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Abstract

Let G be a finite group with two primitive permutation representations on the sets Ω1 and Ω2 and let
π1 and π2 be the corresponding permutation characters. We consider the case in which the set of fixed-
point-free elements of G on Ω1 coincides with the set of fixed-point-free elements of G on Ω2, that is, for
every g ∈ G, π1(g) = 0 if and only if π2(g) = 0. We have conjectured in Spiga [‘Permutation characters
and fixed-point-free elements in permutation groups’, J. Algebra 299(1) (2006), 1–7] that under this
hypothesis either π1 = π2 or one of π1 − π2 and π2 − π1 is a genuine character. In this paper we give
evidence towards the veracity of this conjecture when the socle of G is a sporadic simple group or an
alternating group. In particular, the conjecture is reduced to the case of almost simple groups of Lie type.
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1. Introduction

A permutation g on Ω is said to be fixed-point-free (or a derangement) if g fixes no
point of Ω, that is, ωg , ω for every ω ∈ Ω. Fixed-point-free elements have always
attracted attention. In a finite permutation group G, the fixed-point-free elements can
be detected using the permutation character π of G. Indeed, π(g) = 0 if and only if
g ∈ G is a fixed-point-free element.

In general, we may ask: what sort of information can be deduced from the fixed-
point-free elements of a finite group? With this formulation, the question seems too
vague to hope for reasonable answers and deep mathematics. Even for primitive
permutation groups, the permutation character does not bring much information. For
instance, it is remarkable that although the permutation character can detect whether
the action is transitive (or 2-transitive), the same is no longer true for primitivity.
Disproving a conjecture of Wielandt [19, Problem 6.6], Guralnick and Saxl [13]
have constructed two distinct permutation representations, one primitive and one
imprimitive, both yielding the same permutation character. This result leaves little
hope for extracting detailed information on a permutation representation only from its
permutation character, let alone from its set of fixed-point-free elements.
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Despite the amazing construction of Guralnick and Saxl, there are strong
motivations arising from number theory for pursuing research on permutation
representations yielding the same permutation character. First Perlis [20] and then
Klingen [16] have observed that permutation representations having the same set
of fixed-point-free elements can be used to construct distinct number fields with
several arithmetical similarities. Since the permutation character π of a permutation
representation of a group G encodes the fixed-point-free elements, stemming from
algebraic number theory, we may ask: what sort of information can be deduced from
a finite group having two permutation characters with the same zeroes? This is the
question we address here.

In [21], we proposed the following conjecture.

Conjecture 1.1. Let G be a group with two primitive actions on Ω1 and Ω2 having
the same set of fixed-point-free elements in both actions and let π1 and π2 be the
corresponding permutation characters. Then either π1 = π2 or one of π1 − π2 and
π2 − π1 is a genuine character.

A genuine character of G is a linear combination of complex irreducible characters
with positive integer coefficients, that is, an element in the positive cone in the lattice
of virtual characters. Although the conclusion proposed by this conjecture only relies
on the permutation characters, the hypothesis does not: the permutation characters π1
and π2 cannot be used to test whether the actions are primitive (see [13]).

It is not difficult to show (see also [21]) that if G is a group with two primitive
actions on Ω1 and Ω2 having the same set of fixed-point-free elements in both actions,
then the kernel of the action of G on Ω1 equals the kernel of the action of G on Ω2.
Therefore, without loss of generality, in Conjecture 1.1, we may assume that G acts
faithfully on both Ω1 and Ω2. In what follows, we only consider faithful actions.

Conjecture 1.1 is based on computer evidence and on the preliminary investigation
in [21]. In particular, [21, Theorem 10] reduces Conjecture 1.1 to the case that G
is an almost simple group. This reduction is very similar to the reduction of Förster
and Kovács in [4, Theorem 1] for the problem of Wielandt [19, Problem 6.6] that we
mentioned above. Indeed, although not explicitly mentioned in [21], the author proved
the following result.

Theorem 1.2. Let G be a group with two primitive faithful actions on Ω1 and Ω2
having the same set of fixed-point-free elements in both actions. Suppose that G is
a counterexample to Conjecture 1.1. Then G can be embedded in a wreath product
H wr Sym(`), where:

(i) ` ≥ 1;
(ii) H is an almost simple group endowed with two primitive faithful actions on ∆1

and ∆2 having the same set of fixed-point-free elements;
(iii) in the embedding of G in H wr Sym(`), the actions of G on Ω1 and Ω2 are

permutation isomorphic to the actions on the cartesian powers ∆`
1 and ∆`

2;
(iv) H is a counterexample to Conjecture 1.1.
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Table 1. Exceptional cases in Theorems 1.3 and 1.4 (notation as in [2]).

