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Abstract

Gabetta and Regazzini (2006b) have shown that finiteness of the initial energy (second
moment) is necessary and sufficient for the solution of the Kac’s model Boltzmann
equation to converge weakly (Cb-convergence) to a probability measure on R. Here,
we complement this result by providing a detailed analysis of what does actually happen
when the initial energy is infinite. In particular, we prove that such a solution converges
vaguely (C0-convergence) to the zero measure (which is identically 0 on the Borel sets
of R). More precisely, we prove that the total mass of the limiting distribution splits
into two equal masses (of value 1

2 each), and we provide quantitative estimates on the
rate at which such a phenomenon takes place. The methods employed in the proofs also
apply in the context of sums of weighted independent and identically distributed random
variables x̃1, x̃2, . . . , where these random variables have an infinite second moment and
zero mean. Then, with Tn := ∑νn

j=1 λj,nx̃j , with max1≤j≤νn λj,n → 0 (as n → +∞),
and

∑νn

j=1 λ2
j,n = 1, n = 1, 2, . . . , the classical central limit theorem suggests that T

should in some sense converge to a ‘normal random variable of infinite variance’. Again,
in this setting we prove quantitative estimates on the rate at which the mass splits into
adherent masses to −∞ and +∞, or to ∞, that are analogous to those we have obtained
for the Kac equation. Although the setting in this case is quite classical, we have not
uncovered any previous results of a similar type.
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1. Presentation

The Kac model Boltzmann equation, under the usual hypothesis that the initial velocity
probability distribution µ0 is absolutely continuous with density function f0, can be written as

∂

∂t
f (v, t) = 1

2π

∫
R×[0,2π)

(f (v cos θ − w sin θ, t)f (v sin θ + w cos θ, t)

− f (v, t)f (w, t)) dw dθ,
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96 E. CARLEN ET AL.

f (v, 0) = f0(v), t > 0, v ∈ R,

where f (·, t) denotes the probability density function of the velocity at time t . See Kac (1956),
(1959). In terms of the Fourier transforms ϕ0 and ϕ(·, t) of f0 and f (·, t), respectively, the
previous equation becomes

∂

∂t
ϕ(ξ, t) = 1

2π

∫ 2π

0
ϕ(ξ sin θ, t)ϕ(ξ cos θ, t) dθ − ϕ(ξ, t),

ϕ(ξ, 0) = ϕ0(ξ), t > 0, ξ ∈ R.

(1)

See Bobylev (1984). In the present paper we mainly deal with (1), since it is valid even when
ϕ0 is the Fourier–Stieltjes transform (characteristic function) of any, not necessarily absolutely
continuous, initial distribution µ0.

Equation (1) has a unique solution that can be expressed by Wild sums. See Wild (1951).
More precisely,

ϕ(ξ, t) =
∑
n≥1

e−t (1 − e−t )n−1Q̂+
n (ξ ; ϕ0), t ≥ 0, ξ ∈ R, (2)

with Q̂+
n determined recursively according to

Q̂+
n (ξ ; ϕ0) = 1

n − 1

n−1∑
j=1

Q̂+
n−j (· ; ϕ0) ◦ Q̂+

j (· ; ϕ0)(ξ), n = 2, 3, . . . , (3)

with Q̂+
1 := ϕ0 and ‘◦’ defined as follows: given any pair of characteristic functions ĝ1 and ĝ2,

ĝ1 ◦ ĝ2 is defined by

ĝ1 ◦ ĝ2(ξ) = 1

2π

∫ 2π

0
ĝ1(ξ cos θ)ĝ2(ξ sin θ) dθ, ξ ∈ R.

Gabetta and Regazzini (2006b) proved that finiteness of the initial energy (second moment)
is necessary and sufficient for µ(·, t)—the probability measure corresponding to ϕ(·, t)—to
converge weakly (Cb-convergence) to a probability measure on R as t goes to +∞. According
to standard notation, throughout the paper, C(R) and Cb(R) will respectively stand for the
class of continuous real-valued functions and the class of bounded and continuous real-valued
functions on R. While the sufficiency of the above condition is well known, there does not seem
to have been any proof of its necessity, even though it is intuitively clear on physical grounds.

