Bull. Aust. Math. Soc. **94** (2016), 362–372 doi:10.1017/S0004972716000447

WIENER INDEX ON TRACEABLE AND HAMILTONIAN GRAPHS

RUIFANG LIU[∞], XUE DU and HUICAI JIA

(Received 7 April 2016; accepted 24 April 2016; first published online 30 August 2016)

Abstract

We give sufficient conditions for a graph to be traceable and Hamiltonian in terms of the Wiener index and the complement of the graph, which correct and extend the result of Yang ['Wiener index and traceable graphs', *Bull. Aust. Math. Soc.* **88** (2013), 380–383]. We also present sufficient conditions for a bipartite graph to be traceable and Hamiltonian in terms of its Wiener index and quasicomplement. Finally, we give sufficient conditions for a graph or a bipartite graph to be traceable and Hamiltonian in terms of its distance spectral radius.

2010 Mathematics subject classification: primary 05C50.

Keywords and phrases: complement, traceable graph, Hamiltonian graph, quasicomplement, bipartite graph, Wiener index, distance spectral radius.

1. Introduction

All graphs considered here are finite undirected graphs without loops and multiple edges. Let *G* be a graph with vertex set $V(G) = \{v_1, v_2, ..., v_n\}$ and edge set E(G). Let $N_G(v)$ denote the neighbour set of v in *G*. We denote the degree of a vertex v_i by d_i or $d(v_i)$. Let $(d_1, d_2, ..., d_n)$ be the degree sequence of the graph *G*, where $d_1 \le d_2 \le \cdots \le d_n$. Then $\delta := d_1$ is called the minimum degree. We denote the distance between the vertices v_i and v_j in *G* by $d_G(v_i, v_j)$. The union of simple graphs *G* and *H* is the graph $G \cup H$ with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. If *G* and *H* are disjoint, we refer to their union as a disjoint union, denoted by G + H. The disjoint union of *k* graphs *G* is denoted by kG. By starting with a disjoint union of two graphs *G* and *H*, denoted by $G \vee H$. Finally, \overline{G} denotes the complement of *G*.

A path in a graph is called a *Hamiltonian path* if it visits every vertex precisely once. A graph containing a Hamiltonian path is said to be *traceable*. A cycle in a

The first author is supported by NSFC (No. 11201432) and NSF-Henan (Nos 15A110003 and 15IRTSTHN006).

^{© 2016} Australian Mathematical Publishing Association Inc. 0004-9727/2016 \$16.00

graph is called a *Hamiltonian cycle* if it contains all the vertices of a graph. A graph containing a Hamiltonian cycle is called a *Hamiltonian graph*.

The distance matrix D = D(G) of G has (i, j)-entry, d_{ij} , equal to $d_G(v_i, v_j)$. The Wiener index [9], W(G), of a connected graph G is defined by

$$W(G) = \sum_{u,v \in V(G)} d_G(u,v).$$

Let $D_i(G)$ and $D_v(G)$ denote the sum of row *i* of D(G) and the row sum of D(G) corresponding to vertex *v*, respectively. Then

$$W(G) = \frac{1}{2} \sum_{v \in V(G)} D_v(G) = \frac{1}{2} \sum_{i=1}^n D_i(G).$$

The distance spectral radius of G is the largest eigenvalue of D(G), denoted by $\rho(G)$.

The problem of deciding whether a given graph is traceable or Hamiltonian is a very difficult one. Indeed, determining whether a given graph is traceable or Hamiltonian is NP-complete [3]. Many necessary or sufficient conditions have been given for a graph to be traceable or Hamiltonian. Recently, some sufficient spectral conditions involving the Wiener index and distance spectral radius for a graph to be Hamiltonian and traceable have been given in [4–6, 10].

In Sections 2–3, we give sufficient conditions for a graph to be traceable and Hamiltonian in terms of the Wiener index and the complement of the graph, which correct and extend the result of Yang [10]. In Section 4, we present sufficient conditions for a bipartite graph to be traceable and Hamiltonian in terms of its Wiener index and quasicomplement. Finally, in Sections 5–6 we give sufficient distance spectral conditions for a graph or a bipartite graph to be traceable and Hamiltonian in terms of its distance spectral radius. Our results extend and improve the results in [4–6, 10].