Group G Stabiliser of Stabiliser of Comments
a point of Ω1 a point of Ω2

M11 32 : Q8.2 2.S 4 Actions of degrees 55 and 165
M22 24 : A6 24 : S 5 Actions of degrees 77 and 231
M23 L3(4).22 24 : A7 Both actions of degree 253
Mcl L3(4).22 24 : A7 Both actions of degree 22275
J1 23.7.3 7 : 6 Actions of degrees 1045 and 4180
Alt(6) Alt(4) 〈(1, 2)(3, 4), (3, 4, 5)〉 Actions of degrees 5 and 10

In the light of Theorem 1.2, Conjecture 1.1 is reduced to the case of almost simple
groups. In this paper we give considerable further evidence towards the veracity of
Conjecture 1.1. In particular, we completely solve it for almost simple groups with
socle a sporadic simple group.

Theorem 1.3. Let G be an almost simple group with socle a sporadic simple group and
with two primitive faithful actions on Ω1 and Ω2 having the same set of fixed-point-free
elements and let π1 and π2 be the corresponding permutation characters. Then either:

(1) the actions of G on Ω1 and Ω2 are permutation isomorphic; or
(2) replacing Ω1 by Ω2 if necessary, the triple (G,Ω1,Ω2) is in Table 1.

In particular, either π1 = π2 or one of π1 − π2 and π2 − π1 is a genuine character.

Moreover, we give partial evidence for almost simple groups with socle an
alternating group.

Theorem 1.4. Let G be either the alternating group Alt(n) or the symmetric group
Sym(n) with n ≥ 5. Suppose that G admits two primitive faithful actions on Ω1 and Ω2
having the same set of fixed-point-free elements and let π1 and π2 be the corresponding
permutation characters. Then:

(1) the actions of G on Ω1 and Ω2 are permutation isomorphic; or
(2) replacing Ω1 by Ω2 if necessary, the triple (G,Ω1,Ω2) is in Table 1; or
(3) given ω1 ∈ Ω1 and ω2 ∈ Ω2, the point stabilisers Gω1 and Gω2 are almost simple

primitive subgroups of Sym(n).

In particular, in parts (1) and (2), either π1 = π2 or one of π1 − π2 and π2 − π1 is a
genuine character.

We do not have any example for part (3) when π1 , π2. Indeed, this situation is quite
peculiar. The groups Gω1 and Gω2 are almost simple and primitive and are maximal
subgroups of Sym(n) or Alt(n). Moreover, since π1 and π2 have the same set of zeroes,
we deduce that every permutation in Gω1 is G-conjugate to a permutation in Gω2 , and
vice versa. In particular, if we do not count multiplicities, the permutations in Gω1 and
in Gω2 have the same cycle structures. We expect that, if this happens, then π1 = π2.
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(This case for example arises by taking the primitive action of the projective general
linear group on projective points and on projective hyperplanes.) At the moment, we
have no idea how to handle part (3), but a preliminary goal would be to prove that the
socles of Gω1 and of Gω2 are isomorphic. This is very likely true because, among other
things, Gω1 and Gω2 are isospectral, that is, {order g | g ∈ Gω1} = {order g | g ∈ Gω2}.

The structure of this paper is straightforward. In Section 2, we prove Theorem 1.3.
In Section 3, we prove Theorem 1.4.

Notation 1.5. In what follows we let G be a finite group with two primitive faithful
actions on Ω1 and Ω2 having the same set of fixed-point-free elements. We let M1

and M2 be the stabilisers in G of a point of Ω1 and Ω2 and we let π1 and π2 be the
permutation characters. In particular, M1 and M2 are core-free maximal subgroups of
G with ⋃

g∈G

Mg
1 =

⋃
g∈G

Mg
2 . (1.1)

2. Sporadic simple groups

In this section we prove Theorem 1.3 when the socle of G is a sporadic simple
group. The proof is entirely computational and uses the astonishing package ‘The GAP
Character Table Library’ [1] implemented in the computer algebra system GAP [5].
Apart from

• the Monster and
• the action of the Baby Monster on the cosets of a maximal subgroup of type

(22 × F4(2)) : 2,

each permutation character of each primitive permutation representation of an almost
simple group with socle a sporadic simple group is available in GAP via the package
‘The GAP Character Table Library’. Therefore, except for the two cases mentioned
above, we can quickly and easily use GAP to test the veracity of Theorem 1.3 because it
is straightforward to check when two permutation characters have the same zeroes. In
particular, in what follows we may assume that G is the Baby Monster or the Monster.