Taking this statement, of a qualitative nature, as a starting point, in the present study we set
out to analyze the vague convergence of µ(·, t) to the null measure when

∫
R

v2µ0(dv) = +∞. (4)

Before describing the results we obtain in this study, let us briefly comment on its motivations.
From a mathematical perspective, the Wild sum provides a canonical solution of the Kac model
Boltzmann equation regardless of whether or not the second moment is finite. While the precise
long-time behavior of solutions with finite energy initial data, i.e. finite second moment initial
data, is well known, very little has been proved in the infinite energy case. It is of clear
mathematical interest to redress this situation.
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On the explosion of solutions of the Kac equation 97

From a physical perspective, the case of infinite energy initial data is significant for the
following reason. The equation of ultimate interest is the spatially inhomogeneous Boltzmann
equation, which in the Kac model case describes the evolution of a probability density f (x, v, t)

on the phase space R
2. The time-dependent probability density f (x, v, t) characterizes the

joint distribution, at time t , of the position and of the velocity of a molecule. In this spatially
dependent setting there are two evolution mechanisms at work. One is the collision process,
which happens locally at each x, and is described by the spatially homogeneous equation
studied here. The other is streaming, where molecules with velocity v move according to their
velocity between collisions. Combining these effects, we have the spatially inhomogeneous
Kac equation

∂

∂t
f (x, v, t) + v

∂

∂x
f (x, v, t) = 1

2π

∫
R×[0,2π)

(f (x, v cos θ − w sin θ, t)

× f (x, v sin θ + w cos θ, t)

− f (x, v, t)f (x, w, t)) dw dθ,

f (x, v, 0) = f0(x, v), t > 0, v ∈ R.

The physically interesting data for this equation does satisfy the finite energy condition,∫
R2

v2f0(x, v) dx dv < ∞.

Still, this does not imply the finiteness of the conditional variance θ0(x) of the velocity given
the position x, evaluated according to f0. The physical interpretation of θ0(x) is the initial
temperature at x. Likewise, the conditional variance θ(x, t) of the velocity given the position x

at time t represents the local temperature at x and t . Even if the total energy is finite, the
temperature θ(x, t) may well have singularities, so that θ(x, t) may be infinite for some x

and t . In fact, ‘hot spots’ may develop in time even if they are not present initially.
The spatially homogeneous equation studied here describes the evolution of the conditional

velocity distribution under the influence of collisions alone, for example in a ‘splitting method’,
where one solves the spatially inhomogeneous equation by alternately running the streaming
process and collision process in alternate small time steps. The theorems we prove below show
that the hot spots will quickly disperse. As we shall show, because of the collisions at x, all
of the molecules at the hot spot quickly pick up very high velocities, isotropically distributed,
which then ‘explode away’ from the hot spot, owing to the streaming and their high velocities.
Note that our use of the term ‘explosion’ here is literal and physical: it is not to be confused
with the common use in the theory of stochastic processes, concerning the loss of probability at
finite times. That does not happen here. What does happen is that all of the molecules involved
in the hot spot rush away from it at high speeds and isotropically, which is what happens in an
actual explosion.

Hopefully, this brief discussion of the spatially inhomogeneous equation explains the phys-
ical motivation for our study, and we now return to the study of the spatially homogeneous
equation for infinite energy initial data.

Recall that a sequence (µn)n≥1 of probability measures on (R, B(R)) is said to be convergent
vaguely to a measure µ if

∫
R

f (x)µn(dx) → ∫
R

f (x)µ(dx) for any f in C0(R) := {f ∈
C(R) : f vanishes at ∞}. With respect to our specific case, vague convergence of µ(·, t) to the
null measure is tantamount to asserting that

µ(I, t) → 0, t → +∞, I is any bounded interval.
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In point of fact, Theorem 1, below, states that if the initial energy is infinite then the total mass
of the limiting distribution (in the weak sense of de Finetti) splits into two equal masses (of
value 1

2 each) which adhere to −∞ and +∞, respectively. See de Finetti (1970, Section 6.4).
Above all, we aim at providing a quantitative estimation of the corresponding rate of

convergence. To this end, it is worth introducing truncated moments

mk(L) :=
∫

[−L,L]
vkµ0(dv), k = 0, 1, . . . , L ∈ R,

of the initial probability measure µ0 in problem (1) or (2).