Notice that $\delta \ge 1$ and $\delta \ge 2$ are trivial necessary conditions on the minimum degree for a graph to be traceable and Hamiltonian, respectively. Hence we take these as standing assumptions throughout this paper.

2. Corrigendum to [10, Theorem 2.2]

Define the set of exceptional graphs

$$\mathbb{NP} = \{K_1 \lor (K_{n-3} + 2K_1), K_1 \lor (K_{1,3} + K_1), K_{2,4}, K_2 \lor 4K_1, K_2 \lor (3K_1 + K_2), K_1 \lor K_{2,5}, K_3 \lor 5K_1, K_2 \lor (K_{1,4} + K_1), K_4 \lor 6K_1\}.$$

A sufficient condition for a graph to be traceable is given in [1].

LEMMA 2.1 [1, Exercise 18.3.3]. Let G be a nontrivial graph of order n with degree sequence $(d_1, d_2, ..., d_n)$, where $d_1 \le d_2 \le \cdots \le d_n$ and $n \ge 4$. Suppose that there is no integer $k < \frac{1}{2}(n+1)$ such that $d_k \le k-1$ and $d_{n-k+1} \le n-k-1$. Then G is traceable.

Yang [10] claimed that if *G* is a connected graph of order $n \ge 4$ and its Wiener index satisfies $W(G) \le \frac{1}{2}(n+5)(n-2)$, then *G* is traceable unless

$$G \in \{K_1 \lor (K_{n-3} + 2K_1), K_2 \lor (3K_1 + K_2), K_4 \lor 6K_1\}.$$

However, the list of exceptional graphs is incomplete. The following theorem gives the correct result.

THEOREM 2.2. Let G be a connected graph of order $n \ge 4$. If

$$W(G) \le \frac{(n+5)(n-2)}{2},$$

then G is traceable unless $G \in \mathbb{NP}$.

PROOF. Suppose that *G* is a nontraceable connected graph. By Lemma 2.1, there exists an integer $k < \frac{1}{2}(n + 1)$ such that $d_k \le k - 1$ and $d_{n-k+1} \le n - k - 1$. Since *G* is connected and $d_k \le k - 1$, we have $k \ge 2$. Thus

$$W(G) = \frac{1}{2} \sum_{i=1}^{n} D_i(G) \ge \frac{1}{2} \sum_{i=1}^{n} (d_i + 2(n-1-d_i)) = n(n-1) - \frac{1}{2} \sum_{i=1}^{n} d_i$$

$$\ge n(n-1) - \frac{1}{2} (k(k-1) + (n-2k+1)(n-k-1) + (k-1)(n-1))$$

$$= \frac{(n+5)(n-2)}{2} + \frac{(k-2)(2n-3k-5)}{2}.$$

Since $W(G) \le \frac{1}{2}(n+5)(n-2)$, we have $\frac{1}{2}(k-2)(2n-3k-5) \le 0$. Also, if *m* denotes the number of edges of *G*, we have $W(G) \ge n(n-1) - \frac{1}{2} \sum_{i=1}^{n} d_i = n(n-1) - m$ which implies $m \ge \frac{1}{2}(n^2 - 5n + 10)$.

Case 1. $\frac{1}{2}(k-2)(2n-3k-5) = 0$, that is, k = 2 or 2n = 3k + 5, and all inequalities in the above argument must be equalities. If k = 2, then *G* is a graph with $d_1 = d_2 = 1$, $d_3 = d_4 = \cdots = d_{n-1} = n-3$ and $d_n = n-1$, whence $G = K_1 \vee (K_{n-3} + 2K_1)$. If 2n = 3k + 5, then n < 13 since $k < \frac{1}{2}(n + 1)$. Hence n = 7, k = 3 or n = 10, k = 5. The corresponding permissible graphic sequences are (2, 2, 2, 3, 3, 6, 6)and (4, 4, 4, 4, 4, 4, 9, 9, 9, 9), which imply $G = K_2 \vee (3K_1 + K_2)$ and $G = K_4 \vee 6K_1$, respectively.