Suppose first that G is the Baby Monster. Then G has 30 conjugacy classes of
maximal subgroups. If both π1 and π2 are not the permutation characters of the action
of G on the cosets of a maximal subgroup of type (22 × F4(2)) : 2, then Theorem 1.3
follows again with a computation using the invaluable help of ‘The GAP Character
Table Library’. Suppose then that π1 (say) is the permutation character of the action
of G on the cosets of a maximal subgroup of type (22 × F4(2)) : 2. Let ω1 ∈ Ω1,
let ω2 ∈ Ω2 and let Gω1 and Gω2 be the point stabilisers of ω1 and ω2, respectively.
Now, the prime divisors of the order of Gω1 are 2, 3, 5, 13, 17. In particular, by (1.1),
2, 3, 5, 13, 17 are the only prime divisors of Gω2 . A quick inspection on the order of
the maximal subgroups of G shows that Gω2 is also of type (22 × F4(2)) : 2 and hence
Gω1 and Gω2 are conjugate. Therefore, π1 = π2.
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Suppose next that G is the Monster. A recent account on the classification of the
maximal subgroups of the sporadic simple groups is in [22]. From [22, Section 3.6],
we see that the classification of the maximal subgroups of the Monster G is complete
except for a few small open cases. In particular, if M is a maximal subgroup of G, then
either:

(a) M is in [22, Section 3.6]; or
(b) M is almost simple with socle isomorphic to L2(8), L2(13), L2(16), U3(4) or

U3(8).

(From [14], we have learned that the problem has been reduced to PSL2(13), but we do
not need this information here.) Now, we argue as in the case above. We let ω1 ∈ Ω1,
let ω2 ∈ Ω2 and let Gω1 and Gω2 be the point stabilisers of ω1 and ω2, respectively. For
each known maximal subgroup of G and for each putative maximal subgroup of G, we
compute the set of prime divisors of its order. Observe that if π1 and π2 have the same
zeroes, then |Gω1 | and |Gω2 | have the same set of prime divisors. A direct inspection
shows that this happens only when Gω1 is conjugate to Gω2 or when the two maximal
subgroups under consideration are one of type 132 : (2L2(13)).4 and the other of type
PSL2(13) or PGL2(13). In the first case, π1 = π2. In the second case, we observe that
132 : (2L2(13)).4 has elements of order 26 but neither PSL2(13) nor PGL2(13) does.

3. Almost simple groups with socle an alternating group: the setup
In this section we assume that G is an almost simple group with socle an alternating

group Alt(n), with n ≥ 5. In particular, except when n = 6, we have either G = Alt(n)
or G = Sym(n). To avoid some cumbersome divisions later in our argument, we deal
with the case n = 6 right away. A computer-aided computation reveals that M1 and M2
are conjugate in G. In particular, from now on, we may assume that n , 6 and hence
G = Alt(n) or G = Sym(n).

A partition of n is an unordered tuple [x1, . . . , xk], where we have n =
∑k

j=1 x j
and x j ∈ N\{0} for j ∈ {1, . . . , k}. Given σ ∈ Sym(n), the type of σ is the partition
p(σ) := [x1, . . . , xk], where x1, . . . , xk are the lengths of the orbits on {1, . . . , n} of the
subgroup 〈σ〉 generated by σ.

Forσ, τ ∈ Sym(n), we say thatσ is Sym(n)-conjugate to τ if and only if p(σ) = p(τ).
Therefore, when G = Sym(n), (1.1) is equivalent to

{p(σ) | σ ∈ M1} = {p(σ) | σ ∈ M2}.

However, when G = Alt(n), this latter condition is only necessary for guaranteeing that
(1.1) holds true.

Since M1 is a maximal subgroup of G, there is a natural division into three cases:

(1) M1 is intransitive on {1, . . . , n} and hence M1 is the setwise stabiliser in G of a
k-subset of {1, . . . , n} with 1 ≤ k < n/2;

(2) M1 is imprimitive on {1, . . . , n} and hence M1 is the stabiliser in G of a uniform
partition of {1, . . . , n} into b parts each of cardinality a;

(3) M1 is primitive on {1, . . . , n}.
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Clearly, a similar division holds for the subgroup M2. In what follows we consider
these possibilities in turn.

4. M1 or M2 is intransitive on {1, . . . , n}

Replacing M1 with M2 if necessary, we assume that M1 is intransitive. Here

M1 = G ∩ (Sym({1, . . . , k}) × Sym({k + 1, . . . , n}))

for some k ∈ {1, . . . , n} with 1 ≤ k < n/2.
As n ≥ 5 and k < n/2, we have n − k ≥ 3. Thus, M1 contains a 3-cycle and hence

so does M2. In particular, if M2 is primitive on {1, . . . , n}, then M2 ≥ Alt(n) by
[3, Theorem 3.3A], contradicting the fact that M2 is core-free in G.

Suppose that M2 is imprimitive on {1, . . . , n}. In particular, M2 preserves a uniform
partition of {1, . . . , n} into b parts each of cardinality a with n = ab and 1 < a, b < n.
Thus,

M2 = G ∩ (Sym(a) wr Sym(b)).