Theorem 1. Set τ1 := (−∞, −R], τ2 := [R, ∞), and set

Lt := exp

(
t

(
1 − 8

3π

))
.

Assume that µ0 satisfies (4), and let η be a fixed number in (0, 1). Then, there is a time tη such
that, for every t ≥ tη, η ∨ (1 − η2) < m0(Lt ) < 1 is valid and, for 1 ≤ i 	= j ≤ 2,

1
2 − A(t) + Bi,j (t) ≤ µ(τi, t) ≤ 1

2 + Bi,j (t)

holds for every R ≥ 2((m0(Lt ) − η)(2 − √
2))−1 with

A(t) := R

m2(Lt )1/2(m0(Lt ) − η)1/2 + 1

2
e−t/4

and
Bi,j (t) := 1

2 e−t (µ0(τi) − µ0(τj )).

The methods used in Section 3, to prove Theorem 1, can also be applied to the study of the
asymptotic behavior of the probability distribution of the sum

Tn :=
νn∑

j=1

λj,nx̃j , (5)

when x̃1, x̃2, . . . are independent and identically distributed random variables and, for each n,
(λj,n)j=1,...,νn are nonnegative numbers and νn are positive integers such that

λ(n) := max
1≤j≤νn

λj,n → 0 as n → +∞ (6)

and
νn∑

j=1

λ2
j,n = 1, n = 1, 2, . . . . (7)

Solutions of the above problem can be easily found by resorting to the central limit theorem if
the variance of each x̃j is finite. Instead, when the variance is infinite, there seems to have been
only partial and isolated answers like, for example, an example of Crimaldi (2002) in which
λj,n = 1/

√
n, νn = n, and the common distribution of the x̃j meets a few extra conditions.

Assume that the x̃j s are defined on some space equipped with probability P. We start with the
case in which the common distribution of the x̃j s is symmetric.
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Corollary 1. Let the random variables x̃j , in (5), have symmetric common probability dis-
tribution µ0 satisfying (4). Moreover, let (λj,n)n≥1 satisfy (6) and (7). Then, for every η in
(0, 1), there is Nη such that η ∨ (1 − η2) < m0(Ln) < 1 holds for Ln := λ−1

(n) with n ≥ Nη.
Furthermore, under these very same conditions, we have

1
2 − A(n) ≤ P{Tn ≤ −R} = P{Tn ≥ R} ≤ 1

2

with

A(n) := R√
m2(Ln)(m0(Ln) − η)

+ 1

2
λ2

(n),

provided that R ≥ 2((m0(Ln) − η)(2 − √
2))−1.

From a slight modification of the proof of the previous statements we obtain an extension
of the thesis of the corollary to arbitrary µ0 satisfying (4). In fact, if µ0 is not symmetric, we
succeed in estimating the velocity in which the mass is shifted to {−∞, +∞}: without further
conditions, we are not able to distinguish the behavior at −∞ from that at +∞.

Proposition 1. Let the random variables x̃j , in (5), have common probability distribution µ0
satisfying (4). Moreover, let (λj,n)n≥1 satisfy (6) and (7). Then, for every η in (0, 1), there is
Nη such that η ∨ (1 − η2) < m0(Ln) < 1 and

m2(Ln)

m0(Ln)
−

(
m1(Ln)

m0(Ln)

)2

≥ (1 − η)m2(Ln)

hold for every Ln := λ−1
(n) with n ≥ Nη. Furthermore, under these very same conditions, we

have

P{|Tn| ≤ R} ≤ 2R

m2(Ln)1/2(m0 − η)
+ λ2

(n),

provided that R ≥ 4((m0(Ln) − η)(2 − √
2))−1.