Case 2. $\frac{1}{2}(k-2)(2n-3k-5) < 0$, that is $k \ge 3$ and 2n-3k-5 < 0. In this case, the admissible pairs k, n satisfy $k \ge 3, n \ge 4, n \ge 2k$ and $2n - 3k \le 4$, allowing just two possibilities: k = 3, n = 6 and k = 4, n = 8.

Suppose k = 4. Then $d_5 \le 3$ and $17 \le m \le 18$. From the inequality $d_6 + d_7 + d_8 = 2m - \sum_{1 \le i \le 5} d_i \ge 19$, we obtain $d_8 = 7$. Also note that $\sum d_i = 2m \ge 34$ and $\sum d_i$ is even. If $d_6 = d_7 = 6$ and $d_8 = 7$, then the permissible graphic sequence is (3, 3, 3, 3, 3, 6, 6, 7) and hence $G = K_1 \lor K_{2,5}$. If $d_6 = 5$ and $d_7 = d_8 = 7$, then the permissible graphic sequence is (3, 3, 3, 3, 3, 5, 7, 7) and hence $G = K_2 \lor (K_{1,3} + K_2)$. If $d_6 = 6$ and $d_7 = d_8 = 7$, then the permissible graphic sequence is (2, 3, 3, 3, 3, 6, 7, 7) and hence

 $G = K_2 \lor (K_{1,4} + K_1)$. If $d_6 = d_7 = d_8 = 7$, then the permissible graphic sequence is (3, 3, 3, 3, 7, 7, 7) and hence $G = K_3 \lor 5K_1$.

Finally, suppose k = 3. Then $d_4 \le 2$ and $8 \le m \le 9$. From the inequality $d_5 + d_6 = 2m - \sum_{1 \le i \le 4} d_i \ge 8$, we obtain $4 \le d_6 \le 5$. Also note that $\sum d_i = 2m \ge 16$ and $\sum d_i$ is even. If $d_5 = d_6 = 4$, then the permissible graphic sequence is (2, 2, 2, 2, 4, 4) and hence $G = K_{2,4}$. If $d_5 = 4$ and $d_6 = 5$, then the permissible graphic sequence is (1, 2, 2, 2, 4, 5) and hence $G = K_1 \lor (K_{1,3} + K_1)$. If $d_5 = d_6 = 5$, then the permissible graphic sequence is (2, 2, 2, 2, 5, 5) and hence $G = K_2 \lor 4K_1$.

Note that $K_2 \lor (K_{1,3} + K_2)$ is traceable and the other obtained graphs contain no Hamiltonian path. The proof is complete.

3. Wiener index on traceable and Hamiltonian graphs

The following lemma allows us to give a simpler proof of Theorem 2.2.

LEMMA 3.1 [8]. Let G be a graph on $n \ge 4$ vertices and m edges with $\delta \ge 1$. If $m \ge \binom{n-2}{2} + 2$, then G is traceable unless $G \in \mathbb{NP}$.

SECOND PROOF OF THEOREM 2.2. Suppose that G is nontraceable. As noted at the beginning of the proof in Section 2,

$$m \ge \frac{1}{2}(n^2 - 5n + 10) = \binom{n-2}{2} + 2.$$

By Lemma 3.1, we obtain that $G \in \mathbb{NP}$. By a direct computation, for all $G \in \mathbb{NP}$, $W(G) \leq \frac{1}{2}(n+5)(n-2)$. This completes the proof of Theorem 2.2.

THEOREM 3.2. Let G be a connected graph of order $n \ge 4$. If

$$W(\overline{G}) \ge \frac{n^3 - 6n^2 + 19n - 20}{2},$$

then G is traceable unless $G \in \mathbb{NP}$.