Observe that Sym(a) wr Sym(b) contains an n-cycle in its imprimitive action on
{1, . . . , ab}. In particular, M2 contains a permutation g with p(g) = [n] when n is
odd or when G = Sym(n), and with p(g) = [n/2, n/2] when n is even and G = Alt(n).
Therefore, M1 contains a permutation g′ with p(g′) = p(g). However, this is a
contradiction, because M1 fixes a k-subset with 1 ≤ k < n/2, but g′ fixes no such k-
subset.

Suppose that M2 is intransitive on {1, . . . , n}. Therefore, replacing M2 by a suitable
G-conjugate if necessary,

M2 := G ∩ (Sym({1, . . . , k′}) × Sym({k′ + 1, . . . , n}))

for some 1 ≤ k′ < n/2. Suppose first that n is even or that G = Sym(n). Then M1
contains a permutation of type [k, n − k]. Therefore, M2 also contains a permutation g
with p(g) = [k, n − k]; however, the only proper subsets of {1, . . . , n} fixed by g have
cardinalities k and n − k. Therefore, k′ = k and M1 = M2. Suppose next that n is odd
and G = Alt(n). In particular, M1 contains a permutation having type [1, k, n − k − 1]
and therefore so does M2; let g ∈ M2 with p(g) = [1, k, n − k − 1]. The subsets of
{1, . . . , n} of cardinality less then n/2 fixed by g have sizes 1, k and k + 1 (where the
latter case occurs only when k + 1 < n/2). We deduce that

k′ ∈ {1, k, k + 1}.

An entirely symmetric argument (interchanging the roles of M1 and M2) yields

k ∈ {1, k′, k′ + 1}.

If k′ = k, then M2 = M1. Interchanging the roles of k and k′ if necessary, we may
suppose that k < k′. As k ∈ {1, k′, k′ + 1}, we deduce that k = 1. Moreover, as
k′ ∈ {1, k, k + 1} = {1, 2}, we deduce that k′ = 2. Now, M1 contains a permutation with
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cycle type [1, (n − 1)/2, (n − 1)/2] and hence so does M2. However, since the elements
in M2 fix setwise a 2-subset, we deduce that (n − 1)/2 = 2, that is, n = 5, G = Alt(5),
M1 = Alt(4) and M2 = Alt(5) ∩ (Sym({1, 2}) × Sym({3, 4, 5})). In this case, we see
that (1.1) is satisfied. Moreover, an explicit computation shows that π2 − π1 is the
irreducible character of G = Alt(5) of degree five. This exception is listed in Table 1.

For the rest of our argument we may assume that neither M1 nor M2 is intransitive.

5. M1 or M2 is imprimitive on {1, . . . , n}

Replacing M1 with M2 if necessary, we assume that M1 is imprimitive. Here

M1 = G ∩ (Sym(a) wr Sym(b))

for some divisors a and b of n with n = ab and 1 < a, b < n.
Suppose that M2 is primitive on {1, . . . , n}. If a ≥ 3, then M1 contains a 3-cycle

and hence so does M2. Then M2 ≥ Alt(n) by [3, Theorem 3.3A], contradicting the
fact that M2 is core-free in G. If a = 2, then M1 contains a permutation having type
[2, 2, 1, . . . , 1]. Therefore, M2 contains a double transposition. By [3, Theorem 3.3D
and Example 3.3.1], we have n ≤ 8. Thus, n ∈ {6, 8}. These cases can be handled with
a computer-aided computation; no example arises.

Suppose that M2 is imprimitive on {1, . . . , n}. Here

M2 = G ∩ (Sym(a′) wr Sym(b′))

for some divisors a′ and b′ of n with n = a′b′ and 1 < a′, b′ < n.
Assume that G = Sym(n). In particular, for every positive integer k with k ≤ a, the

group M1 contains a permutation having type [k, 1, . . . , 1] in its action on {1, . . . , n}.
Therefore, M2 contains a permutation g with p(g) = [k, 1, . . . , 1]. As g ∈ M2, g fixes
a uniform partition having b′ parts of cardinality a′. Clearly, this happens only when
k ≤ a′ or a′ divides k. Applying this argument with k = a − 1 and k = a:

• a − 1 ≤ a′ or a′ divides a − 1; and
• a ≤ a′ or a′ divides a.

Since a and a − 1 are relatively prime and since a, a′ ≥ 2, we deduce that a ≤ a′. An
entirely symmetric argument (interchanging the roles of M1 and M2) yields a′ ≤ a.
Thus, a = a′ and hence M1 and M2 are conjugate in G.

Assume that G = Alt(n). In particular, for every odd number k with k ≤ a, the
group M1 contains a permutation having type [k, 1, . . . , 1] in its action on {1, . . . , n}.
Therefore, M2 contains permutations of type [k, 1, . . . , 1] on {1, . . . , n}. In particular,
when a is odd, arguing as in the paragraph above with k ∈ {a − 2, a}:

• a − 2 ≤ a′ or a′ divides a − 2; and
• a ≤ a′ or a′ divides a.