The present authors have also studied the case of the spatially homogeneous Boltzmann
equation for Maxwellian molecules when the initial energy is infinite. See Carlen et al. (2007).
The analysis is, however, quite different, so there is little methodological overlap with the
present paper, and the bounds obtained in the present setting are somewhat simpler and more
explicit.

With this, the presentation of the main results ends. Their proofs are presented in Section 3.
However, in Section 2 we first explain the general ideas of the proofs, and we recall a few
well-known statements to be used in Section 3.

2. Preliminaries to proofs

There have been several previous investigations of the Kac equation using probabilistic
methods. For example, Tanaka (1973), Murata and Tanaka (1974), and Tanaka (1978) proved a
contraction property in the 2-Wasserstein metric. However, this is only defined on probability
measures with finite second moments. For other probabilistic investigations, see McKean
(1963) and Carlen et al. (2000), (2005). Here, the infinite energy (variance) setting requires a
new approach.

The argument used to prove Theorem 1 rests on two main ideas. The former stems from the
remark that the Wild series, as rewritten in McKean (1966) and McKean (1967), highlights that
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µ(·, t) can be viewed as a probability distribution of a linear combination of a random number
(with probability law depending on t) of identically distributed random variables with common
distribution µ0 and random coefficients. The latter relates to the fact that µ0 can be thought of
as a probability law of

αY + (1 − α)Z

when α, Y , and Z are stochastically independent random variables defined in such a way that
α belongs to {0, 1} and takes value 1 with probability m0(L) in (0, 1) for a suitable choice of
L, and Y and Z have distribution (on the Borel class of R)

µ
L
(·) := 1

m0(L)
µ0([−L, L] ∩ ·)

and

µL(·) := 1

1 − m0(L)
µ0([−L, L]c ∩ ·),

respectively.
For the sake of explanation, we start by recalling the theorem of McKean which states that

Q̂+
n (see (3)) can be written as

Q̂+
n (ξ ; ϕ0) =

∑
γ∈G(n)

pn(γ )Cγ (ξ ; ϕ0), ξ ∈ R, n = 2, 3, . . . , (8)

where

• G(n) is the set of all trees γ with n leaves in which each node has either 0 or 2 ‘children’;
the leaves of these trees are labeled, from left to right, with the first n natural numbers
and the nodes are labeled in such a way that 1 designates the root node at the top, 2 is
attached to the minimal node at level 1, and so on;

• pn(·) is a specific probability on G(n);

• Cγ (·; ϕ0), called the n-fold product of ϕ0 with itself, performed according to γ , is given by

Cγ (ξ ; ϕ0) =
∫

[0,2π)N

(∏
l∈γ

ϕ0(πlξ)

)
u⊗N(dθ), γ ∈ G :=

⋃
n≥1

G(n), ξ ∈ R, (9)

with πl ≡ 1 if γ is the sole element of G(1), where u⊗N is the probability measure on
the Borel subsets of [0, 2π)N which makes the coordinates stochastically independent
with the same uniform continuous distribution on [0, 2π).

Angle θ1 is associated with node 1 of γ , θ2 is associated with node 2 of γ , and so on. Now, for
any leaf l of γ in G(n), look at the path which connects l and the ‘root’ node. It consists of δl

steps (δl is said to be the depth of l): the first one from j to its ‘parent’ node, the second one
from the ‘parent’ to the ‘grandparent’ of l, etc. After singling out the angles, associated with
the nodes met by the path, say θσ(1), . . . , θσ(δl ), σ (1) ≡ 1, we define πl to be the product of
α1(σ (1)) · · · αδl