PROOF. Suppose that G is nontraceable. Then

$$\begin{split} W(\overline{G}) &= \frac{1}{2} \sum_{i=1}^{n} D_i(\overline{G}) \leq \frac{1}{2} \sum_{v \in V(G)} [d_{\overline{G}}(v) + (n-1)(n-1-d_{\overline{G}}(v))] \\ &= \frac{1}{2} \sum_{v \in V(G)} [(n-1)^2 + (2-n)d_{\overline{G}}(v)] \\ &= \frac{1}{2} n(n-1)^2 - \frac{n-2}{2} \sum_{v \in V(G)} (n-1-d_G(v)) \\ &= \frac{n(n-1)}{2} + (n-2)m. \end{split}$$

Since $W(\overline{G}) \ge \frac{1}{2}(n^3 - 6n^2 + 19n - 20)$,

$$m \ge \frac{n^3 - 6n^2 + 19n - 20 - n(n-1)}{2(n-2)} = \binom{n-2}{2} + 2.$$

Again, by Lemma 3.1, $G \in \mathbb{NP}$. By a direct computation, in all cases with $G \in \mathbb{NP}$, $W(\overline{G}) \ge \frac{1}{2}(n^3 - 6n^2 + 19n - 20)$. Hence *G* is traceable unless $G \in \mathbb{NP}$.

Define the set of exceptional graphs

$$\mathbb{NC} = \{K_2 \lor (K_{n-4} + 2K_1), K_3 \lor 4K_1, K_2 \lor (K_{1,3} + K_1), K_1 \lor K_{2,4}, K_3 \lor (K_2 + 3K_1), K_4 \lor 5K_1, K_3 \lor (K_{1,4} + K_1), K_2 \lor K_{2,5}, K_5 \lor 6K_1\}.$$

LEMMA 3.3 [8]. Let G be a graph on $n \ge 5$ vertices and m edges with $\delta \ge 2$. If $m \ge \binom{n-2}{2} + 4$, then G contains a Hamiltonian cycle unless $G \in \mathbb{NC}$.

THEOREM 3.4. Let G be a graph with $n \ge 5$ vertices and m edges and with $\delta \ge 2$. If

$$W(G) \le \frac{n^2 + 3n - 14}{2}$$

then G is Hamiltonian unless $G \in \mathbb{NC}$.

PROOF. Suppose that G is non-Hamiltonian. As in the second proof of Theorem 2.2,

$$W(G) = \frac{1}{2} \sum_{i=1}^{n} D_i(G) \ge n(n-1) - m.$$

Since $W(G) \le \frac{1}{2}(n^2 + 3n - 14)$,

$$m \ge n(n-1) - \frac{n^2 + 3n - 14}{2} = \binom{n-2}{2} + 4.$$

By Lemma 3.3, we have $G \in \mathbb{NC}$. By a direct computation, $W(G) \le \frac{1}{2}(n^2 + 3n - 14)$ for all $G \in \mathbb{NC}$. Hence G is Hamiltonian unless $G \in \mathbb{NC}$.

THEOREM 3.5. Let G be a graph with $n \ge 5$ vertices and m edges and with $\delta \ge 2$. If

$$W(\overline{G}) \ge \frac{n^3 - 6n^2 + 23n - 28}{2},$$

then G is Hamiltonian unless $G \in \mathbb{NC}$.

PROOF. Suppose that G is non-Hamiltonian. Then

$$W(\overline{G}) = \frac{1}{2} \sum_{i=1}^{n} D_i(\overline{G}) \le \frac{n(n-1)}{2} + (n-2)m.$$

Since $W(\overline{G}) \ge \frac{1}{2}(n^3 - 6n^2 + 23n - 28)$,

$$m \ge \frac{n^3 - 6n^2 + 23n - 28 - n(n-1)}{2(n-2)} = \binom{n-2}{2} + 4.$$

By Lemma 3.3, $G \in \mathbb{NC}$. By a direct verification, $W(\overline{G}) \ge \frac{1}{2}(n^3 - 6n^2 + 23n - 28)$ for all $G \in \mathbb{NC}$. Hence G is Hamiltonian unless $G \in \mathbb{NC}$.

4. Wiener index on traceable and Hamiltonian bipartite graphs

Let G = G[X, Y] be a bipartite graph where $|X| = |Y| = n \ge 2$. The bipartite graph $G^* = G^*[X, Y]$, called the *quasicomplement* of *G*, is constructed as follows: $V(G^*) = V(G)$ and $xy \in E(G^*)$ if and only if $xy \notin E(G)$ for $x \in X$, $y \in Y$.

Let G[X, Y] be a traceable bipartite graph. Then |X| = |Y| or |X| = |Y| + 1. These two types will be discussed separately.