Since a and a − 2 are relatively prime and since a, a′ ≥ 2, we deduce that a ≤ a′.
Similarly, when a is even, arguing as in the paragraph above with k ∈ {a − 3, a − 1}:
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• a − 3 ≤ a′ or a′ divides a − 3; and
• a − 1 ≤ a′ or a′ divides a − 1.

Since a − 3 and a − 1 are relatively prime and since a,a′ ≥ 2, we deduce that a − 1 ≤ a′.
Summing up, either a is odd and a ≤ a′, or a is even and a − 1 ≤ a′. An entirely
symmetric argument (interchanging the roles of M1 and M2) shows that either a′ is
odd and a′ ≤ a, or a′ is even and a′ − 1 ≤ a. If a = a′, then M1 and M2 are conjugate in
G. Therefore, we assume that a , a′; moreover, replacing M1 by M2 if necessary, we
may assume that a < a′. A moment’s thought shows that a is odd and a′ = a + 1. Now,
M2 contains a permutation of type [a′, a′, 1, . . . , 1] = [a + 1, a + 1, 1, . . . , 1] and hence
M1 contains a permutation g of the same type. Therefore, g fixes a uniform partition
P := {X1, . . . , Xb} of {1, . . . , n} with b parts of cardinality a. Suppose that P has a part
Xi containing a fixed point of g and also a point lying in a cycle of length a + 1. Then
Xg

i ∈ P and, since g fixes a point from Xi, we have Xg
i = Xi. This forces Xi to contain

an (a + 1)-cycle of g. Thus, a = |Xi| ≥ a + 1, which is a contradiction. This proves that
the fixed points of g are a union of parts from P. Thus, a divides n − 2(a + 1). Since
a divides n, we deduce that a divides 2(a + 1). As gcd(a, a + 1) = 1, we get a = 2,
contradicting the fact that a is odd.

For the rest of our argument, we may assume that neither M1 nor M2 is imprimitive.

6. M1 and M2 are primitive on {1, . . . , n}
One of the main ingredients here is the structure of the lattice of maximal subgroups

of G. From [18], we see that every maximal subgroup has O’Nan–Scott type:

HA holomorphic abelian; or
PA product action; or
SD simple diagonal; or
AS almost simple.

6.1. M1 or M2 has O’Nan–Scott type HA. Replacing M1 with M2 if necessary, we
assume that M1 has O’Nan–Scott type HA. Then n = p` for some prime number p and
for some positive integer `. Moreover,

M1 = G ∩ AGL`(p),
where AGL`(p) is the affine general linear group for the `-dimensional vector space
over the field with p elements. As a Singer cycle in GL`(p) has type [p` − 1, 1],
we deduce that either G contains a permutation of type [p` − 1, 1], or G = Alt(n)
and G contains a permutation of type [(p` − 1)/2, (p` − 1)/2, 1]. In particular, M2
contains a permutation g of the same type. In all cases, g has at most three cycles
in its action on {1, . . . , n}. Finite primitive groups containing a permutation with
at most four disjoint cycles have been classified in a series of papers (see [8–10]).
From [10], the proper primitive group M2 contains a permutation of type [p` − 1, 1] or
[(p` − 1)/2, (p` − 1)/2, 1] if and only if one of the following holds:

(1) M2 = PSL2(11) or M2 = M11 in its primitive action of degree 11; or
(2) M2 = M23 in its primitive action of degree 23; or
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(3) M2 has socle PSL2(16) in its primitive action of degree 17; or
(4) M2 has socle PSL2(q) in its primitive action of degree p` = n = q + 1 and q is

prime; or
(5) M2 has socle PSLd(q) in its primitive action of degree p` = n = 2d − 1; or
(6) M2 has abelian socle.

Cases (1) and (2) do not arise because M2 contains a permutation of type [2, 3, 6],
but M1 has no permutations of this type.

Similarly, Case (3) does not arise because M2 contains a permutation of type
[15, 1, 1], but M1 has no permutations of this type.

In Case (4), since q is prime and p` = q + 1, we have p = 2 and hence q is a
Mersenne prime. Now, a transvection of GL`(2) lies in M1 and fixes n/2 points. Thus,
M2 contains a permutation fixing half of the elements. However, this is impossible
because M2 ≤ Aut(PSL2(q)) = PGL2(q) and no nonidentity element of PGL2(q) fixes
more than two points; thus, 2 ≥ n/2, which is a contradiction.

In Case (5), p` + 1 = 2d. In particular, p2` − 1 has no primitive prime divisor. By
a celebrated theorem of Zsigmondy, 2` = 2 and p + 1 is a power of two. Therefore,
` = 1 and p = n = 2` − 1. Thus, M1 = G ∩ AGL1(p) and PSLd(2) E M2. Therefore,
M1 has no nonidentity permutations fixing more than one point, whereas M2 contains
permutations fixing the 2d−1 − 1 points of a projective hyperplane. Thus, 1 ≥ 2d−1 − 1
and d ≤ 2, which is clearly a contradiction.