(σ (δl)), where αδl
equals cos θσ(δl) if l is a ‘left child’ or sin θσ(δl) if l is a ‘right

child’; αδl−1 equals cos θσ(δl−1) or sin θσ(δl−1) depending on whether the parent of l is, in its
turn, a ‘left child’ or a ‘right child’, and so on. Now, for each tree γ in G, set s(γ ) = ∑

l∈γ π2
l ,

with the proviso that s(γ ) = 1 if γ is the sole tree in G(1). Then

s(γ ) = 1, γ ∈ G, (10)
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holds true. This fact can be proved by induction. It is trivially true for γ in G(1). Next, assume
that it is valid for every tree in

⋃n
k=1 G(k). Given any tree in G(n+ 1), remove its root node to

obtain two subtrees γl and γr, the ‘left’ and the ‘right’ subtrees, respectively, which belong to⋃n
k=1 G(k). Moreover, we can write s(γ ) = cos2 θ1s(γl) + sin2 θ1s(γr) which, together with

the inductive hypothesis (according to which s(γl) = s(γr) = 1), yields (10).
Next, we recall the argument developed in Gabetta and Regazzini (2006b) to show that (2)

represents the characteristic function of a sum of random variables defined on the probability
space we are about to define. Let

� = (N × G) × [0, 2π)N × {0, 1}N × (R2)N,

denote the coordinate maps of � by

(ν̃t , γ̃ ), (θ̃1, θ̃2, . . .), (α̃1, α̃2, . . .), ((Ỹ1, Z̃1), (Ỹ2, Z̃2), . . .),

and consider the σ -algebra

F = P (N × G) ⊗ B([0, 2π)N) ⊗ B({0, 1}N) ⊗ B((R2)N),

where, for any set S, P (S) stands for the power set of S. At this stage equip (�, F ) with the
probability measure Pt characterized by assigning the value

Pt (M × T × A × D × E) =
∑
n∈M

∑
γ∈T

qt (n)IG(n)pn(γ )u⊗N(A)β(D)(µ
L

× µL)⊗N(E)

to any rectangle with M ⊂ N, T ⊂ G, A ∈ B([0, 2π)N), D ∈ B({0, 1}N), and E ∈
B((R2)N), where β is the law of a Bernoulli sequence with probability of success m0(L),
qt (n) = e−t (1 − e−t )n−1 for n = 1, 2, . . . , and IA denotes the indicator of A.

In view of the independence induced by Pt among the coordinate maps, we can say that the
random variables

α̃i Ỹi + (1 − α̃i )Z̃i , i = 1, 2, . . . ,

are independent with the same distribution µ0. Indeed, for the characteristic function φi of
α̃i Ỹi + (1 − α̃i )Z̃i , i = 1, 2, . . . , we obtain

φi(ξ) = (1 − m0(L))φ
Z̃i

(ξ) + m0(L)φ
Ỹi

(ξ),

where

φ
Z̃i

(ξ) =
∫

[−L,L]c
eiξxµ0(dx)

1 − µ0(L)
, φ

Ỹi
(ξ) =

∫
[−L,L]

eiξxµ0(dx)

m0(L)
, for every i,

which yields φi = φ0, i = 1, 2, . . . .
At this stage, observe that the characteristic function φ

Ṽt
of

Ṽt :=
ν̃t∑

l=1

πl(α̃l Ỹl + (1 − α̃l)Z̃l) (11)

can be written, in view of the definition of Pt , as

φ
Ṽt

(ξ) =
∑
n≥1

e−t (1 − e−t )n−1
∑

γ∈G(n)

pn(γ )

∫
[0,2π)N

(∏
l∈γ

φl(πlξ)

)
u⊗N(dθ),

https://doi.org/10.1239/jap/1208358954 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1208358954


102 E. CARLEN ET AL.

which, combining the fact that φl = φ0 for every l with (8)–(9), turns out to be the same as
φ(·, t) in (2), which is tantamount to saying that the distribution of Ṽt is µ(·, t).