LEMMA 4.1 [7]. Let G = G[X, Y] be a bipartite graph with $\delta \ge 1$ and m edges where $|X| = |Y| = n \ge 3$. If $m \ge n^2 - 2n + 3$, then G is traceable.

THEOREM 4.2. Let G = G[X, Y] be a bipartite graph with $\delta \ge 1$ and m edges where $|X| = |Y| = n \ge 3$. If

$$W(G) \le 3n^2 + 2n - 6,$$

then G is traceable.

PROOF. Let G be a graph satisfying the condition in Theorem 4.2. Then

$$W(G) = \frac{1}{2} \sum_{i=1}^{2n} D_i(G) \ge \frac{1}{2} \sum_{i=1}^{2n} (d_i + 3(n - d_i) + 2(n - 1))$$

= $3n^2 - \sum_{i=1}^{2n} d_i + 2n(n - 1) = 3n^2 - 2m + 2n(n - 1) = 5n^2 - 2n - 2m$

Since $W(G) \le 3n^2 + 2n - 6$, we have $m \ge \frac{1}{2}(5n^2 - 2n - (3n^2 + 2n - 6)) = n^2 - 2n + 3$ and, according to Lemma 4.1, *G* is traceable.

THEOREM 4.3. Let G = G[X, Y] be a bipartite graph with $\delta \ge 1$ and m edges, where $|X| = |Y| = n \ge 3$. If

$$W(G^*) \ge 4n^3 - 9n^2 + 12n - 6,$$

then G is traceable.

PROOF. Let G^* be the quasicomplement of G. Then

$$\begin{split} W(G^*) &= \frac{1}{2} \sum_{i=1}^{2n} D_i(G^*) \leq \frac{1}{2} \sum_{v \in V(G)} [d_{G^*}(v) + (2n-1)(n-d_{G^*}(v)) + (2n-2)(n-1)] \\ &= \frac{1}{2} \sum_{v \in V(G)} [n(2n-1) + (2-2n)d_{G^*}(v)] + n(2n-2)(n-1) \\ &= n^2(2n-1) - (n-1) \sum_{v \in V(G)} (n-d_G(v)) + n(2n-2)(n-1) \\ &= n^2 + n(2n-2)(n-1) + 2(n-1)m. \end{split}$$

Since $W(G^*) \ge 4n^3 - 9n^2 + 12n - 6$, we have

$$m \ge \frac{2n^3 - 6n^2 + 10n - 6}{2(n-1)} = n^2 - 2n + 3.$$

By Lemma 4.1, *G* is traceable.

Let $p \ge n - 1$. Let $K_{p,n-2} + 4e$ be a bipartite graph obtained from $K_{p,n-2}$ by adding two vertices which are adjacent to two common vertices with degree n - 2 in $K_{p,n-2}$.

LEMMA 4.4 [7]. Let G = G[X, Y] be a bipartite graph with $\delta \ge 2$ and m edges where $|X| = |Y| = n \ge 4$. If $m \ge n^2 - 2n + 4$, then G is Hamiltonian unless $G = K_{n,n-2} + 4e$.

Next we consider the other type with |X| = |Y| + 1. Let G[X, Y] be a bipartite graph where |X| = n + 1 and $|Y| = n \ge 2$. Denote by δ_X and δ_Y the minimum degrees of vertices in X and Y, respectively. Note that $\delta_X \ge 1$ and $\delta_Y \ge 2$ are the trivial necessary conditions for G to be traceable. Let G[X, Y + v] be the bipartite graph obtained from G[X, Y] by adding a vertex v which is adjacent to every vertex in X. It is easy to see that G[X, Y] is traceable if and only if G[X, Y + v] is Hamiltonian.

Let $K_{n,n-1} + 2e$ be a graph obtained from $K_{n,n-1}$ by adding two vertices which are adjacent to a common vertex with degree n - 1.