In Case (6), the socles of M2 and M1 are elementary abelian regular subgroups of
Sym(n) and hence they are conjugate in G. Without loss of generality, we may assume
that the socle V of M1 equals the socle of M2. The maximality of M1 and M2 in G
yields M1 = NG(V) = M2.

For the rest of our argument, we may assume that neither M1 nor M2 has HA type.

6.2. M1 or M2 has O’Nan–Scott type PA. Replacing M1 with M2 if necessary, we
assume that M1 has O’Nan–Scott type PA. Then n = ab for some positive integers a
and b with a ≥ 5 and b ≥ 2. Moreover,

M1 = G ∩ (Sym(a) wr Sym(b)),

where Sym(a) wr Sym(b) is endowed with its primitive product action on a cartesian
product ∆b of degree ab = n. We write the elements of Sym(a) wr Sym(b) in the
form (h1, . . . , hb)σ, where h1, . . . , hb ∈ Sym(a) and σ ∈ Sym(b). Moreover, for every
(δ1, . . . , δb) ∈ ∆b,

(δ1, . . . , δb)(h1,...,hb)σ = (δ
h

1σ−1

1σ−1 , . . . , δ
h

bσ−1

bσ−1 ).

Without loss of generality, ∆ := {1, . . . , a}.
Assume first that M2 is of O’Nan–Scott type PA. Thus,

M2 = G ∩ (Sym(m) wr Sym(r)),

where Sym(m) wr Sym(r) is endowed with its primitive product action on a cartesian
product of degree mr = n, m ≥ 5 and r ≥ 2. Set δ := 2 when G = Sym(n) and δ := 3
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when G = Alt(n). It follows from the proof of Theorem 3.2 in [6] that the maximum
number of fixed points of a nonidentity permutation in M1 is (a − δ)ab−1. (This bound
is attained by the permutations of the form ((1 · · · δ),1, . . . ,1).) Applying this comment
to M2, we see that the maximum number of fixed points of a nonidentity permutation
in M2 is (m − δ)mr−1. From this,

(a − δ)ab−1 = (m − δ)mr−1.

Since ab = n = mr, we deduce that a = m and hence M1 is G-conjugate to M2. Now,
we assume that M2 is not of PA type. In particular, M2 has type AS or SD.

Assume that a ≥ 7 or that G = Sym(n). When G = Sym(n), it is easy to verify that
the permutation

((1, 2)(3, 4, 5), 1, 1, . . . , 1)

lies in M1, has order six and has no cycles of length six (the last assertion follows with
a computation, see also [6, Lemma 3.1 and Theorem 3.2] for more details). Similarly,
when a ≥ 7, it is easy to verify that the permutation

((1, 2)(3, 4)(5, 6, 7), 1, 1, . . . , 1)

lies in M1, has order six and has no cycles of length six (again, the last assertion
follows with a computation or consulting [6, Lemma 3.1 and Theorem 3.2]). In
particular, the primitive group M1 contains a permutation g of order six having no
cycles of length six. As g is G-conjugate to an element of M2, we deduce that also the
primitive group M2 contains an element of order six with no cycles of length six. From
[11, Theorem 1.1] (see also [6]), we deduce that there exist integers k ≥ 1, r ≥ 1 and
m ≥ 5 with 1 ≤ k < m/2 such that M2 preserves a product structure on {1, . . . , n} = Λr

and Alt(m)r EG ≤ Sym(m) wr Sym(k), where Λ consists of the set of all k-subsets of
{1, . . . ,m} and Sym(m) induces its natural k-subset action on Λ. In our case, since M2
is not of PA type, we have r = 1, that is,

M2 = G ∩ Sym(m),

where Sym(m) is endowed with its primitive action on the k-subsets of {1, . . . ,m} of
degree

(
m
k

)
= n and m/2 > k ≥ 2. Recall that M1 contains a permutation g having order

six and with no cycles of length six on {1, . . . , n}. Thus, the same conclusion holds for
M2. However, it is a computation (following the idea in the proof of Theorem 1.1 in
[6]) to show that Sym(m) in its action on k-subsets has no such permutations unless
k = 1, which is a contradiction because here k ≥ 2. Therefore, for the rest of the proof
we may assume that a ≤ 6 and G = Alt(n).