The following identities from Gabetta and Regazzini (2006a) are frequently used in the rest
of this paper:

Et

( ν̃t∑
l=1

(
c

2

)δl (γ̃ ) ∣∣∣∣ ν̃t

)
= �(c + ν̃t − 1)

�(c)�(ν̃t )
,

Et

( ν̃t∑
l=1

(
c

2

)δl (γ̃ ))
= e−t (1−c),

where c is any strictly positive number and δl(γ̃ ) is the depth of leaf l in tree γ̃ . Moreover,

Et

( ν̃t∑
l=1

|πl |m
∣∣∣∣ ν̃t

)
= �(2βm + ν̃t − 1)

�(2βm)�(ν̃t )
,

Et

( ν̃t∑
l=1

|πl |m
)

= e−t (1−2βm), (12)

with

βm = 1

2π

∫ 2π

0
|sin θ |m dθ, m = 0, 1, 2, . . . .

Finally, we recall that (4) implies that, for every η in (0, 1), there is Lη such that

m2(L)

m0(L)
−

(
m1(L)

m0(L)

)2

≥ (1 − η)m2(L) (13)

holds true for every L > Lη. A proof can be found in Khintchine (1935) on the characterization
of the domain of attraction of a Gaussian law. See also Theorem 1 in Section 35 of Gnedenko
and Kolmogorov (1954).

3. Proofs

Set

S̃1,t :=
ν̃t∑

l=1

πlα̃l Ỹl , S̃2,t :=
ν̃t∑

l=1

πl(1 − α̃l)Z̃l,

s̃t := (ν̃t , γ̃ , θ̃ , α̃), θ̃ := (θ̃1, θ̃2, . . .), α̃ := (α̃1, α̃2, . . .).

For the sake of computational simplicity, it is worth recalling that Q̂+
n coincides for any n =

2, 3, . . . with the Fourier–Stieltjes transform of the n-fold Wild convolution when φ0 is replaced
by its real part. See McKean (1966, p. 359). Then, the probability distribution of Ṽt can be
written as a sum of (i) the distribution of Ṽt , when the initial measure µ0 is replaced by its
even part (the probability µ0 whose Fourier–Stieltjes transform is the real part of φ0); and
(ii) e−t (µ − µ0). Throughout this section, Pt will denote the probability distribution defined
in the same way as Pt with µ0 replaced by µ0. Thus,

µt(B, t) = Pt (Ṽt ∈ B) (B ∈ B(R))

= Pt (Ṽt ∈ B) + e−t (µ0(B) − µ0(B)). (14)
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Observe that both µ
L

and µL turn out to be symmetric when µ0 takes the place of µ0. Then,

Et (S̃1,t | s̃t ) = 0 and vart (S̃1,t | s̃t ) = b(s̃t )
2M2(L),

where

b(s̃t )
2 :=

ν̃t∑
l=1

π2
l α̃2

l , Mk(L) :=
∫

R

|x|kµ
l
(dx) = mk(L)

m0(L)
, k = 1, 2, . . . .

Moreover, let F1,t and F2,t denote the conditional probability distribution functions of S̃1,t

and S̃2,t , respectively, given s̃t , and let F ∗
1,t denote the conditional probability distribution

function of S̃∗
1,t given s̃t , where, for any y in R,

y∗ := y

M2(L)1/2b(s̃t )
.

To prove Theorem 1, use conditional independence and (11) to write, for every positive R,

Pt (|Ṽt | > R) = Et (Pt (S̃1,t + S̃2,t < −R | s̃t )) + Et (Pt (S̃1,t + S̃2,t > R | s̃t ))

= 2Pt (S̃1,t + S̃2,t < −R) (from symmetry). (15)

Conversely,
Pt (|Ṽt | > R) = 1 − Pt (|Ṽt | ≤ R),

and

Pt (|Ṽt | ≤ R) = Et

(∫
R

(F 1,t (R − x) − F 1,t (−R − x)) dF 2,t (x)

)

≤ Et (I1 + I2 + I3) + Pt (C
c
η),

where
Cη := {|b(s̃t )