THEOREM 4.5. Let G = G[X, Y] be a bipartite graph with $\delta_X \ge 1$ and $\delta_Y \ge 2$ where |X| = n + 1 and $|Y| = n \ge 3$. If

$$W(G) \le 3n^2 + 5n - 4,$$

then G is traceable unless $G \in \{K_{n+1,n-2} + 4e, K_{n,n-1} + 2e\}$ *.*

PROOF. Let *G* be a bipartite graph satisfying the conditions in Theorem 4.5.

$$\begin{split} W(G) &= \frac{1}{2} \sum_{v \in V(G)} D_v(G) \\ &\geq \frac{1}{2} \Big[\sum_{i=1}^{n+1} (d_i + 3(n - d_i) + 2n) + \sum_{j=1}^n (d_j + 3(n + 1 - d_j) + 2(n - 1)) \Big] \\ &= \frac{1}{2} \Big[5n(n + 1) - 2 \sum_{i=1}^{n+1} d_i + n(5n + 1) - 2 \sum_{j=1}^n d_j \Big] \\ &= 5n^2 + 3n - \sum_{v \in V(G)} d_G(v) = 5n^2 + 3n - 2m. \end{split}$$

From $W(G) \le 3n^2 + 5n - 4$ we have $m \ge n^2 - n + 2$. Since d(v) = n + 1 in G[X, Y + v],

$$m(G[X, Y + v]) = m + (n + 1) \ge n^2 + 3 = (n + 1)^2 - 2(n + 1) + 4.$$

By Lemma 4.4, G[X, Y + v] is Hamiltonian or $G[X, Y + v] = K_{n+1,n-1} + 4e$. Hence G[X, Y] is traceable or $G \in \{K_{n+1,n-2} + 4e, K_{n,n-1} + 2e\}$.

THEOREM 4.6. Let G = G[X, Y] be a bipartite graph with $\delta_X \ge 1$ and $\delta_Y \ge 2$ where |X| = n + 1 and $|Y| = n \ge 3$. If

$$W(G^*) \ge 4n^3 - 4n^2 + 8n - 4,$$

then G is traceable unless $G \in \{K_{n+1,n-2} + 4e, K_{n,n-1} + 2e\}$.

PROOF. Let G^* be the quasicomplement of G. Then

$$\begin{split} W(G^*) &= \frac{1}{2} \sum_{v \in V(G)} D_v(G^*) \\ &\leq \frac{1}{2} \Big[\sum_{i=1}^{n+1} (d_{G^*}(v_i) + (2n-1)(n-d_{G^*}(v_i)) + 2n^2) \\ &\quad + \sum_{j=1}^n (d_{G^*}(u_j) + (2n-1)(n+1-d_{G^*}(u_j)) + (2n-2)(n-1)) \Big] \\ &= 4n^3 - (n-1) \sum_{i=1}^{n+1} d_{G^*}(v_i) - (n-1) \sum_{j=1}^n d_{G^*}(u_j) \\ &= 2n^3 + 2n + 2(n-1)m \end{split}$$

by substituting $d_{G^*}(v_i) = n - d_G(v_i)$ and $d_{G^*}(u_j) = n + 1 - d_G(u_j)$. By hypothesis, $W(G^*) \ge 4n^3 - 4n^2 + 8n - 4$ so $m \ge n^2 - n + 2$. Since d(v) = n + 1 in G[X, Y + v],

$$m(G[X, Y + v]) = m + (n + 1) \ge n^2 + 3 = (n + 1)^2 - 2(n + 1) + 4.$$

By Lemma 4.4, G[X, Y + v] is Hamiltonian or $G[X, Y + v] = K_{n+1,n-1} + 4e$. Hence G[X, Y] is traceable or $G \in \{K_{n+1,n-2} + 4e, K_{n,n-1} + 2e\}$.

THEOREM 4.7. Let G = G[X, Y] be a bipartite graph with $\delta \ge 2$ and m edges where $|X| = |Y| = n \ge 4$. If

$$W(G) \le 3n^2 + 2n - 8$$

then G is Hamiltonian unless $G = K_{n,n-2} + 4e$.

PROOF. Suppose that G is non-Hamiltonian. As in Theorem 4.2,

$$W(G) = \frac{1}{2} \sum_{i=1}^{2n} D_i(G) \ge 5n^2 - 2n - 2m.$$

Since $W(G) \le 3n^2 + 2n - 8$, we have $m \ge \frac{1}{2}(5n^2 - 2n - (3n^2 + 2n - 8)) = n^2 - 2n + 4$ and, from Lemma 4.4, $G = K_{n,n-2} + 4e$.