In the remaining case n = 5b or n = 6b, and M2 is of O’Nan–Scott type SD or AS.
Clearly, M2 cannot be of type SD, otherwise n = |T |` for some nonabelian simple
group T and some positive integer `. Thus, M2 has type AS. If n = 5b, then G is an
almost simple primitive group of prime power degree and hence by a classical result of
Guralnick [12] we deduce that no example arises in our case. Suppose then that n = 6b.
In [17, Theorem 1.1], the authors have classified the primitive groups having degree a
product of two prime powers. We denote by Soc(M2) the socle of M2. Applying this
classification to the primitive group M2, we deduce that either:
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(1) n = 36 and M2 ∈ {PSL2(8),PSL2(9)PSU3(3),PSp4(3),PSp6(2),Alt(9)}; or
(2) n = 1296 and M2 = PSU4(3).

We have tested these groups with the help of a computer and in no case is (1.1)
satisfied.

For the rest of our argument, we may assume that neither M1 nor M2 has type HA
or PA.

6.3. M1 or M2 has O’Nan–Scott type SD. Replacing M1 with M2 if necessary,
we assume that M1 has O’Nan–Scott type SD. Then n = |T |` for some nonabelian
simple group T and for some positive integer `. Suppose that M2 also has type SD.
Then n = |T ′|`

′

for some nonabelian simple group T ′ and some positive integer `′. In
particular,

|T |` = |T ′|`
′

,

where T,T ′ are nonabelian simple groups and `, `′ are positive integers. This equation
has been studied in [15]. By [15, Theorem 6.1], we see that ` = `′ and (replacing T
with T ′ if necessary):

(1) T � T ′; or
(2) T � PSL3(4) and T ′ � PSL4(2); or
(3) T � PSp2κ(q) and T ′ � PΩ2κ+1(q) for some positive integer κ ≥ 3 and for some

odd prime power q.

In Case (1), from the structure of primitive groups of type SD, M1 is G-conjugate
to M2. To conclude our analysis of Cases (2) and (3), we need some more information
on the structure of primitive groups of SD type. We first set up some notation.

Let ` ≥ 1 and let T be a nonabelian simple group. Consider the group N = T `+1

and let D = {(t, . . . , t) ∈ N | t ∈ T } be the diagonal subgroup of N. Set Ω := N/D, the
set of right cosets of D in N. Then |Ω| = |T |`. We may identify each element ω ∈ Ω

with an element of T ` as follows: the right coset ω = D(α0, α1, . . . , α`) contains a
unique element whose first coordinate is 1, namely, the element (1, α−1

0 α1, . . . , α
−1
0 α`).

We choose this distinguished coset representative and we denote the element
D(1, α1, . . . , α`) of Ω simply by

[α1, . . . , α`].

An element ϕ of Aut(T ) acts on Ω by

[α1, . . . , α`]ϕ = [αϕ1 , . . . , α
ϕ
`
].

Note that this action is well defined because D is Aut(T )-invariant. Next, the element
(t0, . . . , t`) of N acts on Ω by

[α1, . . . , α`](t0,...,t`) = [t0, α1t1, . . . , α`t`] = [t−1
0 α1t1, . . . , t−1

0 α`t`].

Observe that the action induced by (t, . . . , t) ∈ N on Ω is the same as the action induced
by the inner automorphism corresponding to conjugation by t. Finally, the element σ

https://doi.org/10.1017/S0004972719001060 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972719001060


88 P. Spiga [12]

in Sym({0, . . . , `}) acts on Ω simply by permuting the coordinates. Note that this action
is well defined because D is Sym(` + 1)-invariant.

The set of all permutations we described generates a group W isomorphic to
T `+1 · (Out(T ) × Sym(` + 1)). A subgroup X of W containing the socle N is primitive
if either ` = 2 or X acts primitively by conjugation on the ` + 1 simple direct factors
of N [3, Theorem 4.5A]. Such primitive groups are the primitive groups of diagonal
type. Write

M = {(t0, t1, . . . , t`) ∈ N | t0 = 1}.

Clearly, M is a normal subgroup of N acting regularly on Ω. Since the stabiliser in W
of the point [1, . . . , 1] is Sym(` + 1) × Aut(T ),

W = (Sym(` + 1) × Aut(T ))M.

Every element x ∈ W can be written uniquely as x = σϕm with σ ∈ Sym(` + 1),
ϕ ∈ Aut(T ) and m ∈ M.

In Case (2), let t be an involution of T (observe that T � PSL4(3) has a unique
class of involutions); in Case (3), let t be an involution of T of ‘type t1’ according to
the notation in [7, Section 4.5]. Now, let ιt ∈ Aut(T ) be the inner automorphism of T
induced by t viewed as a permutation in M1. The points fixed by the permutation ιt are
of the form

[α1, . . . , α`],

where α1, . . . , α` ∈ CT (t). Therefore, the number of fixed points of ιt is

F :=


64` when T � PSL3(4),(1
2

(q2 − 1)q(κ−1)2+1
κ−1∏
i=1

(q2i − 1)
)`

when T � PSp2κ(q).
(6.1)