2 − m0(L)| ≤ η}, η ∈ (0, m0(L)),

I1 := ICη

∫
R

|F ∗
1,t ((R − x)∗) − �((R − x)∗)| dF2,t (x),

I2 := ICη

∫
R

|F ∗
1,t ((−R − x)∗) − �((−R − x)∗)| dF2,t (x),

I3 := ICη

∫
R

(�((R − x)∗) − �((−R − x)∗)) dF2,t (x),

where � is the standard Gaussian distribution function.
Now, from the Berry–Esseen inequality (see Theorem 3 with δ = 1 in Section 9.1 of Chow

and Teich (1997)) we obtain

Et (I1 + I2) ≤ 2c1 Et

(∑ν̃t

l=1 |πl |3α̃3
l M3(L)

M2(L)3/2b(s̃t )3 ICη

)

≤ 2c1
M3(L)m0(L)

M2(L)3/2(m0(L) − η)3/2 Et

( ν̃t∑
l=1

|πl |3
)

= 2c1
M3(L)m0(L)

M2(L)3/2(m0(L) − η)3/2 exp(−t (1 − 2β3)). (16)
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The second inequality follows from the fact that, on Cη, b(s̃t )
3 ≥ (m0(L) − η)3/2, while the

equality is derived from (12). Arguing in the same fashion and taking account of the shape of
the centered Gaussian density,

Et (I3) ≤ 2R√
2π(m0(L) − η)1/2M2(L)1/2

. (17)

Finally, from the Bienaymé–Chebyshev inequality and (12),

Pt (C
c
η) ≤ 1

η2 m0(L)(1 − m0(L)) Et

( ν̃t∑
k=1

π̃4
k

)
= 1

η2 m0(L)(1 − m0(L))e−t/4. (18)

Now, (16)–(18) yield

Pt (−R ≤ Ṽt ≤ R) ≤ 2c1L

M2(L)1/2(m0(L) − η)3/2 exp(−t (1 − 2β3))

+ 2R

M2(L)1/2
√

2π(m0(L) − η)1/2
+ 1

η2 m0(L)(1 − m0(L))e−t/4,

(19)

and, in view of the fact that c1 < 1 (see Shiganov (1989)), a new bound can be given for the
right-hand side of (19), i.e.

1

m2(L)1/2

( √
2R

(m0(L) − η)1/2

+ 2L

(m0(L) − η)3/2 exp(−t (1 − 2β3)) + m2(L)1/2(1 − m0(L))

η2 e−t/4
)

.

Now, take L = Lt := exp(t (1 − 2β3)) for any t such that (1 − m0(Lt )) ≤ η2, and choose

R ≥ 2

(m0(Lt ) − η)(2 − √
2)

to obtain the bound
2R

m2(L)1/2(m0(L) − η)1/2 + e−t/4.

Hence, combining the last inequality with (15),

Pt (Ṽt < −R) = Pt (Ṽt > R)

= 1
2 (1 − Pt (|Ṽt | ≤ R))

≥ 1

2

(
1 − 2R

m2(Lt )1/2(m0(Lt ) − η)
− e−t/4

)
,

which, together with (14), yields

Pt (Ṽt < −R) ≥ 1

2

(
1 − 1

m2(L)1/2

( √
8R

m0(L) − η
+ e−t (8/3π−3/4)

))

+ e−t

2
(µ0(−∞, −R] − µ0[R, +∞)),

and an analogous bound for Pt (Ṽt > R). This completes the proof of Theorem 1.
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To prove Corollary 1 it is enough to replace, in the above argument, ν̃t with n, πl with λj,n,
and Lt with Ln = λ−1

(n).
The proof of Proposition 1 can be carried out in an analogous way. In addition to the

changings mentioned in the proof of the corollary, we have to substitute y∗ with

y∗ = y − M1(L)
∑n

j=1 λj,nα̃j√∑n
j=1 λ2

j,nα̃
2
j M2(L)

and Mk(L) with

Mk(L) :=
∫

R

|x − M1(L)|kµ
L
(dx)

when k = 2, 3. Consequently, we have to make simple adaptations to the inequalities using
(13) to obtain M2(L) ≥ (1 − η)m2(L), provided that, given η in (0, 1), L is sufficiently large.
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