THEOREM 4.8. Let G = G[X, Y] be a bipartite graph with $\delta \ge 2$ and m edges where $|X| = |Y| = n \ge 4$. If

$$W(G^*) \ge 4n^3 - 9n^2 + 14n - 8,$$

then G is Hamiltonian unless $G = K_{n,n-2} + 4e$.

PROOF. Suppose that G is non-Hamiltonian. As in Theorem 4.3,

$$W(G^*) = \frac{1}{2} \sum_{v \in V(G)} D_v(G^*) \le n^2 + n(2n-2)(n-1) + 2(n-1)m.$$

Since $W(G^*) > 4n^3 - 9n^2 + 14n - 8$.

$$m \ge \frac{n^3 - 3n^2 + 6n - 4}{n - 1} = n^2 - 2n + 4.$$

By Lemma 4.4, $G = K_{n,n-2} + 4e$.

5. Distance spectral radius on traceable and Hamiltonian graphs

LEMMA 5.1 [2]. Let G be a graph on n vertices. Then

$$\rho(G) \ge \frac{2W(G)}{n},$$

and the equality holds if and only if G is distance regular, that is, the row sums of D(G)are all equal.

THEOREM 5.2. Let G be a connected graph of order $n \ge 4$. If

$$\rho(G) \le n+3-\frac{10}{n},$$

then G is traceable unless $G = K_2 \vee 4K_1$.

PROOF. Assume that G is nontraceable. By Lemma 5.1,

$$\rho(G) \ge \frac{2W(G)}{n} \ge \frac{2}{n} [n(n-1) - m] = 2(n-1) - \frac{2}{n}m.$$

Since $\rho(G) \le n + 3 - 10/n$, we have $m \ge {\binom{n-2}{2}} + 2$ and, by Lemma 3.1, $G \in \mathbb{NP}$. The largest zero root of the equation $\lambda^3 - (n-2)\lambda^2 - (7n-17)\lambda + 10 - 4n = 0$ is

 $\rho(K_1 \vee (K_{n-3} + 2K_1))$. Since

$$f(n) = \left(n+3-\frac{10}{n}\right)^3 - (n-2)\left(n+3-\frac{10}{n}\right)^2 - (7n-17)\left(n+3-\frac{10}{n}\right) + 10 - 4n$$

is a decreasing function of $n \ (n \ge 5), \ f(n) \le f(5) < 0$. Hence $\rho(K_1 \lor (K_{n-3} + 2K_1)) >$ $n + 3 - \frac{10}{n}$ for $n \ge 5$. From Table 1, we see that $G = K_2 \lor 4K_1$.

THEOREM 5.3. Let G be a graph on $n \ge 5$ vertices and m edges with $\delta \ge 2$. If

$$\rho(G) \le n+3-\frac{14}{n},$$

then G is Hamiltonian unless $G = K_3 \vee 4K_1$.

PROOF. Suppose that G is non-Hamiltonian. By Lemma 5.1, we have

$$\rho(G) \ge \frac{2W(G)}{n} \ge \frac{2}{n} [n(n-1) - m] = 2(n-1) - \frac{2}{n}m.$$

[9]

G	$\rho(G)$	n + 3 - 10/n
$K_1 \lor (K_{1,3} + K_1)$	7.5673	7.3333
$K_{2,4}$	7.4641	7.3333
$K_2 \vee 4K_1$	7.2749	7.3333
$K_2 \vee (3K_1 + K_2)$	8.8886	8.5714
$K_1 \vee K_{2,5}$	10.0401	9.75
$K_3 \vee 5K_1$	9.8990	9.75
$K_2 \lor (K_{1,4} + K_1)$	10.1205	9.75
$K_4 \vee 6K_1$	12.5208	12
<i>K</i> _{1,3}	4.6458	4.5

TABLE 1. Direct computation of $\rho(G)$ for Theorem 5.2.

TABLE 2. Direct computation of $\rho(G)$ for Theorem 5.3.