(The size of CT (t) can be inferred from [7, Section 4.5 and Table 4.5.1].) By
(1.1), M2 contains a permutation g which is conjugate, via an element of G, to ιt.
Since ιt fixes some point, we may assume that g fixes the point [1, . . . , 1] and hence
g ∈ Aut(T ′) × Sym(` + 1); therefore, g = σϕ for some σ ∈ Sym(` + 1) and for some
ϕ ∈ Aut(T ′). Observe that g has order two and that g fixes exactly F points. Suppose
first that σ , 1. Then, replacing σ by a suitable Sym(` + 1)-conjugate, we may assume
that

σ := (0 1) · · · (2x 2x + 1)

for some 0 ≤ x ≤ (` − 1)/2. A computation yields

[t1, . . . , t`]g = D(1, t1, . . . , t`)σϕ = D(t1, 1, t3, t2, . . . , t2x+1, t2x, t2x+2, . . . , t`)ϕ

= [t−1
1 , t−1

1 t3, t−1
1 t2, . . . , t−1

1 t2x+1, t−1
1 t2x, t−1

1 t2x+2, . . . , t−1
1 t`]ϕ

= [(t−1
1 )ϕ, (t−1

1 t3)ϕ, (t−1
1 t2)ϕ, . . . , (t−1

1 t2x+1)ϕ, (t−1
1 t2x)ϕ, (t−1

1 t2x+2)ϕ, . . . , (t−1
1 t`)ϕ].

Assume that 2x + 1 < `. If [t1, . . . , t`] is fixed by g, then, by checking the first and last
coordinates,

t1 = (t−1
1 )ϕ, t` = (t−1

1 t`)ϕ.
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Since g2 = 1, we have ϕ2 = 1 and hence tϕ1 = t−1
1 and tϕ

`
= t−1

1 t`. Now, it is easy to verify
that the mapping (t1, t`) 7→ (t−1

` t1, t−1
` ) defines a one-to-one correspondence between

{(t1, t`) ∈ T ′2 | tϕ1 = t−1
1 , tϕ

`
= t−1

1 t`} and {(x, xϕ) | x ∈ T, x ∈ CT (ϕ2)}. In particular, as
ϕ2 = 1,

|{(t1, t`) ∈ T ′2 | tϕ1 = t−1
1 , tϕ

`
= t−1

1 t`}| = |{(x, xϕ) | x ∈ T ′}| = |T ′|

and hence F is divisible by |T ′| = |T |. However, by checking (6.1) and the order of
T , we see that this is a contradiction. Assume now that 2x + 1 = `. Following the
computations above, we see that [t1, . . . , t`] is fixed by g if and only if

tϕ1 = t−1
1 , t3 = t1tϕ2 , t5 = t1tϕ4 , . . . , t2y+1 = t1tϕ2y, . . . , t` = t1tϕ

`−1.

In particular, if we let T0 denote the cardinality of the set {t1 ∈ T ′ | tϕ1 = t−1
1 }, we deduce

that g fixes F0|T ′|(`−1)/2 points. Thus,

F0|T ′|(`−1)/2 = F = |CT (t)|`.

If ` > 1, then |T ′| = |T | divides |CT (t)|`, which (by checking (6.1) and the order of T )
is a contradiction. Suppose that ` = 1, that is,

|{t1 ∈ T ′ | tϕ1 = t−1
1 }| = |CT (t)| = F.

When T ′ = PSL4(2), we see with a direct inspection that Aut(T ′) contains no element
ϕ such that |{t1 ∈ T ′ | tϕ1 = t−1

1 }| = F = 64. It remains to consider the case that ` = 1,
T � PSp2κ(q) and T ′ = PΩ2κ+1(q) for some κ ≥ 3 and some power q of some odd prime
number p. Let u be a transvection of T = PSp2κ(q); thus, u has order p, CT (t) is a
maximal subgroup of T and |T : CT (t)| = (q2κ − 1)/(q − 1). In particular, ιu ∈ M1 and
ιu fixes |CT (t)| = |T |(q − 1)/(q2κ − 1) points. Thus, M2 contains an element g′ = σ′ϕ′

conjugate to ιu via an element of G, where σ′ ∈ Sym(2) and ϕ′ ∈ Aut(T ′). Since
u has odd order p, we deduce that σ′ = 1 and ϕ′ ∈ Aut(T ′) has order p. A direct
inspection in [7, Section 4.5] shows that Aut(T ′) contains no element ϕ′ of order p
fixing |CT (t)| = |T ′|(q − 1)/(q2κ − 1) elements. This last contradiction concludes our
argument when ` = 1.

We have shown that σ = 1 and hence g = ϕ ∈ Aut(T ′). In particular, the number of
fixed points of ϕ is |CT ′(ϕ)|`. A direct inspection in [7, Section 4.5] shows that Aut(T ′)
contains no involution ϕ with |CT ′(ϕ)|` = F = |CT (t)|`. From this last contradiction,
(1.1) is never satisfied.
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