\rho(G) \geq \frac{2 W(G)}{n} \geq \frac{2}{n}[n(n-1)-m]=2(n-1)-\frac{2}{n} m .
$$

Table 1. Direct computation of $\rho(G)$ for Theorem 5.2.

G	$\rho(G)$	$n+3-10 / n$
$K_{1} \vee\left(K_{1,3}+K_{1}\right)$	7.5673	7.3333
$K_{2,4}$	7.4641	7.3333
$K_{2} \vee 4 K_{1}$	7.2749	7.3333
$K_{2} \vee\left(3 K_{1}+K_{2}\right)$	8.8886	8.5714
$K_{1} \vee K_{2,5}$	10.0401	9.75
$K_{3} \vee 5 K_{1}$	9.8990	9.75
$K_{2} \vee\left(K_{1,4}+K_{1}\right)$	10.1205	9.75
$K_{4} \vee 6 K_{1}$	12.5208	12
$K_{1,3}$	4.6458	4.5

Table 2. Direct computation of $\rho(G)$ for Theorem 5.3.

G	$\rho(G)$	$n+3-14 / n$
$K_{3} \vee 4 K_{1}$	8	8
$K_{2} \vee\left(K_{1,3}+K_{1}\right)$	8.2736	8
$K_{1} \vee K_{2,4}$	8.1846	8
$K_{3} \vee\left(K_{2}+3 K_{1}\right)$	9.5947	9.25
$K_{4} \vee 5 K_{1}$	10.6235	10.444
$K_{3} \vee\left(K_{1,4}+K_{1}\right)$	10.8341	10.444
$K_{2} \vee K_{2,5}$	10.7624	10.444
$K_{5} \vee 6 K_{1}$	13.2450	12.727

Since $\rho(G) \leq n+3-14 / n$, we have $m \geq\binom{ n-2}{2}+4$. By Lemma 3.3, $G \in \mathbb{N} \mathbb{C}$. The largest zero root of $\lambda^{3}-(n-2) \lambda^{2}-(7 n-23) \lambda-2 n+6=0$ is $\rho\left(K_{2} \vee\left(K_{n-4}+2 K_{1}\right)\right)$, and

$$
f(n)=\left(n+3-\frac{14}{n}\right)^{3}-(n-2)\left(n+3-\frac{14}{n}\right)^{2}-(7 n-23)\left(n+3-\frac{14}{n}\right)-2 n+6
$$

is a decreasing function on n, so $f(n) \leq f(5)<0$ and we have $\rho\left(K_{2} \vee\left(K_{n-4}+2 K_{1}\right)\right)>$ $n+3-14 / n$. From Table 2, we see that $G=K_{3} \vee 4 K_{1}$.

6. Distance spectral radius on traceable and Hamiltonian bipartite graphs

Theorem 6.1. Let $G=G[X, Y]$ be a bipartite graph with $\delta \geq 1$ and m edges where $|X|=|Y|=n \geq 3$. If

$$
\rho(G) \leq 3 n+2-\frac{6}{n},
$$

then G is traceable.
Proof. According to Lemma 5.1,

$$
\rho(G) \geq \frac{2 W(G)}{2 n} \geq \frac{5 n^{2}-2 n-2 m}{n}=5 n-2-\frac{2 m}{n} .
$$

Since $\rho(G) \leq 3 n+2-6 / n$, we have $m \geq n^{2}-2 n+3$ and, by Lemma 4.1, G is traceable.

Acknowledgement

The authors would like to thank the anonymous referees for valuable suggestions and corrections which improved the original manuscript.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory, Graduate Texts in Mathematics, 244 (Springer, New York, 2008).
[2] G. Indual, 'Sharp bounds on the distance spectral radius and the distance energy of graphs', Linear Algebra Appl. 430 (2009), 106-113.
[3] R. M. Karp, 'Reducibility among combinatorial problems', in: Complexity of Computer Computations (eds. R. E. Miller and J. M. Thatcher) (Plenum, New York, 1972), 85-103.
[4] M. J. Kuang, G. H. Huang and H. Y. Deng, 'Some sufficient conditions for Hamiltonian property in terms of Wiener-type invariants’, Proc. Math. Sci. 126 (2016), 1-9.
[5] R. Li, 'Wiener index and some Hamiltonian properties of graphs', Int. J. Math. Soft Comput. 5 (2015), 11-16.
[6] Z. Z. Liu, S. S. Lin and G. Q. Yang, 'Distance spectral radius and Hamiltonicity', J. Huizhou Univ. 33 (2013), 40-43.
[7] R. F. Liu, W. C. Shiu and J. Xue, 'Sufficient spectral conditions on Hamiltonian and traceable graphs', Linear Algebra Appl. 467 (2015), 254-266.
[8] B. Ning and J. Ge, 'Spectral radius and Hamiltonian properties of graphs', Linear Multilinear Algebra 63 (2014), 1520-1530.
[9] H. Wiener, 'Structural determination of paraffin boiling points', J. Amer. Chem. Soc. 69 (1947), 17-20.
[10] L. Yang, 'Wiener index and traceable graphs', Bull. Aust. Math. Soc. 88 (2013), 380-383.

RUIFANG LIU, School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan 450001, China e-mail: rfliu@zzu.edu.cn

XUE DU, School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan 450001, China
e-mail: 15225101865@163.com

HUICAI JIA, College of Science, Henan Institute of Engineering, Zhengzhou, Henan 451191, China
e-mail: jhc607@163.com

[^0]: The first author is supported by NSFC (No. 11201432) and NSF-Henan (Nos 15A110003 and 15IRTSTHN006).
 (C) 2016 Australian Mathematical Publishing Association Inc. 0004-9727/2016 \$16.00