G	$\rho(G)$	n + 3 - 14/n
$K_3 \vee 4K_1$	8	8
$K_2 \lor (K_{1,3} + K_1)$	8.2736	8
$K_1 \vee K_{2,4}$	8.1846	8
$K_3 \vee (K_2 + 3K_1)$	9.5947	9.25
$K_4 \vee 5K_1$	10.6235	10.444
$K_3 \lor (K_{1,4} + K_1)$	10.8341	10.444
$K_2 \vee K_{2,5}$	10.7624	10.444
$K_5 \vee 6K_1$	13.2450	12.727

Since $\rho(G) \le n + 3 - 14/n$, we have $m \ge {\binom{n-2}{2}} + 4$. By Lemma 3.3, $G \in \mathbb{NC}$. The largest zero root of $\lambda^3 - (n-2)\lambda^2 - (7n-23)\lambda - 2n + 6 = 0$ is $\rho(K_2 \lor (K_{n-4} + 2K_1))$, and

$$f(n) = \left(n+3 - \frac{14}{n}\right)^3 - (n-2)\left(n+3 - \frac{14}{n}\right)^2 - (7n-23)\left(n+3 - \frac{14}{n}\right) - 2n + 6$$

is a decreasing function on *n*, so $f(n) \le f(5) < 0$ and we have $\rho(K_2 \lor (K_{n-4} + 2K_1)) > n + 3 - 14/n$. From Table 2, we see that $G = K_3 \lor 4K_1$.

6. Distance spectral radius on traceable and Hamiltonian bipartite graphs

THEOREM 6.1. Let G = G[X, Y] be a bipartite graph with $\delta \ge 1$ and m edges where $|X| = |Y| = n \ge 3$. If

$$\rho(G) \le 3n+2-\frac{6}{n},$$

then G is traceable.

PROOF. According to Lemma 5.1,

$$\rho(G) \ge \frac{2W(G)}{2n} \ge \frac{5n^2 - 2n - 2m}{n} = 5n - 2 - \frac{2m}{n}.$$

Since $\rho(G) \le 3n + 2 - 6/n$, we have $m \ge n^2 - 2n + 3$ and, by Lemma 4.1, G is traceable.

Acknowledgement

The authors would like to thank the anonymous referees for valuable suggestions and corrections which improved the original manuscript.

References

- J. A. Bondy and U. S. R. Murty, *Graph Theory*, Graduate Texts in Mathematics, 244 (Springer, New York, 2008).
- [2] G. Indual, 'Sharp bounds on the distance spectral radius and the distance energy of graphs', *Linear Algebra Appl.* **430** (2009), 106–113.
- [3] R. M. Karp, 'Reducibility among combinatorial problems', in: Complexity of Computer Computations (eds. R. E. Miller and J. M. Thatcher) (Plenum, New York, 1972), 85–103.
- [4] M. J. Kuang, G. H. Huang and H. Y. Deng, 'Some sufficient conditions for Hamiltonian property in terms of Wiener-type invariants', *Proc. Math. Sci.* **126** (2016), 1–9.
- [5] R. Li, 'Wiener index and some Hamiltonian properties of graphs', *Int. J. Math. Soft Comput.* **5** (2015), 11–16.
- [6] Z. Z. Liu, S. S. Lin and G. Q. Yang, 'Distance spectral radius and Hamiltonicity', *J. Huizhou Univ.* 33 (2013), 40–43.
- [7] R. F. Liu, W. C. Shiu and J. Xue, 'Sufficient spectral conditions on Hamiltonian and traceable graphs', *Linear Algebra Appl.* 467 (2015), 254–266.
- [8] B. Ning and J. Ge, 'Spectral radius and Hamiltonian properties of graphs', *Linear Multilinear Algebra* **63** (2014), 1520–1530.
- [9] H. Wiener, 'Structural determination of paraffin boiling points', J. Amer. Chem. Soc. 69 (1947), 17–20.
- [10] L. Yang, 'Wiener index and traceable graphs', Bull. Aust. Math. Soc. 88 (2013), 380-383.

RUIFANG LIU, School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan 450001, China e-mail: rfliu@zzu.edu.cn

XUE DU, School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan 450001, China e-mail: 15225101865@163.com

HUICAI JIA, College of Science, Henan Institute of Engineering, Zhengzhou, Henan 451191, China e-mail: jhc607@163.com